
HAL Id: hal-00962600
https://hal.science/hal-00962600

Submitted on 26 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Near-Linear Time Guaranteed Algorithm for Digital
Curve Simplification Under the Fréchet Distance

Isabelle Sivignon

To cite this version:
Isabelle Sivignon. A Near-Linear Time Guaranteed Algorithm for Digital Curve Simplification Under
the Fréchet Distance. Image Processing On Line, 2014, pp.116-127. �10.5201/ipol.2014.70�. �hal-
00962600�

https://hal.science/hal-00962600
https://hal.archives-ouvertes.fr

Published in Image Processing On Line on 2014–00–00.
Submitted on 2013–02–12, accepted on 2013–05–02.
ISSN 2105–1232 c© 2014 IPOL & the authors CC–BY–NC–SA
This article is available online with supplementary materials,
software, datasets and online demo at
http://dx.doi.org/10.5201/ipol.2014.70

2
0
1
4
/
0
3
/
0
8

v
0
.4
.1

IP
O
L

a
rt
ic
le

c
la
ss

A Near-Linear Time Guaranteed Algorithm for Digital

Curve Simplification under the Fréchet Distance

Isabelle Sivignon

GIPSA-LAB
http://www.gipsa-lab.inpg.fr/~isabelle.sivignon

isabelle.sivignon@gipsa-lab.grenoble-inp.fr

Abstract

In this paper, we propose an algorithm that, from a maximum error and a digital curve (4- or
8-connected), computes a simplification of the curve (a polygonal curve) such that the Fréchet
distance between the original and the simplified curve is less than the error. The Fréchet distance
is known to nicely measure the similarity between two curves. The algorithm we propose uses
an approximation of the Fréchet distance, but a guarantee over the quality of the simplification
is proved. Moreover, even if the theoretical complexity of the algorithm is in O(n log(n)),
experiments show a linear behavior in practice.

Source Code

The source code of the algorithm and an online demonstration are accessible at the IPOL web
page of this article1.

Keywords: digital curve simplification; Fréchet distance; approximation

1 Overview

Given a polygonal curve, the curve simplification problem consists in computing another polygonal
curve that (i) approximates the original curve, (ii) satisfies a given error criterion, (iii) with as
few vertices as possible. This problem arises in a wide range of applications, such as geographic
information systems (GIS), computer graphics or computer vision, where the management of the
level of details is of crucial importance to save memory space or to speed-up analysis algorithms.

Given a 4- or 8-connected digital curve and a maximum error, we propose an algorithm that
computes a simplification of the curve (a polygonal curve) such that the Fréchet distance between
the original and the simplified curve is less than the error. The Fréchet distance is known to nicely
measure the similarity between two curves. It can be intuitively defined considering a man walking
his dog. Each protagonist walks along a path, and controls its speed independently, but cannot go
backwards. The Fréchet distance between the two paths is the minimal length of the leash required.

The algorithm we propose (see [4] for the related publication) uses an approximation of the
Fréchet distance, but a guarantee over the quality of the simplification is proved. Moreover, even if
the theoretical complexity of the algorithm is in O(n log(n)), experiments show a linear behavior in
practice.

1http://dx.doi.org/10.5201/ipol.2014.70

Isabelle Sivignon, “A Near-Linear Time Guaranteed Algorithm for Digital Curve Simplification under the Fréchet Distance,” Image Processing On

Line, vol. 4, pp. 30–40, 2014. http://dx.doi.org/10.5201/ipol.2014.70

http://dx.doi.org/10.5201/ipol
http://dx.doi.org/10.5201/ipol
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://dx.doi.org/10.5201/ipol.2014.70
http://www.gipsa-lab.inpg.fr/~isabelle.sivignon
http://dx.doi.org/10.5201/ipol.2014.70
http://dx.doi.org/10.5201/ipol.2014.70
http://dx.doi.org/10.5201/ipol.2014.70

A Near-Linear Time Guaranteed Algorithm for Digital Curve Simplification under the Fréchet Distance

2 Algorithm

2.1 Prerequisite

2.1.1 Fréchet Distance

Given two curves f and g specified by functions f : [0, 1] → R
2 and g : [0, 1] → R

2, and two
non-decreasing continuous functions α : [0, 1] → [0, 1] and β : [0, 1] → [0, 1] with α(0) = 0, α(1) =
1, β(0) = 0, β(1) = 1, the Fréchet distance δF (f, g) between two curves f and g is defined as

δF (f, g) = inf
α,β

max
0≤t≤1

d(f(α(t)), g(β(t)))

As illustrated in Figure 1, contrary to the Hausdorff distance denoted by δH(f, g), the Fréchet
distance takes into account the course of the curves.

δF (f, g)

δH(f, g)

Figure 1: Difference between the Fréchet distance and the Hausdorff distance: red segments indicate
the pair of points minimizing either the Fréchet or the Hausdorff distance.

2.1.2 Curve Simplification Problem

Given a polygonal curve P = 〈p1, . . . pn〉, a curve P ′ = 〈pi1 , . . . pik〉 with 1 = i1 < · · · < ik = n is said
to simplify the curve P (see Figure 2). P (i, j) denotes the sub-path from pi to pj.

Given a pair of indices 1 ≤ i ≤ j ≤ n, δF (pipj, P) denotes the Fréchet distance between the
segment pipj and the part P (i, j) of the curve. For the sake of clarity, the simplified notation
error(i, j) = δF (pipj, P) will sometimes be used. We also say that pipj is a shortcut.

In other words, the vertices of P ′ form a subset of the vertices of P , and the computation of P ′

comes down to the selection of “shortcuts” pipj.

P

P ′

Figure 2: The red curve P ′ is a simplification of the blue curve P .

All in all, to find P ′ an ε-simplification of P we have to:

1. Find shortcuts pipj such that error(i, j) = δF (pipj, P) ≤ ε

31

Isabelle Sivignon

2. Minimize the number of vertices of P ′.

The following nice local property of the Fréchet distance proved in [2] will be very useful to prove
a guarantee on the quality of the result produced by our algorithm (see Figure 3):

P = {p1, p2, . . . , pn} be a polygonal curve. For all i, j, l, r, 1 ≤ i ≤ l ≤ r ≤ j ≤ n, error(l, r) ≤
2× error(i, j).

In other words, the shortcuts of any ε
2
-simplification cannot strictly enclose the shortcuts of an

ε-simplification.

error(i, j) > ε
2

error(l, r) > ε

⇑

Figure 3: Illustration of the local property.

2.2 Guaranteed Algorithm Using an Approximated Distance

2.2.1 Definitions and Overall Algorithm

Using the exact Fréchet distance appears to be too expensive to design an efficient algorithm. Instead,
we use an approximation of the Fréchet distance proposed in [1]. More precisely, they show that
error(i, j) can be upper and lower bounded by functions of two values, namely ω(i, j) and b(i, j).
ω(i, j) is the width of the points of P (i, j) in the direction −−→pipj. b(i, j) is the length of the longest
backpath in the direction −−→pipj (see Figure 4).

We have the following property [1], which leads to Algorithm 1 below. The Fréchet error of a
shortcut pipj satisfies:

max

(

w(i, j)

2
,
b(i, j)

2

)

≤ error(i, j) ≤ 2
√
2max

(

w(i, j)

2
,
b(i, j)

2

)

Algorithm 1: Greedy Fréchet simplification algorithm

i = 1, j = 21

while i < n do2

while j < n and max(w(i, j), b(i, j)) ≤ ε√
2
do3

j=j+14

end5

create a new shortcut pipj−16

i = j − 1,j = i+ 17

end8

2.2.2 Updating the Approximated Distance Efficiently

The difficulty of Algorithm 1 lies in the update of the values of ω(i, j) and b(i, j) when a new point
is taken into account as illustrated in Figure 4 (b).

32

A Near-Linear Time Guaranteed Algorithm for Digital Curve Simplification under the Fréchet Distance

b(i, j)

w(i, j)

pi
pj

(a)

b(i, j + 1)

w(i, j + 1)

pi

pj+1

(b)

Figure 4: (a) Illustration of the definition of the width and the backpath length. (b) When a new
point is considered, the width and backpath lengths may totally change.

Updating ω(i, j) Instead of updating ω(i, j), it is enough to consider the maximal distance between
any point of P (i, j) and the vector −−→pipj. This is done using the algorithm of Chan and Chin [3]
illustrated in Figure 5:

Given an origin point pi and a set of points P (i, j) we construct the set Sij of straight lines l

going through pi such that maxp∈P (i,j) d(p, l) ≤ r. As a result, deciding whether dmax(i, j) is lower
than r or not is equivalent to checking whether the straight line(pi, pj) belongs to Sij or not.

All in all, the update of the cone and the decision are both done in constant time.

< r

Figure 5: The cone (dark gray) is computed incrementally as the intersection of the light gray cones.

Updating b(i, j) This update is trickier. When a new point pj+1 is considered, we want to check if
there exists a backpath longer than a threshold in the direction −−→pipj. Let us first give some definitions.

Definition 1 Let l be a straight line of directional vector
−→
d . α is the angle between l and the abscissa

axis.
projα(p) denotes the orthogonal projection of p onto the line of angle α.

If −−→plpm.
−→
d < 0, then projα(pl) is “after” projα(pm) in direction α, and we denote projα(pl) >>

projα(pm).

Then we can define some points named occulters (see Figure 6) which are the furthest points
for a given direction.

Definition 2 A occulter for the direction
−→
d is a point pk such that for all l < k, projα(pk) >>

projα(pl). Moreover, an occulter is said to be active if there is no occulter pk′ with k′ > k.

33

Isabelle Sivignon

−→
d

Figure 6: Occulters for the direction d in red. Green arrows represent backpaths: the length of the
plain arrows is to be checked, whereas we know that the backpaths represented by dashed arrows
are not the longest ones.

We can prove easily (see [4]) that the origin of the longest backpath is an occulter.
Considering whether the last movement −−−→pjpj+1 is forward or backward in the direction −−→pipj, we

can decide if there is a new backpath possibly longer than the threshold or not. This is done according
to Algorithm 2 below.

Algorithm 2: Active occulter update and backpath computation for a direction
−→
d

Let occmax be the active occulter for P (i, k) in direction
−→
d .1

if −−−−→pkpk+1 is negative then2

if −−−−→pk−1pk is positive then3

if projα(pk) >> projα(occmax) then4

occmax = pk5

end6

end7

The vector −−−−−−−→occmaxpk+1 may be a backpath.8

end9

According to Algorithm 1 we see that Algorithm 2 must be applied for any possible direction for
a given curve P , which is computationally expensive. However, the computation of backpaths can
be mutualized in the case of digital curves. Indeed for a digital curve, the set of elementary shifts
−−−→pjpj+1 is well defined and it is actually possible to cluster the set of directions such that given an
elementary shift e, this shift is either forward (positive) or backward (negative) for all the directions
of the cluster.

0

12

3

4

5 6

7

−→
d

Figure 7: Left: the directions of the plane are clustered into 8 octants. For instance, direction d is
in octant 0. Right: illustration of the positive (or forward) elementary shifts for each octant.

If we now go back to Algorithm 2, we see that the result of the test lines 2-3 is the same for all
the directions of a given octant. This test can thus be done jointly for all the directions of an octant.

Nevertheless, to determine if a new point pk is the new active occulter (the furthest point for the
direction studied), the projection of the current active occulter and the point pk on a direction are

34

A Near-Linear Time Guaranteed Algorithm for Digital Curve Simplification under the Fréchet Distance

compared: the furthest of the two points is the active occulter. Therefore, for any two points pk and
q the result of this comparison is not the same for all the directions of a given octant. This fact is
illustrated in Figures 7 and 8 for the octant 0.

• for any point q in the gray area, and for any direction in octant 0, q is after p.

• for any point q in the dashed area, and for any direction in octant 0, p is after q.

• in the white area, the order changes, as illustrated in Figure 8(a) and (b).

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

p

q

p

β

α < β

q

p

β

α = β

q

p

β

α > β

(a) (b)

Figure 8: (a) For two points p and q and a direction α, the order of their projections changes when
q is in the white area: (b) on the left, q is after p, and is the active occulter for direction α, whereas
on the right, p is after q and is the active occulter.

Algorithm 3 below puts together these observations to update the list of active occulters for one
octant.

Memorizing the directions for which there exists a too long backpath From Algorithm
1, we see that the length of the longest backpath is tested for each new point, which defines a new
direction. Moreover, we see from Algorithm 2 line 8 that for each negative shift, we can have as
many backpaths as active occulters. All in all, testing individually all the possible backpaths when
a new point is added is too expensive. To solve this problem, we propose to maintain a “set” of the
directions for which there exists a backpath of length greater than the error ε.

This set actually consists in a list of intervals: for a given backpath of length l and a given error
ε, the interval of directions for which the projection of the backpath is longer than ε is computed
easily. The union of all these intervals is stored.

3 Quality of the Result and Complexity Analysis

3.1 A Guaranteed Algorithm

An important issue when designing an algorithm that is known not to be optimal is to prove that
the result of this algorithm is not so far from the optimal. In this work, the optimal solution is to
compute the ε-simplification of a digital curve P according to the Fréchet distance with a minimum
number of vertices. The algorithm we propose here is not optimal for two reasons:

• it is greedy: the simplification is computed from a given starting point, in a given scanning
order.

• the distance used is an approximation of the Fréchet distance.

35

Isabelle Sivignon

Algorithm 3: Update of the list of active occulters for the octant 0

Let p be the last point added, we want to check if p is an active occulter.1

forall the active occulters pi(αimin
, αimax

) do2

v = −→pip3

if −→v .(1, 0) < 0 and −→v .(1, 1) < 0 then4

p is not an active occulter5

end6

if −→v .(1, 0) > 0 and −→v .(1, 1) > 0 then7

pi is not an active occulter anymore8

p is an active occulter on [0, ?] with αimin
<? ≤ π

4
9

end10

if −→v .(1, 0) > 0 and −→v .(1, 1) < 0 then11

compute the angle β ; /* see Figure 8 */12

if αimin
≤ β < αimax

then13

p is an active occulter on [0, β]14

pi is an active occulter on [β, αimax
]15

end16

if β < αimin
then17

pi is still an active occulter18

end19

if β ≥ αimax
then20

pi is not an active occulter anymore21

p is an active occulter on [0, ?] with αimax
≤? ≤ π

4
22

end23

end24

+similar process for symmetrical cases (roles of pi and p inverted)25

end26

However, we prove that the number of vertices of the simplified curve computed by our algorithm is
upper bounded by a function of the optimal solution:

Lemma 1 Algorithm 1 computes an ε-simplification P ′ of a polygonal curve P such that |P ′| is
lower than the number of vertices of an optimal ε

4
√
2
-simplification of P.

For more details about this proof, please refer to [4].

3.2 Complexity

The theoretical complexity of this algorithm is O(n log(ni)), for a digital curve of n points. ni is the
number of intervals used to store the directions for which there exists a backpath of length greater
than the error. ni is upper bounded by n. Nevertheless, experiments on noisy shapes show that the
general behavior of the algorithm in linear in time.

36

A Near-Linear Time Guaranteed Algorithm for Digital Curve Simplification under the Fréchet Distance

4 Source Code

4.1 Download and Installation

A C++ implementation is provided. It is part of the open source library DGtal2 (Digital Geometry
Tools and Algorithms). It should compile on any linux, Windows or MacOS system. The installation
is done through cmake3 (version >= 2.8).

1. Download the source code on theIPOL web page of this article4. Untar and unzip the archive.

2. create a build directory;

3. in this directory, run cmake .. Some directories are created.

4. in the demoIPOL FrechetSimplification directory, run make frechetSimplification.

4.2 Usage

The executable file is named frechetSimplification.

Input A 2D digital curve (4 or 8 connected), given as a list of points:

x0 y0 #coordinates of the first point

x1 y1 #coordinates of the second point

...

xn yn

Such digital curves are obtained after a contour extraction from a binary image. Note that the
input file should contain one contour only. Syntax for running the simplification algorithm on a
contour.sdp file is:

./ frechetSimplification -sdp contour.sdp

Options To get the list of options, type

./ frechetSimplification

The main parameter is the error value used for the simplification. It is given with the option
-error (default value is 2).

Two simplifications are available:

• the first one is the simplification according to the Fréchet distance as described above;

• the other one is a simplification where only the width of the shortcut is taken into account: in
Algorithm 1, the test on line 3 is replaced by w(i, j) ≤ ε√

2
.

Default is the computation of the Fréchet simplification. If the width simplification is preferred,
the -w option should be used.

2http://libdgtal.org
3http://www.cmake.org/
4http://dx.doi.org/10.5201/ipol.2014.70

37

http://libdgtal.org
http://www.cmake.org/
http://dx.doi.org/10.5201/ipol.2014.70
http://libdgtal.org
http://www.cmake.org/
http://dx.doi.org/10.5201/ipol.2014.70

Isabelle Sivignon

Output The output consists in:

• the display of the number of points of the curve, the error given as input, the number of vertices
of the simplified polygon and the cpu time (in ms) for the simplification performed;

• the list of points of the simplified polygon in a file named output.vertices;

• an eps file named output.eps with both the original digital curve and the simplified curve.
Other output formats are available using DGtal (svg, fig, tikz for instance). See the DGtal
documentation for more information.

5 Implementation Details

Here are some useful hints about the implementation choices. Some examples can be consulted in
the tests (testFrechetShortcut.cpp) and examples (exampleFrechetShortcut.cpp) directories.

The FrechetShortcut class (FrechetShortcut.h and FrechetShortcut.ih files) contains all
the elements used for the simplification computation. It is a templated class with two parameters:
the first one is an iterator on the list of points to process; the second one is the type of integer used
for the computations. Here is a very simple example of use of this class:

typedef PointVector <2,int > Point;

typedef std::vector <Point >:: iterator Iterator; // the curve is stored as←֓
a 2D vector of integer points

typedef FrechetShortcut <Iterator ,int > Shortcut;

std::vector <Point > contour;

contour.push_back(Point (0,0)); // add points

contour.push_back(Point (1,0));

...

Shortcut s(5); // define a shortcut with an error of 5

s.init(contour.begin ()); // initialize the shortcut with the first point←֓
of the contour

while ((s.end() != contour.end()) && (s.extendForward ())) {} // add ←֓
points to the shortcut while possible

This setting is similar to other classes of the Geometry Package of the DGtal library. Conse-
quently, the FrechetShortcut can be used to compute greedy segmentations of a contour using the
GreedySegmentation class. Here is an example:

typedef Curve:: PointsRange :: ConstIterator Iterator; // use the DGtal ←֓
Curve to store the input contour

typedef FrechetShortcut <Iterator ,int > SegmentComputer;

Curve aCurve;

aCurve.initFromVector(contour); // the contour is the same as before

typedef Curve:: PointsRange Range;

Range r = aCurve.getPointsRange ();

typedef GreedySegmentation <SegmentComputer > Segmentation; // define a ←֓
segmentation

38

A Near-Linear Time Guaranteed Algorithm for Digital Curve Simplification under the Fréchet Distance

Segmentation theSegmentation(r.begin(), r.end(), SegmentComputer(←֓
error)); // compute the greedy segmentation between the points ←֓
defined by r.begin() and r.end()

More precisely, the FrechetShortcut class includes two nested classes called Backpath and Cone.
The first one is used to check the backpath lengths, while the second one is used to check the width.

The extendForward() method tests is the next point on the curve can be added to the current
shortcut. Its implementation follows the inner while loop of Algorithm 1 and mainly consists in
calling the functions updateBackPath() and updateWidth().

The updateWidth() function updates the current cone according to the new point (see description
of the general algorithm above). It returns true if the shortcut defined by the first point of the curve
and the next point still complies with the error parameter given.

For a given elementary shift, the updateBackPath() method updates the backpath structure
for the eight octants. This is done through a call to updateBackPathFirstQuad() after the ap-
propriate rotation of the elementary shift. This function implements Algorithm 2, with a call to
addPositivePoint() in the case of a positive shift, or addNegativePoint() otherwise.

In the latter case, the backPath structure is updated with a call to updateOcculters(): this
method implements Algorithm 3. Last, the list of directions for which there exists a backpath of
length greater than the error is updated in updateIntervals().

6 Examples

./ frechetSimplification -error 5 -sdp Data/Plant046.sdp

The result of this command is (number of points of input curve, error, number of points of
simplified curve, cpu time):

2402 5 76 0.025

Figure 9 illustrates the eps files output for the simplification using the Fréchet distance (a) or
with the width criterion only (option -w, (b)).

Note that the simplification using the Fréchet distance better retrieves the sharp features of the
contour for a similar number of points (76 in both cases). Actually, the difference between the Fréchet
simplification and the width simplification is generally very light. The Fréchet distance is particularly
efficient for contours with long and narrow features like the ones presented here. In Figure 10, the
input data file and output files output.vertices successively computed for the Fréchet simplification
and the width simplification are displayed with gnuplot.

Image Credits

All images are given by the authors. Contours come from the large binary image database

http://www.lems.brown.edu/~dmc/

References

[1] Mohammad Ali Abam, Mark de Berg, Peter Hachenberger, and Alireza Zarei,
Streaming algorithms for line simplification, in Proceedings of the twenty-third annual symposium

39

http://www.lems.brown.edu/~dmc/

Isabelle Sivignon

(a) (b)

Figure 9: Simplification with the Fréchet distance (a), and with the width only (b) with the maximal
error set to 5.

on Computational geometry, SCG ’07, ACM, 2007, pp. 175–183. http://dx.doi.org/10.1145/
1247069.1247103.

[2] P.K. Agarwal, S. Har-Peled, N.H. Mustafa, and Y. Wang, Near-linear time ap-
proximation algorithms for curve simplification, Algorithmica, 42 (2005), pp. 203–219. http:

//dx.doi.org/10.1007/s00453-005-1165-y.

[3] W. S. Chan and F. Chin, Approximation of polygonal curves with minimum number of line seg-
ments, in Proceedings of 3rd International Symposium on Algorithms and Computation, Springer-
Verlag, 1992, pp. 378–387. http://dx.doi.org/10.1007/3-540-56279-6_90.

[4] Isabelle Sivignon, A near-linear time guaranteed algorithm for digital curve simplification
under the Fréchet distance, in Proceedings of the 16th IAPR International Discrete Geometry for
Computer Imagery, vol. 6607 of Lecture Notes in Computer Science, Springer Berlin Heidelberg,
2011, pp. 333–345. ISBN 978-3-642-19866-3.

40

http://dx.doi.org/10.1145/1247069.1247103
http://dx.doi.org/10.1145/1247069.1247103
http://dx.doi.org/10.1007/s00453-005-1165-y
http://dx.doi.org/10.1007/s00453-005-1165-y
http://dx.doi.org/10.1007/3-540-56279-6_90

A Near-Linear Time Guaranteed Algorithm for Digital Curve Simplification under the Fréchet Distance

 60

 80

 100

 120

 140

 160

 180

 200

 20 40 60 80 100 120 140 160

frechet.vertices
width.vertices

Data/plant54.sdp

maximal error = 8

 60

 80

 100

 120

 140

 160

 180

 200

 20 40 60 80 100 120 140 160

frechet.vertices
width.vertices

Data/plant64.sdp

maximal error = 8

 100

 150

 200

 250

 300

 350

 400

 450

 100 150 200 250 300 350 400

frechet.vertices
width.vertices

Data/plant64.sdp

maximal error = 5

Figure 10: Some other examples of digital curve simplification with different maximal errors.

41

	Overview
	Algorithm
	Prerequisite
	Fréchet Distance
	Curve Simplification Problem

	Guaranteed Algorithm Using an Approximated Distance
	Definitions and Overall Algorithm
	Updating the Approximated Distance Efficiently

	Quality of the Result and Complexity Analysis
	A Guaranteed Algorithm
	Complexity

	Source Code
	Download and Installation
	Usage

	Implementation Details
	Examples

