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Introduction

Let D be the open unit disc in the complex plane, and let T = ∂D be the unit circle. Denote H ∞ the space of bounded analytic function on D and H 2 the classical Hardy space of analytic functions on D having square-summable Taylor coefficients at the origin. Let P + be the orthogonal projection of L 2 (T) onto H 2 . For ϕ ∈ L ∞ (T), the Toeplitz operator T ϕ : H 2 → H 2 is given by

T ϕ f := P + (ϕf ), f ∈ H 2 . Let b ∈ H ∞ such that b ∞ ≤ 1,
where • ∞ is the supremum norm on D. The de Brange-Rovnyak space H(b) is the image of H 2 under the operator (I -T b Tb) 1/2 , that is H(b) = (I -T b Tb) 1/2 (H 2 ), endowed with the usual inner product

(I -T b Tb) 1/2 (f ), (I -T b Tb) 1/2 (g) b = f, g H 2 ,
f, g ∈ (ker(I -T b Tb) 1/2 ) ⊥ , where •, • H 2 is the inner product in H 2 given by f, g

H 2 = 1 2π T f (ζ)g(ζ)|dζ|.
It is well known that if b ∞ < 1 then H(b) = H 2 and if b is an inner function, that is |b| = 1 a.e. on T, then H(b) = H 2 ⊖ bH 2 , see [START_REF] Sarason | Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF]. We refer to [START_REF] Baranov | Weighted norm inequalities for de Branges-Rovnyak spaces and their applications[END_REF][START_REF] Blandignères | Reverse Carleson measures for de Branges-Rovnyak spaces[END_REF][START_REF] Chevrot | De Branges-Rovnyak spaces and Dirichlet spaces[END_REF][START_REF] Costara | Which de Branges-Rovnyak spaces are Dirichlet spaces (and vice versa)?[END_REF] for some recent results on these spaces. We denote by S the shift operator on H 2 . Note that H(b) is invariant by S if and only if b is nonextreme in the unit ball of H ∞ see [10, p. 23]. In this case we investigate here when the shift operator is concave or 2-isometry on the de Brange-Rovnyak spaces. A bounded operator T on a Hilbert space H is called concave if

T * 2 T 2 -2T * T + I ≤ 0 and T is called 2-isometry if T * 2 T 2 -2T * T + I = 0. Note that when b(z) = c + γz 1 -βz , z ∈ D, (1) 
where c, γ, β ∈ C and |β| < 1, then we have by Lemma 6 

b ∞ ≤ 1 ⇐⇒ 2|β + cγ| ≤ 1 + |β| 2 -|c| 2 -|γ|
M = Clos H(b) Span{z n (M ⊖ zM ) : n ≥ 0} .
We do not know for which nonextreme functions b the z-closed invariant subspaces of H(b) are wandering. Also we do not know for which z-closed invariant subspaces are singly generated.

N. Chevrot, D. Guillot, T. Ransford in [START_REF] Chevrot | De Branges-Rovnyak spaces and Dirichlet spaces[END_REF] investigate for which b the de Branges-Rovnyak space H(b) coincide with some Dirichlet-type space with equality of norms. As consequence of our main theorem we obtain their Theorem [3, Theorem 3.1], see Corollary 3 below. Let us now introduce the Dirichlet type spaces. If µ is a finite positive measure on T, the Dirichlettype space D(µ) is the set of analytic functions f ∈ H 2 , such that

D µ (f ) := D |f ′ (z)| 2 P µ(z)dA(z) < ∞,
where dA(z) = dxdy/π stands for the normalized area measure in D and P µ is the Poisson integral of µ

P µ(z) := T 1 -|z| 2 |ζ -z| 2 dµ(ζ), z ∈ D.
The space D(µ) is endowed with the norm

f 2 Dµ := f 2 H 2 + D µ (f ). Note that if µ = 0, D(µ) = H 2
and if µ is the Lebesgue measure on T, P µ = 1 and then D(µ) is the classical Dirichlet space, see [START_REF] El-Fallah | A primer on the Dirichlet Spaces[END_REF]. These spaces were introduced by Richter [START_REF] Richter | A representation theorem for cyclic analytic two-isometries[END_REF] by considering the 2-isometries on Hilbert spaces. A bounded operator T on a Hilbert space H is called analytic if n≥0 T n H = {0}. Note that Richter proved in [START_REF] Richter | A representation theorem for cyclic analytic two-isometries[END_REF] that for every cyclic, analytic and 2-isometry operator T on a Hilbert space, there exists a unique finite measure µ on T such that T is unitarily equivalent to S|D µ . We deduce from Theorem 1 the following Corollary 

Proofs

To give the proofs, we need some additional notations and properties. The space H(b) is a reproducing kernel space :

f (w) = f, k b w b , w ∈ D, f ∈ H(b),
where

k b w (z) := 1 -b(w)b(z) 1 -wz , w, z ∈ D.
Let S * be the backward shift operator on H 2 ,

S * f (z) = f (z) -f (0) z , f ∈ H 2 .
The space H(b) is always invariant by S * [10, p. 11]. We briefly recall some basic notions about the de Brange-Rovnyak space due to Sarason. Proof. see [10, p. 24-25-26].

Let b be a nonextreme function in the unit ball of H ∞ . Then there exists a unique outer function a such that a(0) > 0 and

|a(ζ)| 2 + |b(ζ)| 2 = 1 a.e. ζ ∈ T. We set M(ā) = T āH 2 . Since b is nonextreme f ∈ H(b) ⇐⇒ Tbf ∈ M(ā)
and M(a) is dense in H(b) (see [10, p. 24-25]). Moreover T ā is one-to-one, thus for every f ∈ H(b) there is a unique function f + such that 

Tbf = T āf + . Note that for f, g ∈ H(b), f, g b = f, g H 2 + f + , g + H 2 . (2 
= b, S * b H 2 + b + , (S * b) + H 2 = b, S * b H 2 + a, S * a H 2 -1/a(0), S * a H 2 = 1 2π T ζ(|b(ζ)| 2 + |a(ζ)| 2 )|dζ| - a ′ (0) a(0) = 1 2π T ζd|ζ| - a ′ (0) a(0) = - a ′ (0) a(0) . Lemma 6. Let b(z) = (c + γz)/(1 -βz), z ∈ D, where c, γ, β ∈ C, |β| < 1. Then (a) b ∞ ≤ 1 ⇐⇒ 2|β + cγ| ≤ 1 + |β| 2 -|c| 2 -|γ| 2 . (b) If b ∞ ≤ 1, then b is nonextreme ⇐⇒ 1 + |β| 2 -|c| 2 -|γ| 2 > 0.
In this case we have Proof. (a) We have

a(z) = ρ -σz 1 -βz , z ∈ D,
b ∞ ≤ 1 ⇐⇒ |c + γζ| 2 ≤ |1 -βζ| 2 , ∀ζ ∈ T, ⇐⇒ |c| 2 + |γ| 2 + 2Re(cγζ) ≤ 1 + |β| 2 -2Re(βζ), ∀ζ ∈ T, ⇐⇒ 2Re((β + cγ)ζ) ≤ 1 + |β| 2 -|c| 2 -|γ| 2 , ∀ζ ∈ T, ⇐⇒ 2|β + cγ| ≤ 1 + |β| 2 -|c| 2 -|γ| 2 .
(b) Assume that b ∞ ≤ 1. So there exist ρ and σ satisfying (i), (ii) and (iii). In fact ρ 2 and |σ| 2 are the solutions of the equation

x 2 -(1 + |β| 2 -|c| 2 -|γ| 2 )x + |β + cγ| 2 = 0. For every ζ ∈ T, |(1 -βζ)| 2 (1 -|b(ζ)| 2 ) = |1 -βζ| 2 -|c + γζ| 2 | = 1 + |β| 2 -|c| 2 -|γ| 2 -2Re((β + cγ)ζ) = ρ 2 + |σ| 2 -2Re(ρσζ) = |ρ -σζ| 2 .
Recall that |β| < 1. Then we have

log(1 -|b| 2 ) ∈ L 1 (T) ⇐⇒ T log(|1 -βζ| 2 (1 -|b(ζ)| 2 ))|dζ| > -∞ ⇐⇒ T log |ρ -σζ| 2 |dζ| > -∞. Since ρ ≥ |σ|, T log |ρ -σζ| 2 |dζ| > -∞ ⇐⇒ ρ > 0 ⇐⇒ 1 + |β| 2 -|c| 2 -|γ| 2 > 0,
which proves the first part of (b). Assume now that b is nonextreme and let a be the outer function associated to b. Since the two outer functions (1 -βz)a(z) and ρ -σz take positive values at z = 0 and

|(1 -βζ)a(ζ)| 2 = |(1 -βζ)| 2 (1 -|b(ζ)| 2 ) = |ρ -σζ| 2 , a.e ζ ∈ T, we get (1 -βz)a(z) = ρ -σz on D. Remarks. Let b(z) = (c + γz)/(1 -βz), z ∈ D, with |β| < 1. 1. b(T) is the circle of radius |γ + βc|/(1 -|β| 2 ) centered at the point (c + γ β)/(1 -|β| 2 ). So b ∞ = |c + γ β| 1 -|β| 2 + |γ + βc| 1 -|β| 2 . 2. Suppose b ∞ ≤ 1. It follows from Lemma 6 that b is extreme if and only if 1 + |β| 2 - |c| 2 -|γ| 2 = |β + cγ| = 0 wich is equivalent to b(z) = e iθ ( β -z)/(1 -βz) for some θ ∈ R.
For the proof of Corollary 3 , we need the following lemma.

Lemma 7. Let µ be a finite positive measure on T and let b ∈ H ∞ be a nonextreme function in the unit ball of

H ∞ . Let k w (z) = 1/(1 -wz), w, z ∈ D. Then (i) k z , k w D(µ) = 1 + zw T dµ(ζ) (1 -zζ)(1 -w ζ) k z (w). (ii) k z , k w H(b) = 1 + b(z)b(w) a(z)a(w) k z (w). (iii) Span{k w , w ∈ D} is dense in D(µ). (iv) Span{k w , w ∈ D} is dense in H(b).
Proof. By Douglas formula, for every f, g ∈ D(µ) we have

f, g D(µ) = f, g H 2 + 1 2π T T (f (ζ) -f (ζ ′ ))(g(ζ) -g(ζ ′ )) |ζ -ζ ′ | 2 |dζ|dµ(ζ ′ ),
(see [START_REF] Richter | A representation theorem for cyclic analytic two-isometries[END_REF]). Using now Cauchy formula we get (i). For the proof of (ii) see [10, p. 32].

Now we proof (iii

). Let f ∈ D(µ) and set f r (z) = f (rz), 0 < r < 1. Note that f r 2 -f D(µ) → 0, as r → 1-,
(see [START_REF] Richter | Multipliers and invariant subspaces in the Dirichlet space[END_REF]Theorem 5.2] and [START_REF] Sarason | Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF]Corollary]). Since the map ζ → f r (ζ)k rζ is continuous from T to D(µ) and

f r 2 = 1 2π T f (rζ)k rζ |dζ|,
we see that f r 2 can be approximated by finite combinations of the functions k w . So f belong to the closure of Span{k w , w ∈ D}.

To prove (iv), let h ∈ H(b). We have

f, k w b = h(w) + (b(w)/a(w))h + (w) (3) 
(see [10, p. 32]). Suppose that h ⊥ Span{k w : w ∈ D}, then by (3

) h = -(b/a)h + . So (h + /a) -āh + = -bh. ( 4 
)
It follows that (h + /a) -āh + ∈ L 2 (T) and then h + /a ∈ L 2 (T). Since h + /a belong to Smirnov class, h + /a ∈ H 2 . By (4) we get P + h + a -āh + = -P + bh = -Tbh. Since Tbh = T āh + , we obtain P + h + a -āh + = -P + āh + . Therefore P + (h + /a) = 0 and then h + = 0.

Remark. The polynomials are dense in D(µ) and in H(b), [START_REF] Richter | A representation theorem for cyclic analytic two-isometries[END_REF][START_REF] Sarason | Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF]. We can deduce (iii) and (iv) from this fact. Note that for f ∈ H(b) we have not in general f r -f H(b) → 0 as r → 1-, see [START_REF] Sarason | Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF][START_REF] Chevrot | De Branges-Rovnyak spaces and Dirichlet spaces[END_REF]. 

and

T * 2 T 2 (h) = T * 2 (S 2 h) = T * S * S 2 h + S 2 h, b b S * b = T * Sh + h, T * 2 b b S * b = S * Sh + h, T * 2 b b S * 2 b + Sh + h, T * 2 b b S * b, b b S * b = h + h, T * 2 b b S * 2 b + h, T * b + b, S * b b T * 2 b b S * b. (6) 
By ( 5) and ( 6), we get

(T * 2 T 2 -2T * T + I)(h) = h, T * 2 b b S * 2 b + h, b, S * b b T * 2 b -T * b b S * b. (7) 
Moreover, we have

T * b = S * b + b, b b S * b = (1 + b 2 b )S * b (8) 
and

T * 2 b = (1 + b 2 b ) S * 2 b + S * b, b b S * b . (9) 
So by ( 7), ( 8) and ( 9), T is concave if and only if This completes the proof.

(T * 2 T 2 -2T * T + I)h, h b = (1 + b 2 b )× | h, S * 2 b b | 2 + 2Re h, S * b b h, S * 2 b b b, S * b b -1 -| b, S * b b | 2 | h, S * b b | 2 ≤ 0. ( 10 

Corollary 3 .

 3 [Chevrot, Guillot, Ransford [3]] Let µ be a finite positive measure on T and let b be in the unit ball of H ∞ . Then H(b) = D(µ) with equality of norms, if and only if µ = cδ λ and b(z) = γz 1 -βz , where β = 0, |β| + |γ| = 1, c = |γ| 2 /|β| and λ = β/|β|.

Proposition 4 .

 4 Let b be in the unit ball of H ∞ . The following properties are equivalent : (1) b ∈ H(b) (2) b is nonextreme (3) log(1 -|b|) ∈ L 1 (T) (4) H(b) is invariant by S (5) The polynomials are dense in H(b).

) Lemma 5 .

 5 Suppose that b is nonextreme, then b, S * b b = -a ′ (0) a(0) . Proof. We have Tbb = T ā((1/a(0)) -a) and TbS * b = -T āS * a, hence b + = 1 a(0) -a, (S * b) + = -S * a. So by (2) b, S * b b

where ρ and σ are

  defined by the following (i) ρ ≥ |σ|, (ii) ρ 2 + |σ| 2 = 1 + |β| 2 -|c| 2 -|γ| 2 and ρ 2 |σ| 2 = |β + cγ| 2 , (iii) arg(σ) = arg(β + cγ).

Proof of Theorem 1 .

 1 We set T = S|H(b) and X = S * |H(b). We have X * (•) = S(•) -•, S * b b b and T = X * + •, S * b b b , see [10, p. 12]. Therefore T * = X + •, b b S * b = S * |H(b) + •, b b S * b. So, for every h ∈ H(b) T * T (h) = T * (Sh) = S * Sh + Sh, b b S * b = h + h, T * b b S * b,

) 2 - 1 2 - 1 = 0

 21210 If h ∈ {S * b} ⊥ , it follows from[START_REF] Sarason | Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF], | h, S * 2 b b | 2 ≤ 0 and then h ∈ {S * 2 b} ⊥ , where {f } ⊥ stands for the set of all functions that are orthogonal to f . So {S * b} ⊥ ⊂ {S * 2 b} ⊥ and then S * 2 b = βS * b for some β ∈ C. So there exist α, β ∈ C such thatS * b(z) = α 1 -βz , z ∈ D.Note that necessarily |β| < 1 if S * b = 0 and we takeβ = 0 if S * b = 0. Then there exist c, γ, β ∈ C such that |β| < 1 and b(z) = c + γz 1 -βz , z ∈ D.We recall that the complex numbers c, γ and β satisfy the conditions found in Lemma 6 corresponding to the facts that b ∞ ≤ 1 and b nonextreme. By (9), we haveT * 2 b = (1 + b 2 b ) β -a ′ (0) a(0) S * b.Thus by[START_REF] Sarason | Sub-Hardy Hilbert Spaces in the Unit Disk[END_REF] we get(T * 2 T 2 -2T * T + I)(h) = (1 + b 2 b ) h, β -S * b b S * b. So T is concave if and only if S * b = 0, that is b is constant function, orwhere ρ and σ are given by Lemma 6. Note that a(0) = ρ > 0 and a ′ (0) = -σ + ρβ. So (11) holds if and only if |σ| ρ ≤ 1, which is satisfied by Lemma 6. On the other hand, T is 2-isometry if and only if b is constant, or It follows that T is 2-isometry if and only if |σ| ρ = 1, which is equivalent to 1 + |β| 2 -|c| 2 -|γ| 2 = 2|β + cγ|.

  2 and in this case b is nonextreme ⇐⇒ 1 + |β| 2 -|c| 2 -|γ| 2 > 0. Now we state our main result. Theorem 1. Suppose that b is nonextreme in the unit ball of H ∞ . Then the restriction of the shift operator S|H(b) is concave if and only if b has the form given by (1). Futhermore S|H(b) is 2-isometry if and only if b is given by (1) where c, γ, β ∈ C are such that 1 + |β| 2 -|c| 2 -|γ| 2 = 2|β + cγ|. Recall that H(b) is invariant by S|H(b) only in the case where b is nonextreme. Note also that S|H(b) is an isometry if and only if b = c for some constant with |c| < 1 and in this case H(b) = H 2 .

	The invariant subspaces lattice of the restriction of the shift operator S|H(b), when b is
	non extreme, is not known [10, p.35]. Sarason has studied this question ([9]) only for an
	example, namely b(z) = (1 + z)/2. By Theorem 1 and Richter wandering subspace Theorem
	[6, Theorem 1] we have the following
	Corollary 2. Let b has the form given by (1), the closed invariant subspaces of S|H(b) are
	wandering that is

Proof of Corollary 2. We set T = S|H(b). Note that T is concave if and only if, for every f ∈ H(b), 

By Lemma 7, 

Again by (13) 

Thus f, g D(µ) = f, g H(b) for every f, g ∈ Span{k w , w ∈ D}. By (iii) and (iv) of Lemma 7, we have H(b) = D(µ) with equality of norms.