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TWO–ISOMETRIES AND de BRANGES–ROVNYAK SPACES

KARIM KELLAY, MOHAMED ZARRABI

Abstract. We characterize the symbols of the de Branges–Rovnyak spaces for which
the shift operator is 2–isometry in de Brange–Rovnyak. As consequence we prove by a
different method a result of Chevrot, Guillot and Ransford, about equality between a de
Branges–Rovnyak space and a Dirichlet-type space.

1. Introduction

Let D be the open unit disc in the complex plane, and let T = ∂D be the unit circle.
Denote H∞ the space of bounded analytic function on D and H2 the classical Hardy space
of analytic functions on D having square–summable Taylor coefficients at the origin.

If µ is a finite positive measure on T, the Dirichlet-type space D(µ) is the set of analytic
functions f ∈ H2, such that

Dµ(f) :=

∫

D

|f ′(z)|2Pµ(z)dA(z) < ∞,

where dA(z) = dxdy/π stands for the normalized area measure in D and Pµ is the Poisson
integral of µ

Pµ(z) :=

∫

T

1− |z|2

|ζ − z|2
dµ(ζ), z ∈ D.

The space D(µ) is endowed with the norm

‖f‖2Dµ
:= ‖f‖2H2 +Dµ(f).

Note that if µ = 0, then D(µ) = H2 and if µ is the Lebesgue measure on T, then Pµ = 1
and D(µ) is the classical Dirichlet space. These spaces were introduced by Richter [3] by
considering the 2–isometries on Hilbert spaces. Let T be a bounded operator in a Hilbert
space H. T is said 2–isometry if T ∗2T 2 − 2T ∗T + I = 0, T is analytic if

⋂

n≥0 T
nH = {0}

and T is cyclic if span{T nx, n ∈ N} is dense in H for some x ∈ H.
Let S denote the shift operator on H2,

S : f → zf.

A typical example of 2–isometry is given by the operator S|Dµ, the restriction of S on Dµ.
Richter gave the following representation for 2–isometries:
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Theorem (Richter [3]). For every cyclic, analytic and 2–isometry operator T on a Hilbert
space, there exists a unique finite measure µ on T such that T is unitarily equivalent to
S|Dµ.

In this paper we investigate when the shift operator is a 2–isometry on the de Brange–
Rovnyak spaces. This allows us to find a different proof of N. Chevrot, D. Guillot, T.
Ransford result where they give conditions to have equality between a de Branges–Rovnyak
space and a Dirichlet–type space, see [1, 2].

Now we introduce the de Brange–Rovnyak spaces. Let P+ be the orthogonal projection
of L2(T) onto H2. For ϕ ∈ L∞(T), the Toeplitz operator Tϕ : H2 → H2 is given by

Tϕf := P+(ϕf), f ∈ H2.

Let b ∈ H∞ such that ‖b‖∞ ≤ 1, where ‖ · ‖∞ is the supremum norm on D. The de
Brange–Rovnyak space H(b) is the image of H2 under the operator (I − TbTb̄)

1/2, that is
H(b) = (I − TbTb̄)

1/2(H2), endowed with the inner product

〈(I − TbTb̄)
1/2(f), (I − TbTb̄)

1/2(g)〉b = 〈f, g〉H2, f, g ∈ (ker(I − TbTb̄)
1/2)⊥.

where 〈·, ·〉H2 is the inner product in H2 given by

〈f, g〉H2 =
1

2π

∫

T

f(ζ)g(ζ)|dζ |,

here we identify f and g with there non-tangential limits. Note that when ‖b‖∞ < 1 then
Hb = H2 and when b is an inner function, that is |b| = 1 a.e. on T, then Hb = H2 ⊖ bH2.

Let S be the shift operator on H2. Note that H(b) is invariant by S if and only if b is
nonextreme in the unit ball of H∞ see [5, p. 23]. When b is nonextreme we set that

T = S|H(b),

the restriction of S to the space H(b). Now we state our main result.

Theorem 1. Suppose that b is nonextreme in the unit ball of H∞. Then T is 2–isometry
on H(b) if and only if b = c, where c is a constant such that |c| < 1 or

b(z) =
c+ γz

1− βz
, z ∈ D,

where c, γ, β ∈ C such that |β| < 1 and 1 + |β|2 − |c|2 − |γ|2 = 2|β + cγ| > 0.

N. Chevrot, D. Guillot, T. Ransford in [1] investigate for which pairs (b, µ) the de
Branges–Rovnyak space Hb is equal to the Dirichlet–type space Dµ with equality of norms.
As consequence of our main Theorem 1 we obtain their Theorem [1, Theorem 3.1].

Corollary 2 (Chevrot, Guillot, Ransford [1]). Let µ be a finite positive measure on T and
let b be in the unit ball of H∞. Then H(b) = D(µ) with equality of norms, if and only if

µ = cδλ and b(z) =
γz

1− βz
,

where β 6= 0, |β|+ |γ| = 1, c = |γ|2/|β|2 and λ = β̄/|β|.
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2. Proofs

To give the proofs, we need some additional notations and properties. The space H(b)
is a reproducing kernel space :

f(w) = 〈f, kb
w〉b, w ∈ D, f ∈ H(b),

where

kb
w(z) :=

1− b(w)b(z)

1− wz
, w, z ∈ D.

Let S∗ be the backward shift operator on H2,

S∗f(z) =
f(z)− f(0)

z
, f ∈ H2.

The space H(b) is always invariant by S∗ [5, p. 11]. Note also that the following properties
are equivalent [5, p. 24-25-26]

Proposition 3 (Sarason [5]). Let b be in the unit ball of H∞.

(1) b ∈ H(b)
(2) b is nonextreme
(3) log(1− |b|) ∈ L1(T)
(4) H(b) is invariant by S
(5) The polynomials are dense in H(b).

Let b be nonextreme function in the unit ball of H∞. Then there exists a unique outer
function a such that a(0) > 0 and

|a(ζ)|2 + |b(ζ)|2 = 1 a.e. ζ ∈ T.

We set M(ā) = TāH
2. Since b is nonextreme

f ∈ H(b) ⇐⇒ Tb̄f ∈ M(ā)

and M(a) is dense in H(b) (see [5, p. 24–25]). Moreover Tā is one–to–one, thus for every
f ∈ H(b) there is a unique function f+ such that

Tb̄f = Tāf
+.

Note that for f, g ∈ H(b),

〈f, g〉b = 〈f, g〉H2 + 〈f+, g+〉H2 . (1)

Lemma 4. Suppose that b is nonextreme, then

〈b, S∗b〉b = −
a′(0)

a(0)
.

Proof. We have Tb̄b = Tā((1/a(0))− a) and Tb̄S
∗b = −TāS

∗a, hence

b+ =
1

a(0)
− a, (S∗b)+ = −S∗a.
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So by (1)

〈b, S∗b〉b = 〈b, S∗b〉H2 + 〈b+, (S∗b)+〉H2

= 〈b, S∗b〉H2 + 〈a, S∗a〉H2 − 〈1/a(0), S∗a〉H2

=
1

2π

∫

T

ζ(|b(ζ)|2 + |a(ζ)|2)|dζ | −
a′(0)

a(0)

=
1

2π

∫

T

ζd|ζ | −
a′(0)

a(0)
= −

a′(0)

a(0)
.

�

Lemma 5. Let b(z) = (c+ γz)/(1− βz), z ∈ D, where c, γ, β ∈ C, |β| < 1. Then

(a) ‖b‖∞ ≤ 1 ⇐⇒ 2|β + c̄γ| ≤ 1 + |β|2 − |c|2 − |γ|2.
(b) If ‖b‖∞ ≤ 1, then

b is nonextreme ⇐⇒ 1 + |β|2 − |c|2 − |γ|2 > 0.

In this case we have

a(z) =
ρ− σz

1− βz
, z ∈ D,

where ρ and σ are defined by the following

(i) ρ ≥ |σ|,
(ii) ρ2 + |σ|2 = 1 + |β|2 − |c|2 − |γ|2 and ρ2|σ|2 = |β + c̄γ|2,
(iii) arg(σ) = arg(β + c̄γ).

Proof. (a) We have

‖b‖∞ ≤ 1 ⇐⇒ |c+ γζ |2 ≤ |1− βζ |2, ∀ζ ∈ T,

⇐⇒ |c|2 + |γ|2 + 2Re(c̄γζ) ≤ 1 + |β|2 − 2Re(βζ), ∀ζ ∈ T,

⇐⇒ 2Re((β + c̄γ)ζ) ≤ 1 + |β|2 − |c|2 − |γ|2, ∀ζ ∈ T,

⇐⇒ 2|β + c̄γ| ≤ 1 + |β|2 − |c|2 − |γ|2.

(b) Assume that ‖b‖∞ ≤ 1. So there exist ρ and σ satisfying (i), (ii) and (iii). In fact ρ2

and |σ|2 are the solutions of the equation x2 − (1 + |β|2 − |c|2 − |γ|2)x+ |β + c̄γ|2 = 0. For
every ζ ∈ T,

|(1− βζ)|2(1− |b(ζ)|2) = |1− βζ |2 − |c+ γζ |2|

= 1 + |β|2 − |c|2 − |γ|2 − 2Re((β + c̄γ)ζ)

= ρ2 + |σ|2 − 2Re(ρσζ)

= |ρ− σζ |2.
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Since |β| < 1, we have

log(1− |b|2) ∈ L1(T) ⇐⇒

∫

T

log(|1− βζ |2(1− |b(ζ)|2))|dζ | > −∞

⇐⇒

∫

T

log |ρ− σζ |2|dζ | > −∞,

Since ρ ≥ |σ|,

∫

T

log |ρ− σζ |2|dζ | > −∞ ⇐⇒ ρ > 0

⇐⇒ 1 + |β|2 − |c|2 − |γ|2 > 0.

which proves the first part of (b). Assume now that b is nonextreme and let a be the
outer function associated to b. Since the two outer functions (1− βz)a(z) and ρ− σz take
positive values at z = 0 and

|(1− βζ)a(ζ)|2 = |(1− βζ)|2(1− |b(ζ)|2) = |ρ− σζ |2, a.e ζ ∈ T,

we get (1− βζ)a(z) = ρ− σz on D. �

Remarks. Let b(z) = (c+ γz)/(1− βz), z ∈ D, with |β| < 1.
1. b(T) is the circle of radius |γ + βc|/(1− |β|2) centered at the point (c+ γβ̄)/(1− |β|2).
So

‖b‖∞ =
|c+ γβ̄|

1− |β|2
+

|γ + βc|

1− |β|2
.

2. Suppose ‖b‖∞ ≤ 1. It follows from Lemma 5 that b is extreme if and only if 1 + |β|2 −
|c|2 − |γ|2 = |β + c̄γ| = 0 wich is equivalent to b(z) = eiθ(β̄ − z)/(1− βz) for some θ ∈ R.

Proof of Theorem 1. We set X = S∗|H(b). We have

X∗(·) = S(·)− 〈·, S∗b〉bb and T = X∗ + 〈·, S∗b〉bb ,

see [5, p. 12]. Therefore

T ∗ = X + 〈·, b〉bS
∗b = S∗|H(b) + 〈·, b〉bS

∗b.

So, for every h ∈ Hb

T ∗T (h) = T ∗(Sh)

= S∗Sh+ 〈Sh, b〉bS
∗b

= h + 〈h, T ∗b〉bS
∗b, (2)
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and

T ∗2T 2(h) = T ∗2(S2h)

= T ∗
(

S∗S2h+ 〈S2h, b〉bS
∗b
)

= T ∗
(

Sh+ 〈h, T ∗2b〉bS
∗b
)

= S∗Sh+ 〈h, T ∗2b〉bS
∗2b+

〈

Sh+ 〈h, T ∗2b〉bS
∗b, b

〉

b
S∗b

= h+ 〈h, T ∗2b〉bS
∗2b+

(

〈h, T ∗b〉b + 〈S∗b, b〉b〈h, T
∗2b〉b

)

S∗b

= h+ 〈h, T ∗2b〉bS
∗2b+

〈

h, T ∗b+ 〈b, S∗b〉bT
∗2b

〉

b
S∗b. (3)

By (2) and (3), we get

(T ∗2T 2 − 2T ∗T + I)(h) = 〈h, T ∗2b〉S∗2b+
〈

h, 〈b, S∗b〉bT
∗2b− T ∗b

〉

b
S∗b (4)

Moreover, we have

T ∗b = S∗b+ 〈b, b〉bS
∗b = (1 + ‖b‖2b)S

∗b

and

T ∗2b = (1 + ‖b‖2b)
(

S∗2b+ 〈S∗b, b〉bS
∗b
)

. (5)

Assume that T is 2–isometry. Then (4) and (5) imply that S∗b = 0 or be an eigenvector
of S∗. Hence there exist α, β ∈ C such that |β| < 1 and

S∗b(z) =
α

1− βz
, z ∈ D.

Then there exist c, γ ∈ C such that

b(z) =
c+ γz

1− βz
, z ∈ D.

Note that the complex numbers c, γ, β satisfy the conditions found in Lemma 5 correspond-
ing to the fact that ‖b‖∞ ≤ 1 and b is nonextreme. We have S∗2b = βS∗b and by Lemma
4, equality (4) become

(T ∗2T 2 − 2T ∗T + I)(h) =
〈

h, βT ∗2b−
a′(0)

a(0)
T ∗2b− T ∗b

〉

b
S∗b. (6)

By (5), we have T ∗2b = (1 + ‖b‖2b)
(

β − a′(0)
a(0)

)

S∗b. Thus equality (6) become

(T ∗2T 2 − 2T ∗T + I)(h) = (1 + ‖b‖2b)
〈

h,
[
∣

∣

∣
β −

a′(0)

a(0)

∣

∣

∣

2

− 1
]〉

b
S∗b.

Since T is 2–isometry, we have S∗b = 0 (that is b = c with |c| < 1) or
∣

∣

∣
β −

a′(0)

a(0)

∣

∣

∣
= 1. (7)
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Recall that

a(z) =
ρ− σz

1− βz
where ρ and σ are given by Lemma 5. Note that a(0) = ρ > 0 and a′(0) = −σ + ρβ. So
(7) holds if and only if

|σ|

ρ
= 1 ⇐⇒ 1 + |β|2 − |c|2 − |γ|2 = 2|β + c̄γ|.

Since b is nonextreme, 1 + |β|2 − |c|2 − |γ|2 > 0.
The converse is clear and now, the proof is complete.

For the proof of Corollary 2, we need the following lemma.

Lemma 6. Let µ be a finite positive measure on T and let b ∈ H∞ be a nonextreme
function in the unit ball of H∞. Let kw(z) = 1/(1− w̄z), w, z ∈ D. Then

(i) 〈kz, kw〉D(µ) =
(

1 + z̄w

∫

T

dµ(ζ)

(1− z̄ζ)(1− wζ̄)

)

kz(w).

(ii) 〈kz, kw〉H(b) =
(

1 +
b(z)b(w)

a(z)a(w)

)

kz(w).

(iii) span{kw, w ∈ D} is dense in D(µ).
(iv) span{kw, w ∈ D} is dense in H(b).

Proof. By Douglas formula, for every f, g ∈ D(µ) we have

〈f, g〉D(µ) = 〈f, g〉H2 +
1

2π

∫

T

∫

T

(f(ζ)− f(ζ ′))(g(ζ)− g(ζ ′))

|ζ − ζ ′|2
|dζ |dµ(ζ ′),

(see [3]). Using now Cauchy formula we get (i). For the proof of (ii) see [5, p. 32].

Now we proof (iii). Let f ∈ D(µ) and set fr(z) = f(rz), 0 < r < 1. Note that

‖fr2 − f‖D(µ) → 0, as r → 1−

(see [4, Theorem 5.2] and [5, Corollary]). Since the map ζ → fr(ζ)krζ is continuous from
T to D(µ) and

fr2 =
1

2π

∫

T

f(rζ)krζ |dζ |,

we see that fr2 can be approximated by finite combinations of the functions kw. So f
belong to the closure of span{kw, w ∈ D}.

To prove (iv), let h ∈ H(b). We have

〈f, kw〉b = h(w) + (b(w)/a(w))h+(w) (8)

(see [5, p. 32]).
Suppose that h ⊥ span{kw : w ∈ D}, then by (8)

h = −(b/a)h+. (9)
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So (h+/a) − āh+ = b̄h ∈ L2(T) and then h+/a ∈ L2(T). Since h+/a belong to Smirnov
class, h+/a ∈ H2. We know that Tb̄h = Tāh

+. Then using (9)

P+

( |b|2

a
h
)

= −Tāh
+ ⇐⇒ P+

(1− |a|2

a
h+

)

= −Tāh
+ ⇐⇒ P+

(h+

a
− āh+

)

= −Tāh
+.

Therefore P+(h
+/a) = 0 and then h+ = 0. We get from (8) that h = 0. �

Remark. The polynomials are dense in D(µ) and in H(b), [3, 5]. We can deduce (iii) and
(iv) from this fact. Note that for f ∈ H(b) we have not in general ‖fr − f‖H(b) → 0 as
r → 1−, see [5, 1].

Proof of Corollary. Suppose that H(b) = D(µ) for some finite positive measure with
equality of norms. Then b is nonextreme since H(b) is invariant by S, see Proposition 3.
By Richter Theorem [3], T is 2–isometry and by Theorem 1

b(z) =
c+ γz

1− βz
, z ∈ D,

where c, γ, β ∈ C such that |β| < 1 and 1 + |β|2 − |c|2 − |γ|2 = 2|β + cγ| > 0.
Let kw(z) = 1/(1− w̄z). If H(b) = D(µ) with equality of norms then

‖kw‖
2
D(µ) = ‖kw‖

2
b , w ∈ D. (10)

By Lemma 6,

‖kw‖
2
Dµ

=
1

1− |w|2

(

1 +
|w|2

1− |w|2
Pµ(w)

)

, w ∈ D,

‖kw‖
2
b =

1

1− |w|2

(

1 +
|b(w)|2

|a(w)|2

)

, w ∈ D.

By (10), we obtain 1 = ‖k0‖
2
D(µ) = ‖k0‖

2
b = 1 + |b(0)|2/|a(0)|2, so b(0) = 0. Therefore

b(z) = γz/(1 − βz), with β 6= 0 and |β|+ |γ| = 1. It follows from Lemma 5 that

a(z) =
|β| − βz

1− βz
, z ∈ D. (11)

Again by (10)

Pµ(w) =
|γ|2

|β|2
1− |w|2

|1− (β/|β|)w|2
.

So µ = (|γ|2/|β|2)δλ where λ = β̄/|β|.

Conversely, assume that b(z) = γz/(1 − βz) with |β|+ |γ| = 1 and let µ = (|γ|2/|β|2)δλ
where λ = β̄/|β|. By (11) and Lemma 6,

〈kz, kw〉D(µ) =
(

1 +
|γ|2z̄w

(|β| − β̄z̄)(|β| − βw)

)

kz(w) = 〈kz, kw〉H(b).

Thus 〈f, g〉D(µ) = 〈f, g〉H(b) for every f, g ∈ span{kw, w ∈ D}. By (iii) and (iv) of Lemma
6, we have H(b) = D(µ) with equality of norms.
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IMB, Université de Bordeaux, 351 cours de la Liberation, 33405 Talence, France

E-mail address : kkellay@math.u-bordeaux1.fr
E-mail address : Mohamed.Zarrabi@math.u-bordeaux1.fr


