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Abstract 

Measurements of the real 1 and imaginary  part of the conductivity were performed in  

optimally doped BaFe1.9Ni0.1As2  and overdoped BaFe1.88Ni0.12As2 crystals in the frequency range 

20MHz - 1.5 GHz using a single coil technique. The temperature dependence of the London 

penetration depth follows a T2 law. The conductivity 1increases with decreasing temperature below 

Tc in agreement with the results obtained for the optimally Co doped BaFe2-xCoxAs2 crystals. The 

increase of 1 in the superconducting state is attributed to a rapidly decrease of the quasiparticle 

scattering rate. 
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Introduction 

A number of experimental works have been published recently concerning the surface impedance of 

iron based superconductors [1-6]. Low frequency, radiofrequency, microwave and optical reflectivity 

performed on crystals and thin films give information about the pairing of the superconducting in 

these materials. In particular the power law dependence of the London penetration depth in the ab 

plane(T)-(0)~Tn, with n~2-2.8 [6] at T<0.5Tc. Such a behaviour is attributed to pair breaking 

scattering in the so-called s± superconductivity [6]. Contradicting results on surface resistance have 

been reported. A coherence peak was observed in thin films with THz and optical measurements  

[3, 4] but no coherence peak was observed in crystals with microwave experiments [1, 2].  Here we 

report radiofrequency surface measurements on optimally doped BaFe1.9Ni0.1As2 and overdoped  

BaFe1.88Ni0.12As2  crystals in the frequency range 20MHz –1.5 GHz with a single coil technique. 

Careful analysis of the impedance measurements permits us to extract the real part of the conductivity. 

 

Experiment 

The crystal were grown using Fe/Ni-As self flux method, details are given in [7]. The samples are 

platelikes with the plates being perpendicular to the crystallographic c-axis, they exhibit a multicrystal 

structure with approximately 100 µm size single crystals which are randomly oriented in the ab plane. 

Samples were cleaved from a larger crystal. We selected samples with typical dimensions 

1000x1000x100 µm3, the smallest dimension is along the c axis. The platelet samples are placed inside 

a copper coil (11 mm length, 2.6 mm diameter, 18 turns, inductance 0.2 µHenry). The coil is situated 

at the end of a coaxial line inside a terminal adapter. Radio frequency magnetic field is applied parallel 

to the ab plane. Incident radiofrequency power was fixed to -20dBm. Non resonant measurements of 

the real (R) and imaginary (L) of the impedance of the coil were performed with an automated 

impedance analyzer Agilent 4395 in the frequency range 1-100MHz.  Measurements of the self LC 

resonant frequency and series resistance, L=0.2 µH, C=50 fH, quality factor ~ 80, were performed at 

1.5 GHz with a Hewlett Packard 8720B network analyzer. Resistance and inductance were measured 

separately in the absence of a sample and were subtracted from measurements with the sample present 

[8]. 

The formulation of the impedance of the coil surrounding the sample was obtained using the 

equivalent circuit based on a transformer analogy developed in [9]. In this model the primary of the 

transformer  is the measuring coil L0. The secondary is defined by an inductance L2 which is related to 
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the eddy currents induced in the sample, L2 is a geometrical factor and does not depend on the sample 

properties. The mutual inductance M between the sample and the coil is defined by the mutual 

inductance between the primary and secondary, M=k2L0L2, where k is the geometrical coupling factor 

between the primary and secondary. The inductance of the coil is given by 

 22 2
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2 2( ) ( )
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Z R j L

R j X L R j X L
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          

 (1) 

Where R and X are the real and imaginary parts respectively of the surface impedance of the sample, 

R0 and L0 are the resistance and inductance of the empty coil and  is the angular frequency. 

In the experiments the same coil L0=0.2µH was used. Parameters k2~0.1 and L2~0.6 nH were  

evaluated from the measurements in the normal state of the samples at a temperature T  above 

superconducting transition Tc where the following equality is 

0 / 2N N dcX R               (2) 

where 0 is the magnetic permeability of vacuum and dc = 106 m the dc sample resistivity measured 

in [7]. In the superconducting state R and X are deduced from equation (1). 

The accuracy of our technique was tested by measurements on superconductor MgB2 powder. Data 

averaging techniques were used. 

    
Results and Discussion 

The temperature dependence of R and X normalized to the value RN measured at 25K are shown  for 

the optimal doped BaFe1.9Ni0.1As2 and overdoped BaFe1.88Ni0.12As2  crystals in Figs. 1 and 2. Below Tc 

the frequency dependence of X/RN observed is 0.5 which is expected in the superconducting state. 

Reactance X is proportional to the London penetration depth and frequency [10], X= in the 

superconducting state  and RN~0.5 in the normal state.  

The changes in the London penetration depth (T)-(0) deduced from X/RN are shown in Fig. 3. 

 follows a ~T2 temperature dependence at T<Tc/2 for optimally doped crystal. 

At very low temperatures T<<Tc,  following a power law (T/TC)n   with n~2-2.8 attributed to the 

effect of strong pair breaking scattering has been reported [6]. 

After averaging the data, a drop of three orders of magnitude in R/RN is obtained below the 

superconducting transition Tc. R/RN is proportional to it results that the expected variation R~  
is verified in the superconducting state [10]. Nevertheless the resistance values at T<<Tc in Figs. 1and 
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2 are larger by more than one order of magnitude than those reported in [1] and [2]. Similar residual 

surface resistance values are roughly extrapolated for the two different doped crystals in Figs.1 and 3. 

Residual loss is a long standing problem in microwave studies of superconductors [11]. Residual 

losses are generally subtracted to obtain the intrinsic resistance. Our resistance measurements are well 

resolved in the vicinity of the superconducting transition. But at T<<Tc our experimental resolution is 

not sufficient to extract the intrinsic resistance.  The real  and imaginary  part of the conductivity 

are related to the surface impedance Z by the following relation [10] 

0

1 2

j
Z R jX

 
                 (3)   

The real and imaginary parts of the conductivity normalized to the value   at 25K in the 

normal state are obtained from the measurements of X/RN and R/RN using the following equations 

which are deduced from equation (3): 
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 /N and /(0) , with T=0),  are   shown in Figs. 4, 5 and 6.  

The conductivity 2/2(0) is related to the London penetration depth [2, 10] and follows a T2 

temperature dependence: 
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has been calculated after elimination of the residual loss. The main effect of the subtraction of the 

residual loss is to force the conductivity to approach zero at zero temperature [11]. Regardless of 

whether or not a residual loss is subtracted, the conductivity  increases with decreasing temperature 

below Tc to a maximum of about 2-10 times its normal value and this maximum decreases with 

increasing frequency from 20 to 100MHz.  

At the lowest temperatures R/RN is small, it results that the experimental error on  is important. 

depends on the subtracted residual loss and definitive conclusion about the temperature behaviour 

of at the lowest temperatures remains not well known. 
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Our  results  showing an increasing of below Tc are in agreement with the measurements on Cobalt 

doped BaFe2-xCoxAs2 crystals  at 40 GHz which point out a similar behaviour [1]. The authors in [1] 

argue that the strong rise in the conductivity  below Tc results from a temperature dependent 

scattering rate decreasing rapidly with temperature. 

The phenomenological two fluid model developed in [1, 10] is used here to extract the quasiparticle 

scattering time . In this two fluid model the temperature dependence of the superconducting density 

ns is related to the London penetration, ns=.The normal fluid density nn is given by nn=1-ns, the 

total carrier density being 1. It results that the temperature dependence of nn in our experiment follows 

a T2 dependence, nn ~1-C)2.  

Following the two fluid model, at low frequency  1 is roughly proportional to the product  

nnDrude like conductivity) which gives in our case nnC)2
Consequentlyscattering rate is related to the normalized conductivity N by 

2
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         (6) 

where is the scattering rate in the normal state at Tc. 

The scattering rate deduced from N at 100MHz and 1.5GHz using equation (6) is shown in Fig6. 

The temperature decrease ofthe scattering rate in the BaFe2-xNixAs2 can be compared with that 

observed in the Co doped crystals [1]. Below Tc a similar temperature decrease of  is observed in 

both Ni and Co doped BaFeAs2 superconductors. 

Conclusion 

Radiofrequency measurements of real and imaginary parts of the conductivity were performed on 

optimally and overdoped BaFe2-xNixAs2 using a single coil technique. The temperature dependence of 

the London penetration depth is in agreement with the published results. The increase of the 

conductivity  below Tc is attributed to the temperature dependence of the quasiparticle scattering 

rate. A similar behaviour was observed in Co doped BaFe2-xCoxAs2.Strong temperature dependence of 

the quasi particle scattering time is observed in many unconventional superconductors [1, 11]. 
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Figure Captions 

 

Figure 1 

Temperature dependence of X/RN (filled symbols) and R/RN (open symbols) of surface impedance 
normalized to the value RN obtained at 25 K for the optimally doped BaFe1.9Ni0.1As2 crystals. 
Inset: Frequency dependences of X/RN and R/RN at 10K 

 

Figure 2 

Temperature dependence of X/RN (filled symbols) and R/RN (open symbols) of surface impedance 
normalized to the value RN  obtained at 25 K for the overdoped BaFe1.88Ni0.12As2 crystals. 

 Inset: Frequency dependences of X/RN and R/RN at 10K. 

Figure 3 

Temperature dependence of the London penetration depth variation at different 
frequencies.
Figure 4 

Temperature dependence of the real N (filled symbols) and imaginary 2(0) (open symbols) 

parts of the conductivity normalized to the value N at 25 K for the optimally doped 
BaFe1.9Ni0.1As2 crystals.   Solid line is calculated with 1-(T/20)2.   

Figure 5 

Temperature dependence of the real N (filled symbols) and imaginary 2(0)  (open symbols) 

parts of the conductivity normalized to the value N at 25 K for the over doped BaFe1.88Ni0.12As2 
crystals. Solid line is calculated with 1-(T/16)2.   

Figure 6 

 The temperature dependence of the quasiparticle scattering rate deduced from the conductivity      

฀/N with Eq. 6.  
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