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Abstract. At the end of the 1960s, Knuth characterized in terms of flibn patterns the permutations that can be
sorted using a stack. He also showed that they are in bijeetith Dyck paths and thus counted by the Catalan
numbers. A few years later, Pratt and Tarjan asked aboutytations that can be sorted using two stacks in parallel.
This question is significantly harder. In particular, a abke permutation can now be sorted by several distinct
sequences of stack operations. Moreover, Pratt provedhtbater to be sortable, a permutation must avoid infinitely
many patterns. The associated counting question has redhajren for 40 years. We solve it by giving a pair of
equations that characterizes the generating functionrofiggations that can be sorted with two parallel stacks.

The first component of this system describes the generatimgtibn Q(a, v) of square lattice loops confined to the
positive quadrant, counted by the length and the number ahN&est and East-South factors. Our analysis of the
asymptotic number of sortable permutations relies at th@em on two intriguing conjectures dealing with the series
Q(a,u). We prove that these conjectures hold for closed walks cedfia the upper half-plane, or not confined at
all. They remain open for quarter plane walks. Given thentaetivity on walks confined to cones, we believe them
to be attractiveper se

Keywords: permutations, stacks, quarter plane walks, generatingifurs

1 Introduction

If we have a device whose only ability is to rearrange cersgiquences of objects, it is very natural to
ask “What rearrangements can my device produce?” When theedis an abstract one that can operate
on sequences of any size, this becomes a combinatorialigque8uch questions were apparently first
considered by Knuth who dealt with the case where the deva® avstack, i.e. a storage mechanism
operating in a last in, first out manner (Figure 1).

Using a stack it is clear that the input sequenaiecannot be transformed into the output sequetade
as, in order for to be the first element output, batfandb must be in the stack together but then they will
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Fig. 1: Four steps in the sequence of operations that ougi4ts from 1234 using a single stack. Each arrow shows
an operation that is about to be performed.

1234 34

be output ada and not azb. For a single stack this is the only restriction. In modenylaage, if the input

is taken to be 2 - - - n, then the achievable permutations are thosedhaid the patterr812. Moreover,

as the stack operations that will produce an output sequenicea given input sequence are easily seen
to be uniquely determined, it is also routine to count suaimpations, which turn out to be enumerated
by the Catalan numbers. This is described in Section 2.2ThefArt of Computer Programmir{d 3].
Knuth also establishes there similar resultsifgut-restricted deque@ouble-ended queues).

Knuth's investigations, nicely described in terms of ‘nadly yard switching networks”, were extended
by Even & Itai [9], Pratt [18] and Tarjan [20] who consideredmageneral networks of stacks and queues,
including a small network consisting of two stacks in paaialFigure 2). This work was foundational for
the study ofpermutation classeshich can loosely be described as those collections of petioas that
are closed by taking sub-permutations, and normalizinmthi our case, we observe indeed that any
sub-permutation of a permutation that can be produced ugiogarallel stacks can itself be produced
by this device. The study of permutation classes has beecti@e and growing field, often concentrating
on enumeration, but also dealing with structural propeuighese classes. For some general discussions
and background see the books [3, 12, 15], and [2] for a surmestark-sorting.

) ;123 ¥¥23 ) ¥3 34 )
R Ve

Fig. 2: The permutatior312 cannot be produced with a single stack, but can be produdbdwd parallel stacks as
shown here. Note that several distinct sequences of opesgproduce it.

Despite this activity, most problems related to the reagirsgn power of Knuth’s railway’s switching
networks have turned out to be very hard. For networks ctingisf two stacks, the case of parallel
stacks seems a bit more manageable than that of two stacksi@s.sFor instance, the list of minimal
permutations that cannot be achieved by two parallel stagkdeen known since 1973 [18], but for two
stacks in series it is only known to be infinite [16]. Similaiit has just been proved this year that one
can decide in polynomial time if a permutation can be soriethlo stacks in series [17], while the corre-
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sponding result was proved in 1992 for two parallel stack?§9. However, the natural questions “How
many permutations of length can be generated by two stacks in series, or by two stacksrailgl®”
have remained equally open for forty years.

We answer the latter question in this paper, by giving a systetwo functional equations that defines
the generating functio_,, s,t", wheres,, is the number of permutations of lengttthat can be produced
with two parallel stacks. We also determine the exponengtiaivth of the numbers,,, modulo some
conjectures that deal with square lattice walks confinedaajtiarter plane. These walks naturally encode
the admissible sequences of stack operations, in the sapnasvdyck paths do in the case of a single
stack. Our conjectures deal with the enumeration of quaitere walks counted by the length and by
the number ottornersof certain types. Walks confined to a quadrant have attraztied of attention
in the past decade (see e.g. [4, 5, 6, 7, 14, 11]), and we kdl@t our conjectures are of interest quite
independently of the original stack sorting question.

Finally we remark that in this metaphor of “devices reariaggnput” there are two common view-
points. As described above, Knuth and Pratt tended to viewrput as arriving in fixed order2 - - - n
and then the question is “How many permutations can be gerti¥a Tarjan on the other hand tended
to think of the objective being to sort the input permutatism the enumerative question becomes “How
many permutations can be sorted?”. Of course, passing ¢vses, the two viewpoints are equivalent to
one another. We will be adopting the first one.

The outline of this extended abstract is as follows. In $&c#, we describe a set ohnonical opera-
tion sequencesuch that each permutation that can be produced using tvedigiastacks is obtained by
exactly one canonical operation sequence. In Section 3stablésh a system of functional equations that
characterizes the generating function of canonical sempserand thus, of permutations that can be pro-
duced by two parallel stacks. The first equation in this sysdefines the generating function of quarter
plane walks, weighted by their length and the number of N@vest and East-South factors (also called
corner9. In Section 4, we state two conjectures about this gemerétinction, and provide evidence for
them by demonstrating that they hold if we only impose on walkalf-plane restriction, or no restriction
at all. In Section 5 we derive from our system of equationsekgonential growth of the number of
permutations of length produced by two parallel stacks, assuming the conjectdr8sation 4. Proofs
and more detailed discussions of a number of issues areeniniitit will be included in the full version
of this paper, which should soon be available on the arXiv.

2 Canonical operation sequences

Throughout this paper we consider the action of two stacksmallel, and attempt to count permutations
of lengthn that such a machine can generate. The primary issue in ta&iqn, as opposed to the case of
a single stack considered by Knuth [13], is that there is r®tmrone correspondence between sequences
of operations of the machine, and the permutations theyym@dr hat is, several sequences of operations
may produce the same permutation: we then say that thegoaiigalent The most obvious case is that
of the identity permutation of lengtl: there are at leagf* ways to produce it using two stacks (alternate
input and output operations, allowing the freedom of chaigéo which stack to use).

In this section we define a family of operation sequenceseadabnonical such that each operation
sequence is equivalent to exactly one canonical sequermgonizal sequences are thus in one-to-one
correspondence with permutations that can be producedwitiparallel stacks.

In order to proceed further, we present three equivalerdrgg®ns of what an operation sequence is.
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Recall what the basic scenario is: input items humberedemutively from1 throughn are processed
by two stacks, each of which is capable of containing an ratiliy large amount of data, but whose
operations are limited to inpuf and outputQ); an output operation produces the most recently entered
item (i.e. items are processed in a last-in first-out fashittems are output as a sequence, and after all
the input has been processed and the stacks emptied, titagespermutation of the original input.
Operation sequences are encoded as words over the algiabkt O, 02}, the subscripts determin-
ing which stack is referred to. Note that one cannot outmarhfan empty stack, and that both stacks must
be empty at the end. This means that a word ¢¥erl>, O1, O2} is an operation sequence if and only if
it contains the same number hfasO; letters fori = 1, 2, and, in each prefix, the number Lfletters is
at least as great as the numbetifletters fori = 1, 2.
Let us callquarter plane walka square lattice walk which begins @ 0), uses step& = (1,0),
N = (1,0), W = (—1,0) andS = (0,—1) and remains in the quadrafiz,y) : « > 0,y > 0}.
This walk is aloopif it ends at(0, 0). There is an obvious one-to-one correspondence betweeatmpe
sequences and quarter plane loops (replacky E, I by N, O; by W and Oy by S). Under this
correspondence, the, y) coordinate reached after processing a prefix of an operagiqnence simply
records the number of items in each stack at that point. Thabeu of quarter plane loops consisting of
2n steps is well known to b€',C,, 1, whereC,, = (2”)/(n + 1)is thenth Catalan number [10, 1] .

n

Fig. 3: The arch system associated with the operation sequire; I1 010101110201 1211 102020+, and the
associated graph. The arches are labelled using the teffitborder of their left endpoint. This arch system has five
connected components, and one left-right pair (betwedrear2 and 5). The output permutationtl 25867.

A third perspective on these objects arises from consigdtiem as bi-colouredrch systemgFig-
ure 3). This is the two-dimensional counterpart of the staddbijection between Dyck paths and (one-
coloured) arch systems [19, Exercise 6.190]. For an omgragquence of lengthn, take2n points
arranged along a line, labelled fromo 2n. These points represented time, that is, 2hesteps of the
operation sequence. For each iteim {1, ..., n}, build an arch joining to j wherei (resp.j) is the time
at whichk is putin (resp. out of) a stack. ifis processed by the first stack, the arch will be above the line
(and will be thought of ased), and otherwise below the line (and thought otise). Observe that the
set of arches above the line may not contain any crossinggamathe one below the line — but there are
no further restrictions on such systems. The operationesgrpiis easily recovered by scanning from left
to right the2n points of the arch system, writing(resp.O) if an arch opens (resp. closes) at this point,
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and1 (resp.2) if this arch is above (resp. below) the line. Upon closing slapporting line into a cycle,
an arch system can also be seen exo#ed planar cubic map with a distinguished Hamiltoniacley In
this disguise, they were already considered by Tutte [21].

Let us observe that two sequences obtained from one anoff@mmbmuting pairs of adjacent letters
1,05 or IO, are equivalent. An operation sequemncgputs eagerlyf it contains neitherd; O, nor 1504
as a factor. In other words, if the next item of the permutatidnich it is producing is already present
in one of the two stacks (necessarily at the top of the stahk)) it is output immediately, before any
other input (necessarily to the other stack) is carried 8uth sequences correspond to walks in the plane
containing noE'S or NW factor and to arch systems in which the left endpoint of ah afone colour
is never followed immediately by the right endpoint of antaof the opposite colour — a configuration
that we call deft-right pair (see Figure 3).

Lemma 1 (Pratt [18]) If a permutation can be produced by some operation sequehen,it can be
produced by one that outputs eagerly.

A second source of ambiguity in operation sequences is tisilpity of reflecting one or several
(well chosen) arches in the horizontal line. We say that twahes of different coloursrossif they
cross once the one below the line is reflected. We sometinresidar the arches as vertices of a graph,
two arches being adjacent if they cross (Figure 3, bottont)is Graph is then bipartite. We refer to
its connected components as {gennected) component$ the arch system, and call a non-empty arch
systemconnectedf its corresponding graph is. In terms of operation seqasnor equivalently quarter
plane loops, this means that no proper factor is an opersg¢iquence.

Definition 2 An arch system istandardf the first arch of each component s red (that is, above the)li
It is canonicalf, in addition, it outputs eagerly.

Fig. 4: The canonical arch system that is equivalent to the arclesyst Figure 3. Note that the left-right pair created
by edges 2 and 5 in Figure 3 has disappeared (in fact, thess eldgnot cross any more). Also, the colours of the
two rightmost components (edges 6, 7, 8) have been changeduput permutation is still3125867.

The following lemma is illustrated by Figure 4.

Lemma 3 If a permutation can be produced by some operation sequéimer,it can be produced by a
canonical one.

A detailed but routine analysis yields:
Proposition 4 Every achievable permutation is produced by a unique caraboiperation sequence.

Note that the concatenation of two canonical arch systerascenonical arch system. We say that a
non-empty canonical arch systempigmitive if it cannot be written as a non-trivial concatenation. The
corresponding permutations are also called primitive.
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3 Exact enumeration

In this section, we establish a system of functional equatitat characterizes the length generating
function.S(¢) of permutations that can be produced (or sorted) by two stacgarallel:

S(t) =1+t +2t> + 6t> + 23t* + 103> + 513t + 2760t" + 157415 + O(¢).

The first equation in this system characterizes the gemgrathctionQ(a, u; x, y) of quarter plane walks,
counted by the length (variablg, the number of NW or ES corners (varialalg and the coordinates of
their endpoint (variables andy). By settingz = y = 0, and replacing: by /u, one obtains the
generating functio)(a, v) of quarter plandoopscounted by half-lengthu) and NW or ES corners:

Q(a,u) =14 2u + (8 + 2a)u’ + (44 + 24a + 2a®)u® + O(u?).

Equivalently, Q(a,u) counts arch systems by the number of archgsahd the number of left-right
pairs @). The last series involved in our system of equations is #egating function of connected
standard arch systems, counted by the number of archasd the number of left-right pairg)(

C(b,v) = v+ bv? + b(b+ 2)v® + O(v?).

We find it convenient to use three different length variales andv) and two different corner variables
(a andb) when we perform substitutions in our generating functions

Theorem 5 The generating functio®(a, u; x,y) = Q(x,y) of quarter plane walks is characterized by:
(1 -u@+z+y+7) —u’(a—1) (27 +yz)) Qz,y) =
1 —uj(l 4+ uz(a—1))Q(x,0) — u(l + uy(a — 1))Q(0,y), (1)
wherez = 1/x andj = 1/y. The generating function for quarter plane loops is thus
Q(a,u) = Q(a,/u;0,0).

The generating functio@'(b, v) for connected standard arch systems is characterized by

Q(Q,U)1+20<116_2G,UQ2), (2)

where stands forQ(a,u). Finally, the generating functio(t) = S of permutations that can be
produced by two stacks operating in parallel is charactediby

St)=1+C <1 - %,tSQ) :

The equation definin@(zx, y) translates a simple recursive description of quarter pleal&s, con-
structed by adding one or two steps at a time (see [7] for snghnaents in the case of unweighted
walks). The argument required to prove the other two residés the structural decomposition of arch
systems suggested by Figure 5.

By relating the functional equation (2) to a compositiomakirsion of bivariate series, we can eliminate
the serie<” (b, v) from the system of Theorem 5, and thus obtain an equationidgfi(¢) in terms of
Q(a,u). This relation looks nicer when we introduce the generdiimgtion.S* (¢) that countgprimitive
canonical operation sequences, defined at the end of S&ction
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Fig. 5: The structure of an arch system: a connected systerith n arches (herep = 3), in which 2n arbitrary
arch systems are inserted. Herdias two left-right pairs. The arch systems that are insehtek (shown in white)
destroy these left-right pairs, unless they are empty.

Corollary 6 The seriegQ(a,u), S(t) = S and S*(¢t) = S* that count quarter plane loops, sortable
permutations and primitive sortable permutations resipety, are related by

t 148
(145%)2) 1-8°

1
S =

={_g and Q(—S,

4 Corners in square lattice walks

Our analysis of the asymptotic behaviour of the number abb&de permutations of length, performed
in the next section, relies on three conjectures, which tagie own combinatorial interest.

Conjecture 7 The serie®)(a, u) is (a + 1)-positive i.e. there exists polynomial, (b) € N[b] such that
Qa,u) = Z u"Pp(a+1).
n>0

Of courseQ(a,u) is a power series im with coefficients inN[a], and hence ifZ[a + 1]. What is not
clear is why the coefficient dfz + 1)* should be non-negative. This has been checked on a comguter u
to half-lengthn = 100, using the functional equation (1). We conjecture this bald well if we include

a variables counting East steps.

Conjecture 8 For a > —1, the radius of convergence f(a, -) is

1 .
m IfaZ —1/2,
pqQ(a) = . ®)

We shall only use the above conjecture for —1/2.
Conjecture 9 The serie}(a, u) := g—f(a, u) is convergent at. = pg(a) fora > —1.

In the following subsections, we gather some evidence fesdlconjectures. In particular, we prove
Conjectures 7 and 8 for general loops and for loops confindtetapper half-plane. (Conjecture 9 does
not hold for these more general loops.) The fact that Coanje@ holds for general loops and half-plane
loops is reminiscent of a recent result according to whigh ghowth constant of (unweighted) loops
confined to a wedge is independent of this wedge [8, Sec. 1.5].
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4.1 Some results on quarter plane loops

Proposition 10 The series)(a, s, u) counting quarter plane loops by the half-length) (the number of
East stepsy), and the number of NW and ES factos$ §atisfies

29+ 25 S
QL s,u)= Y ( o j)cicjswﬂ,

= 21
4,520

whereC; = (2;')/(2' + 1) is theith Catalan number. The value at= —1 is just as remarkable:

_ _ I oo gigiti
Q( 1585u)_.z ( i )Cq,CJSU .
1,720
The results dealing witf) (1, s, t) are well-known and easy to prove [10]. For the case —1, we work
from the functional equation (1), refined with a variableThe proof is inspired by recent progress on

quarter plane walks with general steps [7]. It still lackoanbinatorial explanation.
Let us now discuss the radius of convergenc@(i, ).

Proposition 11 For « fixed, letpg (a) be the radius of convergence@fa, -). Then

1 1
pQ(_l) = gv pQ(l) = Ev

andp is non-increasing function off), +co), continuous or{0, +oc0). Moreover, fora > 0,

1
pQla) > (24'2—\/"'—2@)2.

The serie))(a, pg(a)) converges for = —1 anda = 1.
If Q(a,w)is (a + 1)-positive, therpg is non-increasing off—1, +oo0) and continuous ofi—1, +0o).

The values at = 1 anda = —1 follow from Proposition 10. The lower bound is obtained byioting
all walks by length and corners. The continuity result is stashdiar series with coefficients iN[a] and
affine degree.

4.2 Unconfined loops

We now consider unconfined loops. Their generating funateombe obtained by two successive coef-
ficient extractions in the rational generating functionttbaunts all walks and keeps track of their final

position. This allows us to prove that Conjecturegd + 1)-positivity) and 8 (radius of convergence)

hold for these loops.

Proposition 12 The generating functiolV(q, s, t; x, y) counting square lattice walks by the number of
horizontal stepsd), the number of vertical stepg), the number of ES and NW cornegs) @nd the
coordinates of the endpoint(y) is rational, and given by

1
1—s(z+z)—tly+y) —st(a—1)(zy+zy)

Wla, s, t;z,y) = 4)
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The generating function that only counts loops is D-finite] given by

27\ .
Waa(as.t) = W (e stiz) = 3 (%) a) )
320
where . .
. o =sz(l—a))(1—s2(1—a))
W] (aa 8) - [‘T ] (1 o S(:L' 4 j))QjJrl . (6)
The generating functiod(a, s, t) :== >_ - t?7W;(a, s) is biquadratic, and can be written as
2 42 _ 42 _ 2
Aas.t) = 1+t2(1 a?)T 1+4T2t(a 21) T7 @)
(1—12(a2 — 1)T)? — 2(1 + 2(a + 1)T)2 1—1t2(a—1)°T

whereT = T'(a, s, t) is the unique series if[a][[s, t]] that satisfied(a,0,¢t) = 0 and

, 1+4T — (a — 1)22T

T = . 8
T 12— 2(a+ 12T ®

The expression ofV(a, s, t; z, y) follows from the same recursive construction of walks adinetional
equation (1) for quarter plane walks. Extracting the coigfficof2%y° gives (5). If we drop the coefficient
(QJJ) this becomes the constant term {hof a rational series, and thus an algebraic sefigs s, t). We
perform the constant term extraction using a partial foacgxpansion inc, as described for instance
in [19, Thm. 6.3.3]. This gives a biquadratic equation foiwhich we parametrize using (8).

Proposition 13 The seriedV, o(a, s, t) that counts unconfined loops(is + 1)-positive. Moreover,

0g (20425 (20 (25
1 _ 24427
Woo(l,s,t) = > s¥t ( 2i )(Z)(])

4,520

icran= 5 o0 ()(2)(2)

4,520

while

We first establisHa + 1)-positivity for 7' using (8), then ford using (7). This is equivalent to saying
that Wy o(a, s,t) is (a + 1)-positive. The expression o) o(1, s, ¢) is combinatorially clear, while the
expression oWV (—1, s, t) follows by specializing Proposition 12 to= —1.

Proposition 14 Leta > —1. The seriesV, o(a, v/u, /u) that counts unconfined loops walks by half-
length and corners has radius of convergence give(8hy

We first compute a differential equation, of order 2, satikbg this D-finite series. The radius is found
among the roots of the coefficient of the second derivative.s@lect the correct root, depending on the
value ofa, by combining(a + 1)-positivity, a continuity argument, and the known valug¢s6 and1/8
ata = 1 anda = —1, respectively.
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4.3 Half-plane walks
We obtain similar results for loops confined to the upper-pihe{(z,y) : y > 0}.

Proposition 15 The generating function of half-plane loops, counted byiZomtal steps(s), vertical
steps ), and NW and ES factorg), is

1 27 .
HO,O(G/7 S7ﬁ) = Z ( j)tQJWj(a, S),

j20‘7+1 7

whereW;(a, s) is given by(6). Itis (a + 1)-positive. Moreover,

Cos 1 20429\ (24 (2]
1,5,4) = P ——
Ho,o(1,5,1) ZS j+1( 2i )(z)(])’

4,5>0

oy L (i35 (20 (2]
B _ 29425~
oot = 3 et () () (%),

4,520

while

For a > —1, the seriesH o(a, /u, /u) that counts half-space loops by half-length and corners has
radius of convergence given £§).

These results follow from those obtained for unconfined sjalising the following proposition.

Proposition 16 Letv be a word on{ N, S}. The generating function of walks whose vertical projactio
is v, counted by the number of horizontal stegs the abscissa of the endpoinf (@nd the number of NW
and SE factorsd), only depends ofv|y and|v|s.

The proof is simple, once one realizes that the number of NeMEzScorners is distributed as the number
of WN and SE corners, as stated in the following result (disced independently by Olivier Bernardi
and Julien Courtiel; personal communications).

Lemma 17 There exists an involution on square lattice paths that arges the number of NW and WN
factors, fixes the number of ES or SE factors, and leaves tieointal and vertical projections unchanged.

Consequently, for any pair of walks € {N,S} andw € {E, W}, the following bi-statistics of
corners are equidistributed in the set of walks that projestically onv and horizontally onv: (NW,ES),
(WN,ES), (WN,SE) and (NW,SE).

5 Asymptotic Analysis
Recall the relationship between the selifg, «) andS = S(t) established in Corollary 6:
.t 148
Q(_S ’ (1+S')2) 18

with S = 1/(1 — S*). Our main theorem tells us th&{(¢) becomes singular when the péirS®,t(1 +
S*)~2) reaches the critical curve @§, namely{(a, po(a)),—1 < a} wherepg(a) is the radius of the
series)(a, -). However, this theorem relies on the conjectures studi¢idemprevious section.
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Theorem 18 Assume that the seri€¥(a, v) is (a + 1)-positive, and tha@) (a, pg(a)) < oo for —1/2 <
a < 0. Lett, be the radius of convergence 8f= 1/(1 — S*®). Thent/(1 + S*(¢))? increases on the
interval [0, t.], and on this interval,

m < p(=S°(1)),

with equality if and only it = ¢.. Moreover,S®(t.) < 1/3.

We can make the value af more explicit thanks to the conjectured expressiongfa) (Conjecture 8).

Corollary 19 Assume that the assumptions of the above theorem hold, basi{¢he first part of) Con-
jecture 8. Then the radius of convergence&a$

L <1 \/_2+_2a)2
c — - 92 ’

whereq = —S°(t.) satisfies

0 ( 1 ) 1—a
a, = .
(2+ V2 + 2a)? 1+a
Numerically,a ~ —0.1477 and
1/t, = limsup sX/™ ~ 8.29.
The proof of these results is rather delicate, first becawesbave to deal with bivariate series, and then
because-S* is negative. The latter difficulty is partially alleviateg the (conjecturedja + 1)-positivity

of Q. The main ingredients of the proof are the implicit functtbeorem, Pringsheim’s theorem, and the
open mapping theorem in two variables.
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