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Abstract. At the end of the 1960s, Knuth characterized in terms of forbidden patterns the permutations that can be
sorted using a stack. He also showed that they are in bijection with Dyck paths and thus counted by the Catalan
numbers. A few years later, Pratt and Tarjan asked about permutations that can be sorted using two stacks in parallel.
This question is significantly harder. In particular, a sortable permutation can now be sorted by several distinct
sequences of stack operations. Moreover, Pratt proved thatin order to be sortable, a permutation must avoid infinitely
many patterns. The associated counting question has remained open for 40 years. We solve it by giving a pair of
equations that characterizes the generating function of permutations that can be sorted with two parallel stacks.

The first component of this system describes the generating functionQ(a, u) of square lattice loops confined to the
positive quadrant, counted by the length and the number of North-West and East-South factors. Our analysis of the
asymptotic number of sortable permutations relies at the moment on two intriguing conjectures dealing with the series
Q(a, u). We prove that these conjectures hold for closed walks confined to the upper half-plane, or not confined at
all. They remain open for quarter plane walks. Given the recent activity on walks confined to cones, we believe them
to be attractiveper se.

Keywords: permutations, stacks, quarter plane walks, generating functions

1 Introduction
If we have a device whose only ability is to rearrange certainsequences of objects, it is very natural to
ask “What rearrangements can my device produce?” When the device is an abstract one that can operate
on sequences of any size, this becomes a combinatorial question. Such questions were apparently first
considered by Knuth who dealt with the case where the device was a stack, i.e. a storage mechanism
operating in a last in, first out manner (Figure 1).

Using a stack it is clear that the input sequenceabc cannot be transformed into the output sequencecab
as, in order forc to be the first element output, botha andb must be in the stack together but then they will
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Fig. 1: Four steps in the sequence of operations that outputs2341 from 1234 using a single stack. Each arrow shows
an operation that is about to be performed.

be output asba and not asab. For a single stack this is the only restriction. In modern language, if the input
is taken to be12 · · ·n, then the achievable permutations are those thatavoid the pattern312. Moreover,
as the stack operations that will produce an output sequencefrom a given input sequence are easily seen
to be uniquely determined, it is also routine to count such permutations, which turn out to be enumerated
by the Catalan numbers. This is described in Section 2.2.1 ofThe Art of Computer Programming[13].
Knuth also establishes there similar results forinput-restricted deques(double-ended queues).

Knuth’s investigations, nicely described in terms of “railway yard switching networks”, were extended
by Even & Itai [9], Pratt [18] and Tarjan [20] who considered more general networks of stacks and queues,
including a small network consisting of two stacks in parallel (Figure 2). This work was foundational for
the study ofpermutation classeswhich can loosely be described as those collections of permutations that
are closed by taking sub-permutations, and normalizing them. In our case, we observe indeed that any
sub-permutation of a permutation that can be produced usingtwo parallel stacks can itself be produced
by this device. The study of permutation classes has been an active and growing field, often concentrating
on enumeration, but also dealing with structural properties of these classes. For some general discussions
and background see the books [3, 12, 15], and [2] for a survey on stack-sorting.
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Fig. 2: The permutation312 cannot be produced with a single stack, but can be produced with two parallel stacks as
shown here. Note that several distinct sequences of operations produce it.

Despite this activity, most problems related to the rearranging power of Knuth’s railway’s switching
networks have turned out to be very hard. For networks consisting of two stacks, the case of parallel
stacks seems a bit more manageable than that of two stacks in series. For instance, the list of minimal
permutations that cannot be achieved by two parallel stackshas been known since 1973 [18], but for two
stacks in series it is only known to be infinite [16]. Similarly, it has just been proved this year that one
can decide in polynomial time if a permutation can be sorted by two stacks in series [17], while the corre-
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sponding result was proved in 1992 for two parallel stacks [9, 22]. However, the natural questions “How
many permutations of lengthn can be generated by two stacks in series, or by two stacks in parallel?”
have remained equally open for forty years.

We answer the latter question in this paper, by giving a system of two functional equations that defines
the generating function

∑

n snt
n, wheresn is the number of permutations of lengthn that can be produced

with two parallel stacks. We also determine the exponentialgrowth of the numberssn, modulo some
conjectures that deal with square lattice walks confined to the quarter plane. These walks naturally encode
the admissible sequences of stack operations, in the same way as Dyck paths do in the case of a single
stack. Our conjectures deal with the enumeration of quarterplane walks counted by the length and by
the number ofcornersof certain types. Walks confined to a quadrant have attracteda lot of attention
in the past decade (see e.g. [4, 5, 6, 7, 14, 11]), and we believe that our conjectures are of interest quite
independently of the original stack sorting question.

Finally we remark that in this metaphor of “devices rearranging input” there are two common view-
points. As described above, Knuth and Pratt tended to view the input as arriving in fixed order12 · · ·n
and then the question is “How many permutations can be generated?”. Tarjan on the other hand tended
to think of the objective being to sort the input permutation, so the enumerative question becomes “How
many permutations can be sorted?”. Of course, passing to inverses, the two viewpoints are equivalent to
one another. We will be adopting the first one.

The outline of this extended abstract is as follows. In Section 2, we describe a set ofcanonical opera-
tion sequencessuch that each permutation that can be produced using two parallel stacks is obtained by
exactly one canonical operation sequence. In Section 3, we establish a system of functional equations that
characterizes the generating function of canonical sequences, and thus, of permutations that can be pro-
duced by two parallel stacks. The first equation in this system defines the generating function of quarter
plane walks, weighted by their length and the number of North-West and East-South factors (also called
corners). In Section 4, we state two conjectures about this generating function, and provide evidence for
them by demonstrating that they hold if we only impose on walks a half-plane restriction, or no restriction
at all. In Section 5 we derive from our system of equations theexponential growth of the number of
permutations of lengthn produced by two parallel stacks, assuming the conjectures of Section 4. Proofs
and more detailed discussions of a number of issues are omitted, but will be included in the full version
of this paper, which should soon be available on the arXiv.

2 Canonical operation sequences
Throughout this paper we consider the action of two stacks inparallel, and attempt to count permutations
of lengthn that such a machine can generate. The primary issue in this question, as opposed to the case of
a single stack considered by Knuth [13], is that there is no one-to-one correspondence between sequences
of operations of the machine, and the permutations they produce. That is, several sequences of operations
may produce the same permutation: we then say that they areequivalent. The most obvious case is that
of the identity permutation of lengthn: there are at least2n ways to produce it using two stacks (alternate
input and output operations, allowing the freedom of choiceas to which stack to use).

In this section we define a family of operation sequences, called canonical, such that each operation
sequence is equivalent to exactly one canonical sequence. Canonical sequences are thus in one-to-one
correspondence with permutations that can be produced withtwo parallel stacks.

In order to proceed further, we present three equivalent descriptions of what an operation sequence is.
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Recall what the basic scenario is: input items numbered consecutively from1 throughn are processed
by two stacks, each of which is capable of containing an arbitrarily large amount of data, but whose
operations are limited to input (I) and output (O); an output operation produces the most recently entered
item (i.e. items are processed in a last-in first-out fashion). Items are output as a sequence, and after all
the input has been processed and the stacks emptied, the result is a permutation of the original input.

Operation sequences are encoded as words over the alphabet{I1, I2, O1, O2}, the subscripts determin-
ing which stack is referred to. Note that one cannot output from an empty stack, and that both stacks must
be empty at the end. This means that a word over{I1, I2, O1, O2} is an operation sequence if and only if
it contains the same number ofIi asOi letters fori = 1, 2, and, in each prefix, the number ofIi letters is
at least as great as the number ofOi letters fori = 1, 2.

Let us callquarter plane walka square lattice walk which begins at(0, 0), uses stepsE = (1, 0),
N = (1, 0), W = (−1, 0) andS = (0,−1) and remains in the quadrant{(x, y) : x ≥ 0, y ≥ 0}.
This walk is aloop if it ends at(0, 0). There is an obvious one-to-one correspondence between operation
sequences and quarter plane loops (replaceI1 by E, I2 by N , O1 by W andO2 by S). Under this
correspondence, the(x, y) coordinate reached after processing a prefix of an operationsequence simply
records the number of items in each stack at that point. The number of quarter plane loops consisting of
2n steps is well known to beCnCn+1, whereCn =

(

2n
n

)

/(n+ 1)is thenth Catalan number [10, 1] .
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Fig. 3: The arch system associated with the operation sequenceI1I2I1I1O1O1O1I1O2O1I2I1I2O2O2O1, and the
associated graph. The arches are labelled using the left-to-right order of their left endpoint. This arch system has five
connected components, and one left-right pair (between arches 2 and 5). The output permutation is43125867.

A third perspective on these objects arises from considering them as bi-colouredarch systems(Fig-
ure 3). This is the two-dimensional counterpart of the standard bijection between Dyck paths and (one-
coloured) arch systems [19, Exercise 6.19o]. For an operation sequence of length2n, take2n points
arranged along a line, labelled from1 to 2n. These points represented time, that is, the2n steps of the
operation sequence. For each itemk in {1, . . . , n}, build an arch joiningi to j wherei (resp.j) is the time
at whichk is put in (resp. out of) a stack. Ifk is processed by the first stack, the arch will be above the line
(and will be thought of asred), and otherwise below the line (and thought of asblue). Observe that the
set of arches above the line may not contain any crossings, nor can the one below the line – but there are
no further restrictions on such systems. The operation sequence is easily recovered by scanning from left
to right the2n points of the arch system, writingI (resp.O) if an arch opens (resp. closes) at this point,
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and1 (resp.2) if this arch is above (resp. below) the line. Upon closing the supporting line into a cycle,
an arch system can also be seen as arooted planar cubic map with a distinguished Hamiltonian cycle. In
this disguise, they were already considered by Tutte [21].

Let us observe that two sequences obtained from one another by commuting pairs of adjacent letters
I1O2 or I2O1 are equivalent. An operation sequenceoutputs eagerlyif it contains neitherI1O2 norI2O1

as a factor. In other words, if the next item of the permutation which it is producing is already present
in one of the two stacks (necessarily at the top of the stack),then it is output immediately, before any
other input (necessarily to the other stack) is carried out.Such sequences correspond to walks in the plane
containing noES or NW factor and to arch systems in which the left endpoint of an arch of one colour
is never followed immediately by the right endpoint of an arch of the opposite colour — a configuration
that we call aleft-right pair (see Figure 3).

Lemma 1 (Pratt [18]) If a permutation can be produced by some operation sequence,then it can be
produced by one that outputs eagerly.

A second source of ambiguity in operation sequences is the possibility of reflecting one or several
(well chosen) arches in the horizontal line. We say that two arches of different colourscross if they
cross once the one below the line is reflected. We sometimes consider the arches as vertices of a graph,
two arches being adjacent if they cross (Figure 3, bottom). This graph is then bipartite. We refer to
its connected components as the(connected) componentsof the arch system, and call a non-empty arch
systemconnectedif its corresponding graph is. In terms of operation sequences, or equivalently quarter
plane loops, this means that no proper factor is an operationsequence.

Definition 2 An arch system isstandardif the first arch of each component is red (that is, above the line).
It is canonicalif, in addition, it outputs eagerly.
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Fig. 4: The canonical arch system that is equivalent to the arch system of Figure 3. Note that the left-right pair created
by edges 2 and 5 in Figure 3 has disappeared (in fact, these edges do not cross any more). Also, the colours of the
two rightmost components (edges 6, 7, 8) have been changed. The output permutation is still43125867.

The following lemma is illustrated by Figure 4.

Lemma 3 If a permutation can be produced by some operation sequence,then it can be produced by a
canonical one.

A detailed but routine analysis yields:

Proposition 4 Every achievable permutation is produced by a unique canonical operation sequence.

Note that the concatenation of two canonical arch systems isa canonical arch system. We say that a
non-empty canonical arch system isprimitive if it cannot be written as a non-trivial concatenation. The
corresponding permutations are also called primitive.
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3 Exact enumeration
In this section, we establish a system of functional equations that characterizes the length generating
functionS(t) of permutations that can be produced (or sorted) by two stacks in parallel:

S(t) = 1 + t+ 2t2 + 6t3 + 23t4 + 103t5 + 513t6 + 2760t7 + 15741t8 +O(t9).

The first equation in this system characterizes the generating functionQ(a, u;x, y) of quarter plane walks,
counted by the length (variableu), the number of NW or ES corners (variablea), and the coordinates of
their endpoint (variablesx and y). By settingx = y = 0, and replacingu by

√
u, one obtains the

generating functionQ(a, u) of quarter planeloopscounted by half-length (u) and NW or ES corners (a):

Q(a, u) = 1 + 2u+ (8 + 2a)u2 + (44 + 24a+ 2a2)u3 +O(u4).

Equivalently,Q(a, u) counts arch systems by the number of arches (u) and the number of left-right
pairs (a). The last series involved in our system of equations is the generating function of connected
standard arch systems, counted by the number of arches (v) and the number of left-right pairs (b):

C(b, v) = v + bv2 + b(b+ 2)v3 +O(v4).

We find it convenient to use three different length variables(t, u andv) and two different corner variables
(a andb) when we perform substitutions in our generating functions.

Theorem 5 The generating functionQ(a, u;x, y) ≡ Q(x, y) of quarter plane walks is characterized by:
(

1− u(x+ x̄+ y + ȳ)− u2(a− 1)(xȳ + yx̄)
)

Q(x, y) =

1− uȳ(1 + ux(a− 1))Q(x, 0)− ux̄(1 + uy(a− 1))Q(0, y), (1)

wherex̄ = 1/x andȳ = 1/y. The generating function for quarter plane loops is thus

Q(a, u) = Q(a,
√
u; 0, 0).

The generating functionC(b, v) for connected standard arch systems is characterized by

Q(a, u) = 1 + 2C

(

1− 1− a

Q
, uQ2

)

, (2)

whereQ stands forQ(a, u). Finally, the generating functionS(t) ≡ S of permutations that can be
produced by two stacks operating in parallel is characterized by

S(t) = 1 + C

(

1− 1

S
, tS2

)

.

The equation definingQ(x, y) translates a simple recursive description of quarter planewalks, con-
structed by adding one or two steps at a time (see [7] for such arguments in the case of unweighted
walks). The argument required to prove the other two resultsuses the structural decomposition of arch
systems suggested by Figure 5.

By relating the functional equation (2) to a compositional inversion of bivariate series, we can eliminate
the seriesC(b, v) from the system of Theorem 5, and thus obtain an equation defining S(t) in terms of
Q(a, u). This relation looks nicer when we introduce the generatingfunctionS•(t) that countsprimitive
canonical operation sequences, defined at the end of Section2.
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Fig. 5: The structure of an arch system: a connected systemc with n arches (here,n = 3), in which 2n arbitrary
arch systems are inserted. Here,c has two left-right pairs. The arch systems that are insertedthere (shown in white)
destroy these left-right pairs, unless they are empty.

Corollary 6 The seriesQ(a, u), S(t) ≡ S andS•(t) ≡ S• that count quarter plane loops, sortable
permutations and primitive sortable permutations respectively, are related by

S =
1

1− S•
and Q

(

−S•,
t

(1 + S•)2

)

=
1 + S•

1− S•
.

4 Corners in square lattice walks
Our analysis of the asymptotic behaviour of the number of sortable permutations of lengthn, performed
in the next section, relies on three conjectures, which havetheir own combinatorial interest.

Conjecture 7 The seriesQ(a, u) is (a+1)-positive: i.e. there exists polynomialsPn(b) ∈ N[b] such that

Q(a, u) =
∑

n≥0

unPn(a+ 1).

Of course,Q(a, u) is a power series inu with coefficients inN[a], and hence inZ[a + 1]. What is not
clear is why the coefficient of(a+ 1)k should be non-negative. This has been checked on a computer up
to half-lengthn = 100, using the functional equation (1). We conjecture this holds as well if we include
a variables counting East steps.

Conjecture 8 For a ≥ −1, the radius of convergence ofQ(a, ·) is

ρQ(a) =



















1

(2 +
√
2 + 2a)2

if a ≥ −1/2,

− a

2(1− a)2
if a ∈ [−1,−1/2].

(3)

We shall only use the above conjecture fora ≥ −1/2.

Conjecture 9 The seriesQ′
2(a, u) :=

∂Q
∂u (a, u) is convergent atu = ρQ(a) for a ≥ −1.

In the following subsections, we gather some evidence for these conjectures. In particular, we prove
Conjectures 7 and 8 for general loops and for loops confined tothe upper half-plane. (Conjecture 9 does
not hold for these more general loops.) The fact that Conjecture 8 holds for general loops and half-plane
loops is reminiscent of a recent result according to which the growth constant of (unweighted) loops
confined to a wedge is independent of this wedge [8, Sec. 1.5].
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4.1 Some results on quarter plane loops
Proposition 10 The seriesQ(a, s, u) counting quarter plane loops by the half-length (u), the number of
East steps (s), and the number of NW and ES factors (a) satisfies

Q(1, s, u) =
∑

i,j≥0

(

2i+ 2j

2i

)

CiCjs
iui+j ,

whereCi =
(

2i
i

)

/(i+ 1) is theith Catalan number. The value ata = −1 is just as remarkable:

Q(−1, s, u) =
∑

i,j≥0

(

i+ j

i

)

CiCjs
iui+j .

The results dealing withQ(1, s, t) are well-known and easy to prove [10]. For the casea = −1, we work
from the functional equation (1), refined with a variables. The proof is inspired by recent progress on
quarter plane walks with general steps [7]. It still lacks a combinatorial explanation.

Let us now discuss the radius of convergence ofQ(a, ·).
Proposition 11 For a fixed, letρQ(a) be the radius of convergence ofQ(a, ·). Then

ρQ(−1) =
1

8
, ρQ(1) =

1

16
,

andρ is non-increasing function on[0,+∞), continuous on(0,+∞). Moreover, fora ≥ 0,

ρQ(a) ≥
1

(2 +
√
2 + 2a)2

.

The seriesQ′
2(a, ρQ(a)) converges fora = −1 anda = 1.

If Q(a, u) is (a+ 1)-positive, thenρQ is non-increasing on[−1,+∞) and continuous on(−1,+∞).

The values ata = 1 anda = −1 follow from Proposition 10. The lower bound is obtained by counting
all walks by length and corners. The continuity result is standard for series with coefficients inN[a] and
affine degree.

4.2 Unconfined loops
We now consider unconfined loops. Their generating functioncan be obtained by two successive coef-
ficient extractions in the rational generating function that counts all walks and keeps track of their final
position. This allows us to prove that Conjectures 7 ((a + 1)-positivity) and 8 (radius of convergence)
hold for these loops.

Proposition 12 The generating functionW(a, s, t;x, y) counting square lattice walks by the number of
horizontal steps (s), the number of vertical steps(t), the number of ES and NW corners (a) and the
coordinates of the endpoint (x, y) is rational, and given by

W(a, s, t;x, y) =
1

1− s (x+ x̄)− t(y + ȳ)− st (a− 1) (xȳ + x̄y)
. (4)



Sorting with two stacks in parallel 9

The generating function that only counts loops is D-finite, and given by

W0,0(a, s, t) := [x0y0]W(a, s, t;x, y) =
∑

j≥0

(

2j

j

)

t2jWj(a, s) (5)

where

Wj(a, s) = [x0]
(1− sx(1 − a))j(1 − sx̄(1− a))j

(1− s(x+ x̄))2j+1
. (6)

The generating functionA(a, s, t) :=
∑

j≥0
t2jWj(a, s) is biquadratic, and can be written as

A(a, s, t) =
1 + t2(1− a2)T

(1− t2(a2 − 1)T )2 − t2(1 + 2(a+ 1)T )2

√

1 + 4T − t2(a− 1)2T

1− t2(a− 1)2T
, (7)

whereT ≡ T (a, s, t) is the unique series inQ[a][[s, t]] that satisfiesT (a, 0, t) = 0 and

T = s2
1 + 4T − (a− 1)2t2T

1− t2 − t2(a+ 1)2T
. (8)

The expression ofW(a, s, t;x, y) follows from the same recursive construction of walks as thefunctional
equation (1) for quarter plane walks. Extracting the coefficient ofx0y0 gives (5). If we drop the coefficient
(

2j
j

)

, this becomes the constant term (inx) of a rational series, and thus an algebraic seriesA(a, s, t). We
perform the constant term extraction using a partial fraction expansion inx, as described for instance
in [19, Thm. 6.3.3]. This gives a biquadratic equation forA, which we parametrize using (8).

Proposition 13 The seriesW0,0(a, s, t) that counts unconfined loops is(a+ 1)-positive. Moreover,

W0,0(1, s, t) =
∑

i,j≥0

s2it2j
(

2i+ 2j

2i

)(

2i

i

)(

2j

j

)

,

while

W0,0(−1, s, t) =
∑

i,j≥0

s2it2j
(

i+ j

i

)(

2i

i

)(

2j

j

)

.

We first establish(a + 1)-positivity for T using (8), then forA using (7). This is equivalent to saying
thatW0,0(a, s, t) is (a + 1)-positive. The expression ofW0,0(1, s, t) is combinatorially clear, while the
expression ofW(−1, s, t) follows by specializing Proposition 12 toa = −1.

Proposition 14 Let a ≥ −1. The seriesW0,0(a,
√
u,

√
u) that counts unconfined loops walks by half-

length and corners has radius of convergence given by(3).

We first compute a differential equation, of order 2, satisfied by this D-finite series. The radius is found
among the roots of the coefficient of the second derivative. We select the correct root, depending on the
value ofa, by combining(a + 1)-positivity, a continuity argument, and the known values1/16 and1/8
ata = 1 anda = −1, respectively.
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4.3 Half-plane walks
We obtain similar results for loops confined to the upper half-plane{(x, y) : y ≥ 0}.

Proposition 15 The generating function of half-plane loops, counted by horizontal steps(s), vertical
steps (t), and NW and ES factors (a), is

H0,0(a, s, t) =
∑

j≥0

1

j + 1

(

2j

j

)

t2jWj(a, s),

whereWj(a, s) is given by(6). It is (a+ 1)-positive. Moreover,

H0,0(1, s, t) =
∑

i,j≥0

s2it2j
1

j + 1

(

2i+ 2j

2i

)(

2i

i

)(

2j

j

)

,

while

H0,0(−1, s, t) =
∑

i,j≥0

s2it2j
1

j + 1

(

i+ j

i

)(

2i

i

)(

2j

j

)

.

For a ≥ −1, the seriesH0,0(a,
√
u,

√
u) that counts half-space loops by half-length and corners has

radius of convergence given by(3).

These results follow from those obtained for unconfined walks, using the following proposition.

Proposition 16 Let v be a word on{N,S}. The generating function of walks whose vertical projection
is v, counted by the number of horizontal steps (s), the abscissa of the endpoint (x) and the number of NW
and SE factors (a), only depends on|v|N and|v|S .

The proof is simple, once one realizes that the number of NW and ES corners is distributed as the number
of WN and SE corners, as stated in the following result (discovered independently by Olivier Bernardi
and Julien Courtiel; personal communications).

Lemma 17 There exists an involution on square lattice paths that exchanges the number of NW and WN
factors, fixes the number of ES or SE factors, and leaves the horizontal and vertical projections unchanged.

Consequently, for any pair of walksv ∈ {N,S} and w ∈ {E,W}, the following bi-statistics of
corners are equidistributed in the set of walks that projectvertically onv and horizontally onw: (NW,ES),
(WN,ES), (WN,SE) and (NW,SE).

5 Asymptotic Analysis
Recall the relationship between the seriesQ(a, u) andS ≡ S(t) established in Corollary 6:

Q

(

−S•,
t

(1 + S•)2

)

=
1 + S•

1− S•

with S = 1/(1 − S•). Our main theorem tells us thatS(t) becomes singular when the pair(−S•, t(1 +
S•)−2) reaches the critical curve ofQ, namely{(a, ρQ(a)),−1 ≤ a} whereρQ(a) is the radius of the
seriesQ(a, ·). However, this theorem relies on the conjectures studied inthe previous section.
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Theorem 18 Assume that the seriesQ(a, u) is (a+1)-positive, and thatQ′
2(a, ρQ(a)) < ∞ for −1/2 ≤

a ≤ 0. Let tc be the radius of convergence ofS = 1/(1 − S•). Thent/(1 + S•(t))2 increases on the
interval [0, tc], and on this interval,

t

(1 + S•(t))2
≤ ρQ(−S•(t)),

with equality if and only ift = tc. Moreover,S•(tc) ≤ 1/3.

We can make the value oftc more explicit thanks to the conjectured expression ofρQ(a) (Conjecture 8).

Corollary 19 Assume that the assumptions of the above theorem hold, as well as (the first part of) Con-
jecture 8. Then the radius of convergence ofS is

tc =

(

1−
√
2 + 2a

2

)2

,

wherea = −S•(tc) satisfies

Q

(

a,
1

(2 +
√
2 + 2a)2

)

=
1− a

1 + a
.

Numerically,a ≃ −0.1477 and
1/tc = lim sup s1/nn ≃ 8.29.

The proof of these results is rather delicate, first because we have to deal with bivariate series, and then
because−S• is negative. The latter difficulty is partially alleviated by the (conjectured)(a+1)-positivity
of Q. The main ingredients of the proof are the implicit functiontheorem, Pringsheim’s theorem, and the
open mapping theorem in two variables.
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