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TWO–ISOMETRIES AND de BRANGES–ROVNYAK SPACES

KARIM KELLAY, MOHAMED ZARRABI

Abstract. We characterize the symbols of the de Branges–Rovnyak spaces for which the
shift operator is concave or 2–isometry. As applications, we consider wandering z–invariant
subspaces and equality between a de Branges–Rovnyak space and a Dirichlet-type space.

1. Introduction

Let D be the open unit disc in the complex plane, and let T = ∂D be the unit circle.
Denote H∞ the space of bounded analytic function on D and H2 the classical Hardy space
of analytic functions on D having square–summable Taylor coefficients at the origin. Let
P+ be the orthogonal projection of L2(T) onto H2. For ϕ ∈ L∞(T), the Toeplitz operator
Tϕ : H2 → H2 is given by

Tϕf := P+(ϕf), f ∈ H2.

Let b ∈ H∞ such that ‖b‖∞ ≤ 1, where ‖ · ‖∞ is the supremum norm on D. The de

Brange–Rovnyak space H(b) is the image of H2 under the operator (I − TbTb̄)
1/2, that is

H(b) = (I − TbTb̄)
1/2(H2), endowed with the usual inner product

〈(I − TbTb̄)
1/2(f), (I − TbTb̄)

1/2(g)〉b = 〈f, g〉H2 , f, g ∈ (ker(I − TbTb̄)
1/2)⊥,

where 〈·, ·〉H2 is the inner product in H2 given by

〈f, g〉H2 =
1

2π

∫

T

f(ζ)g(ζ)|dζ|.

It is well known that if ‖b‖∞ < 1 then H(b) = H2 and if b is an inner function, that is
|b| = 1 a.e. on T, then H(b) = H2 ⊖ bH2, see [10]. We refer to [1, 2, 3, 4] for some recent
results on these spaces. We denote by S the shift operator on H2. Note that H(b) is invariant
by S if and only if b is nonextreme in the unit ball of H∞ see [10, p. 23]. In this case we
investigate here when the shift operator is concave or 2–isometry on the de Brange–Rovnyak
spaces. A bounded operator T on a Hilbert space H is called concave if

T ∗2T 2 − 2T ∗T + I ≤ 0

and T is called 2–isometry if

T ∗2T 2 − 2T ∗T + I = 0.

Note that when

b(z) =
c+ γz

1− βz
, z ∈ D, (1)

where c, γ, β ∈ C and |β| < 1, then we have by Lemma 6
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‖b‖∞ ≤ 1 ⇐⇒ 2|β + c̄γ| ≤ 1 + |β|2 − |c|2 − |γ|2

and in this case
b is nonextreme ⇐⇒ 1 + |β|2 − |c|2 − |γ|2 > 0.

Now we state our main result.

Theorem 1. Suppose that b is nonextreme in the unit ball of H∞. Then the restriction of
the shift operator S|H(b) is concave if and only if b has the form given by (1).

Futhermore S|H(b) is 2–isometry if and only if b is given by (1) where c, γ, β ∈ C are such
that 1 + |β|2 − |c|2 − |γ|2 = 2|β + cγ|.

Recall that H(b) is invariant by S|H(b) only in the case where b is nonextreme. Note also
that S|H(b) is an isometry if and only if b = c for some constant with |c| < 1 and in this case
H(b) = H2.

The invariant subspaces lattice of the restriction of the shift operator S|H(b), when b is
non extreme, is not known [10, p.35]. Sarason has studied this question ([9]) only for an
example, namely b(z) = (1 + z)/2. By Theorem 1 and Richter wandering subspace Theorem
[6, Theorem 1] we have the following

Corollary 2. Let b has the form given by (1), the closed invariant subspaces of S|H(b) are
wandering that is

M = ClosH(b)

(

Span{zn(M ⊖ zM) : n ≥ 0}
)

.

We do not know for which nonextreme functions b the z–closed invariant subspaces of H(b)
are wandering. Also we do not know for which z–closed invariant subspaces are singly gener-
ated.

N. Chevrot, D. Guillot, T. Ransford in [3] investigate for which b the de Branges–Rovnyak
space H(b) coincide with some Dirichlet–type space with equality of norms. As consequence
of our main theorem we obtain their Theorem [3, Theorem 3.1], see Corollary 3 below. Let us
now introduce the Dirichlet type spaces. If µ is a finite positive measure on T, the Dirichlet-
type space D(µ) is the set of analytic functions f ∈ H2, such that

Dµ(f) :=

∫

D

|f ′(z)|2Pµ(z)dA(z) < ∞,

where dA(z) = dxdy/π stands for the normalized area measure in D and Pµ is the Poisson
integral of µ

Pµ(z) :=

∫

T

1− |z|2

|ζ − z|2
dµ(ζ), z ∈ D.

The space D(µ) is endowed with the norm

‖f‖2Dµ
:= ‖f‖2H2 +Dµ(f).

Note that if µ = 0, D(µ) = H2 and if µ is the Lebesgue measure on T, Pµ = 1 and then
D(µ) is the classical Dirichlet space, see [5]. These spaces were introduced by Richter [7] by
considering the 2–isometries on Hilbert spaces. A bounded operator T on a Hilbert space H
is called analytic if

⋂

n≥0 T
nH = {0}. Note that Richter proved in [7] that for every cyclic,

analytic and 2–isometry operator T on a Hilbert space, there exists a unique finite measure
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µ on T such that T is unitarily equivalent to S|Dµ. We deduce from Theorem 1 the following
Corollary

Corollary 3. [Chevrot, Guillot, Ransford [3]] Let µ be a finite positive measure on T and let
b be in the unit ball of H∞. Then H(b) = D(µ) with equality of norms, if and only if

µ = cδλ and b(z) =
γz

1− βz
,

where β 6= 0, |β|+ |γ| = 1, c = |γ|2/|β| and λ = β̄/|β|.

2. Proofs

To give the proofs, we need some additional notations and properties. The space H(b) is a
reproducing kernel space :

f(w) = 〈f, kbw〉b, w ∈ D, f ∈ H(b),

where

kbw(z) :=
1− b(w)b(z)

1− wz
, w, z ∈ D.

Let S∗ be the backward shift operator on H2,

S∗f(z) =
f(z)− f(0)

z
, f ∈ H2.

The space H(b) is always invariant by S∗ [10, p. 11]. We briefly recall some basic notions
about the de Brange–Rovnyak space due to Sarason.

Proposition 4. Let b be in the unit ball of H∞. The following properties are equivalent :

(1) b ∈ H(b)
(2) b is nonextreme
(3) log(1− |b|) ∈ L1(T)
(4) H(b) is invariant by S
(5) The polynomials are dense in H(b).

Proof. see [10, p. 24-25-26]. �

Let b be a nonextreme function in the unit ball of H∞. Then there exists a unique outer
function a such that a(0) > 0 and

|a(ζ)|2 + |b(ζ)|2 = 1 a.e. ζ ∈ T.

We set M(ā) = TāH
2. Since b is nonextreme

f ∈ H(b) ⇐⇒ Tb̄f ∈ M(ā)

and M(a) is dense in H(b) (see [10, p. 24–25]). Moreover Tā is one–to–one, thus for every
f ∈ H(b) there is a unique function f+ such that

Tb̄f = Tāf
+.

Note that for f, g ∈ H(b),

〈f, g〉b = 〈f, g〉H2 + 〈f+, g+〉H2 . (2)
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Lemma 5. Suppose that b is nonextreme, then

〈b, S∗b〉b = −
a′(0)

a(0)
.

Proof. We have Tb̄b = Tā((1/a(0))− a) and Tb̄S
∗b = −TāS

∗a, hence

b+ =
1

a(0)
− a, (S∗b)+ = −S∗a.

So by (2)

〈b, S∗b〉b = 〈b, S∗b〉H2 + 〈b+, (S∗b)+〉H2

= 〈b, S∗b〉H2 + 〈a, S∗a〉H2 − 〈1/a(0), S∗a〉H2

=
1

2π

∫

T

ζ(|b(ζ)|2 + |a(ζ)|2)|dζ| −
a′(0)

a(0)

=
1

2π

∫

T

ζd|ζ| −
a′(0)

a(0)
= −

a′(0)

a(0)
.

�

Lemma 6. Let b(z) = (c+ γz)/(1 − βz), z ∈ D, where c, γ, β ∈ C, |β| < 1. Then

(a) ‖b‖∞ ≤ 1 ⇐⇒ 2|β + c̄γ| ≤ 1 + |β|2 − |c|2 − |γ|2.
(b) If ‖b‖∞ ≤ 1, then

b is nonextreme ⇐⇒ 1 + |β|2 − |c|2 − |γ|2 > 0.

In this case we have

a(z) =
ρ− σz

1− βz
, z ∈ D,

where ρ and σ are defined by the following

(i) ρ ≥ |σ|,
(ii) ρ2 + |σ|2 = 1 + |β|2 − |c|2 − |γ|2 and ρ2|σ|2 = |β + c̄γ|2,
(iii) arg(σ) = arg(β + c̄γ).

Proof. (a) We have

‖b‖∞ ≤ 1 ⇐⇒ |c+ γζ|2 ≤ |1− βζ|2, ∀ζ ∈ T,

⇐⇒ |c|2 + |γ|2 + 2Re(c̄γζ) ≤ 1 + |β|2 − 2Re(βζ), ∀ζ ∈ T,

⇐⇒ 2Re((β + c̄γ)ζ) ≤ 1 + |β|2 − |c|2 − |γ|2, ∀ζ ∈ T,

⇐⇒ 2|β + c̄γ| ≤ 1 + |β|2 − |c|2 − |γ|2.

(b) Assume that ‖b‖∞ ≤ 1. So there exist ρ and σ satisfying (i), (ii) and (iii). In fact ρ2 and
|σ|2 are the solutions of the equation x2 − (1 + |β|2 − |c|2 − |γ|2)x+ |β + c̄γ|2 = 0. For every
ζ ∈ T,

|(1− βζ)|2(1− |b(ζ)|2) = |1− βζ|2 − |c+ γζ|2|

= 1 + |β|2 − |c|2 − |γ|2 − 2Re((β + c̄γ)ζ)

= ρ2 + |σ|2 − 2Re(ρσζ)

= |ρ− σζ|2.
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Recall that |β| < 1. Then we have

log(1− |b|2) ∈ L1(T) ⇐⇒

∫

T

log(|1 − βζ|2(1− |b(ζ)|2))|dζ| > −∞

⇐⇒

∫

T

log |ρ− σζ|2|dζ| > −∞.

Since ρ ≥ |σ|,
∫

T

log |ρ− σζ|2|dζ| > −∞ ⇐⇒ ρ > 0

⇐⇒ 1 + |β|2 − |c|2 − |γ|2 > 0,

which proves the first part of (b). Assume now that b is nonextreme and let a be the outer
function associated to b. Since the two outer functions (1− βz)a(z) and ρ− σz take positive
values at z = 0 and

|(1 − βζ)a(ζ)|2 = |(1− βζ)|2(1− |b(ζ)|2) = |ρ− σζ|2, a.e ζ ∈ T,

we get (1− βz)a(z) = ρ− σz on D. �

Remarks. Let b(z) = (c+ γz)/(1 − βz), z ∈ D, with |β| < 1.
1. b(T) is the circle of radius |γ + βc|/(1− |β|2) centered at the point (c+ γβ̄)/(1− |β|2). So

‖b‖∞ =
|c+ γβ̄|

1− |β|2
+

|γ + βc|

1− |β|2
.

2. Suppose ‖b‖∞ ≤ 1. It follows from Lemma 6 that b is extreme if and only if 1 + |β|2 −
|c|2 − |γ|2 = |β + c̄γ| = 0 wich is equivalent to b(z) = eiθ(β̄ − z)/(1 − βz) for some θ ∈ R.

For the proof of Corollary 3 , we need the following lemma.

Lemma 7. Let µ be a finite positive measure on T and let b ∈ H∞ be a nonextreme function
in the unit ball of H∞. Let kw(z) = 1/(1− w̄z), w, z ∈ D. Then

(i) 〈kz, kw〉D(µ) =
(

1 + z̄w

∫

T

dµ(ζ)

(1− z̄ζ)(1− wζ̄)

)

kz(w).

(ii) 〈kz, kw〉H(b) =
(

1 +
b(z)b(w)

a(z)a(w)

)

kz(w).

(iii) Span{kw, w ∈ D} is dense in D(µ).
(iv) Span{kw, w ∈ D} is dense in H(b).

Proof. By Douglas formula, for every f, g ∈ D(µ) we have

〈f, g〉D(µ) = 〈f, g〉H2 +
1

2π

∫

T

∫

T

(f(ζ)− f(ζ ′))(g(ζ) − g(ζ ′))

|ζ − ζ ′|2
|dζ|dµ(ζ ′),

(see [7]). Using now Cauchy formula we get (i). For the proof of (ii) see [10, p. 32].

Now we proof (iii). Let f ∈ D(µ) and set fr(z) = f(rz), 0 < r < 1. Note that

‖fr2 − f‖D(µ) → 0, as r → 1−,

(see [8, Theorem 5.2] and [10, Corollary]). Since the map ζ → fr(ζ)krζ is continuous from T

to D(µ) and

fr2 =
1

2π

∫

T

f(rζ)krζ |dζ|,
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we see that fr2 can be approximated by finite combinations of the functions kw. So f belong
to the closure of Span{kw, w ∈ D}.

To prove (iv), let h ∈ H(b). We have

〈f, kw〉b = h(w) + (b(w)/a(w))h+(w) (3)

(see [10, p. 32]).
Suppose that h ⊥ Span{kw : w ∈ D}, then by (3) h = −(b/a)h+. So

(h+/a)− āh+ = −b̄h. (4)

It follows that (h+/a)− āh+ ∈ L2(T) and then h+/a ∈ L2(T). Since h+/a belong to Smirnov

class, h+/a ∈ H2. By (4) we get P+

(

h+

a − āh+
)

= −P+

(

b̄h
)

= −Tb̄h. Since Tb̄h = Tāh
+, we

obtain P+

(

h+

a − āh+
)

= −P+

(

āh+
)

. Therefore P+(h
+/a) = 0 and then h+ = 0. �

Remark. The polynomials are dense in D(µ) and in H(b), [7, 10]. We can deduce (iii) and
(iv) from this fact. Note that for f ∈ H(b) we have not in general ‖fr−f‖H(b) → 0 as r → 1−,
see [10, 3].

Proof of Theorem 1. We set T = S|H(b) and X = S∗|H(b). We have

X∗(·) = S(·)− 〈·, S∗b〉bb and T = X∗ + 〈·, S∗b〉bb ,

see [10, p. 12]. Therefore

T ∗ = X + 〈·, b〉bS
∗b = S∗|H(b) + 〈·, b〉bS

∗b.

So, for every h ∈ H(b)

T ∗T (h) = T ∗(Sh)

= S∗Sh+ 〈Sh, b〉bS
∗b

= h+ 〈h, T ∗b〉bS
∗b, (5)

and

T ∗2T 2(h) = T ∗2(S2h)

= T ∗
(

S∗S2h+ 〈S2h, b〉bS
∗b
)

= T ∗
(

Sh+ 〈h, T ∗2b〉bS
∗b
)

= S∗Sh+ 〈h, T ∗2b〉bS
∗2b+

〈

Sh+ 〈h, T ∗2b〉bS
∗b, b

〉

b
S∗b

= h+ 〈h, T ∗2b〉bS
∗2b+

〈

h, T ∗b+ 〈b, S∗b〉bT
∗2b

〉

b
S∗b. (6)

By (5) and (6), we get

(T ∗2T 2 − 2T ∗T + I)(h) = 〈h, T ∗2b〉bS
∗2b+

〈

h, 〈b, S∗b〉bT
∗2b− T ∗b

〉

b
S∗b. (7)

Moreover, we have

T ∗b = S∗b+ 〈b, b〉bS
∗b = (1 + ‖b‖2b )S

∗b (8)

and

T ∗2b = (1 + ‖b‖2b)
(

S∗2b+ 〈S∗b, b〉bS
∗b
)

. (9)



TWO-ISOMETRIES AND de BRANGES–ROVNYAK SPACES 7

So by (7), (8) and (9), T is concave if and only if

〈

(T ∗2T 2 − 2T ∗T + I)h, h
〉

b
= (1 + ‖b‖2b)×

[

|〈h, S∗2b〉b|
2 + 2Re

(

〈h, S∗b〉b〈h, S∗2b〉b〈b, S
∗b〉b

)

−
(

1− |〈b, S∗b〉b|
2
)

|〈h, S∗b〉b|
2
]

≤ 0. (10)

If h ∈ {S∗b}⊥, it follows from (10), |〈h, S∗2b〉b|
2 ≤ 0 and then h ∈ {S∗2b}⊥, where {f}⊥

stands for the set of all functions that are orthogonal to f . So {S∗b}⊥ ⊂ {S∗2b}⊥ and then
S∗2b = βS∗b for some β ∈ C. So there exist α, β ∈ C such that

S∗b(z) =
α

1− βz
, z ∈ D.

Note that necessarily |β| < 1 if S∗b 6= 0 and we take β = 0 if S∗b = 0. Then there exist
c, γ, β ∈ C such that |β| < 1 and

b(z) =
c+ γz

1− βz
, z ∈ D.

We recall that the complex numbers c, γ and β satisfy the conditions found in Lemma 6
corresponding to the facts that ‖b‖∞ ≤ 1 and b nonextreme.

By (9), we have T ∗2b = (1 + ‖b‖2b )
(

β − a′(0)
a(0)

)

S∗b. Thus by (10) we get

(T ∗2T 2 − 2T ∗T + I)(h) = (1 + ‖b‖2b)
〈

h,
[
∣

∣

∣
β −

a′(0)

a(0)

∣

∣

∣

2
− 1

]

S∗b
〉

b
S∗b.

So T is concave if and only if S∗b = 0, that is b is constant function, or

∣

∣

∣
β −

a′(0)

a(0)

∣

∣

∣

2
− 1 ≤ 0. (11)

Recall that

a(z) =
ρ− σz

1− βz

where ρ and σ are given by Lemma 6. Note that a(0) = ρ > 0 and a′(0) = −σ + ρβ. So (11)
holds if and only if

|σ|

ρ
≤ 1,

which is satisfied by Lemma 6.
On the other hand, T is 2–isometry if and only if b is constant, or

∣

∣

∣
β −

a′(0)

a(0)

∣

∣

∣

2
− 1 = 0

It follows that T is 2–isometry if and only if |σ|
ρ = 1, which is equivalent to

1 + |β|2 − |c|2 − |γ|2 = 2|β + c̄γ|.

This completes the proof.
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Proof of Corollary 2. We set T = S|H(b). Note that T is concave if and only if, for every
f ∈ H(b),

‖T 2f‖2 − 2‖Tf‖+ ‖f‖2 ≤ 0. (12)

Let M be a z–closed invariant subspace of H(b). It follows from (12) that T |M is concave.
Now the corollary follows from [6, Theorem 1].

Proof of Corollary 3. Suppose that H(b) = D(µ) for some finite positive measure with
equality of norms. Then b is nonextreme since H(b) is invariant by S, see Proposition 4.
Since S|D(µ) is 2–isometry, T is also 2–isometry and by Theorem 1,

b(z) =
c+ γz

1− βz
, z ∈ D,

where c, γ, β ∈ C such that |β| < 1 and 1 + |β|2 − |c|2 − |γ|2 = 2|β + cγ| > 0.
Let kw(z) = 1/(1 − w̄z). Assume now that H(b) = D(µ) with equality of norms. Then

‖kw‖
2
D(µ) = ‖kw‖

2
b , w ∈ D. (13)

By Lemma 7,

‖kw‖
2
Dµ

=
1

1− |w|2

(

1 +
|w|2

1− |w|2
Pµ(w)

)

, w ∈ D,

‖kw‖
2
b =

1

1− |w|2

(

1 +
|b(w)|2

|a(w)|2

)

, w ∈ D.

Using (13), we obtain 1 = ‖k0‖
2
D(µ) = ‖k0‖

2
b = 1 + |b(0)|2/|a(0)|2, so b(0) = 0. Therefore

b(z) = γz/(1 − βz), with β 6= 0 and |β|+ |γ| = 1. It follows from Lemma 6 that

a(z) =
1

|β|1/2
|β| − βz

1− βz
, z ∈ D. (14)

Again by (13)

Pµ(w) =
|γ|2

|β|

1− |w|2

|1− (β/|β|)w|2
.

So µ = (|γ|2/|β|)δλ where λ = β̄/|β|.

Conversely, assume that b(z) = γz/(1 − βz) with |β| + |γ| = 1 and let µ = (|γ|2/|β|)δλ
where λ = β̄/|β|. By (14) and Lemma 7,

〈kz, kw〉D(µ) =
(

1 +
|γ|2z̄w

(|β| − β̄z̄)(|β| − βw)

)

kz(w) = 〈kz , kw〉H(b).

Thus 〈f, g〉D(µ) = 〈f, g〉H(b) for every f, g ∈ Span{kw, w ∈ D}. By (iii) and (iv) of Lemma 7,
we have H(b) = D(µ) with equality of norms.
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