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TRANSIENCE OF EDGE-REINFORCED RANDOM WALK

MARGHERITA DISERTORI, CHRISTOPHE SABOT, AND PIERRE TARRÈS

Abstract. We show transience of the edge-reinforced random walk for small reinforce-
ment in dimension d > 3. The argument adapts the proof of quasi-diffusive behaviour of
the SuSy hyperbolic model for fixed conductances by Disertori, Spencer and Zirnbauer [7],
using the representation of edge-reinforced random walk as a mixture of vertex-reinforced
jump processes (VRJP) with independent gamma conductances, and the interpretation of
the limit law of VRJP as a supersymmetric (SuSy) hyperbolic sigma model developed by
Sabot and Tarrès in [9].

1. Introduction

1.1. Setting and main result. Let (Ω,F ,P) be a probability space. Let G = (V,E,∼)
be a nonoriented connected locally finite graph without loops. Let (ae)e∈E and (we)e∈E two
sequences of positive weights associated to each edge e ∈ E.

Let (Xn)n∈N be a random process that takes values in V , and let Fn = σ(X0, . . . , Xn) be
the filtration of its past. For any e ∈ E, n ∈ N ∪ {∞}, let

(1.1) Zn(e) = ae +

n
∑

k=1

1I{{Xk−1,Xk}=e}

be the number of crosses of e up to time n plus the initial weight ae. Then (Xn)n∈N is called
Edge Reinforced Random Walk (ERRW) with starting point i0 ∈ V and weights (ae)e∈E,
if X0 = i0 and, for all n ∈ N,

(1.2) P(Xn+1 = j | Fn) = 1{j∼Xn}
Zn({Xn, j})

∑

k∼Xn
Zn({Xn, k})

.

On the other hand, let (Yt)t>0 be a continuous-time process on V , starting at time 0
at some vertex i0 ∈ V . Then (Yt)t>0 is called a Vertex-Reinforced Jump Process (VRJP)
with starting point i0 and weights (we)e∈E if Y0 = i0 and if Yt = i then, conditionally on
(Ys, s 6 t), the process jumps to a neighbour j of i at rate w{i,j}Lj(t), where

Lj(t) := 1 +

∫ t

0

1I{Ys=j} ds.

The Edge Reinforced Random Walk was introduced in 1986 by Diaconis [2]; the Vertex-
Reinforced Jump Process was proposed by Werner in 2000, and initially studied by Davis
and Volkov [3, 4]; for more details on these models and related questions, see [9] for instance.

The aim of this paper is to prove transience of the edge-reinforced random walk (ERRW)
for large ae > 0, i.e. small reinforcement.
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2 M. DISERTORI, C. SABOT, AND P. TARRES

Theorem 1. On Z
d, d > 3, there exists αc(d) > 0 such that, if ae > αc(d) for all e ∈ E,

then the ERRW with weights (ae)e∈E is transient a.s.

Recall that almost-sure positive recurrence of ERRW and VRJP for large reinforcement
(i.e. if ae < α̃c, resp. we < w̃c for all e ∈ E, for some α̃c, w̃c > 0), and transience of VRJP
for small reinforcement (i.e. if we > wc for some wc > 0) were proved by Sabot and Tarrès
in [9], using localisation/delocalisation results of Disertori, Spencer and Zirnbauer [6, 7].
Another proof of recurrence of the ERRW and VRJP was proposed, shortly afterwards, by
Angel, Crawford and Kozma [1].

The proof of Theorem 1 follows from estimates on the fluctuation of a field (Ui) associated
to the limiting behaviour of the reinforced-random walk. Let us first recall two earlier results
from Sabot and Tarrès [9].

Theorem 2 (Sabot and Tarrès [9]). On any locally finite graph G, the ERRW (Xn)n>0 is
equal in law to the discrete time process associated with a VRJP in random independent
conductances We ∼ Gamma(a

e
, 1 ).

The next result concerns VRJP (Yt)t>0 on a finite graph G, with |V | = N , given fixed
weights (we)e∈E; let P

V RJP
i0 be its law, starting from i0 ∈ V .

Proposition 1 (Sabot and Tarrès [9]). Suppose that G is finite and set N = |V |. For all
i ∈ V , the following limits exist PV RJP

i0
a.s.

Ui = lim
t→∞

(logLi(t)− logLi0(t)) .

Theorem 3 (Sabot and Tarrès [9]). (i) Under PV RJP
i0

, (Ui)i∈V has the following distribution
on

H0 = {(ui) ∈ R
V : ui0 = 0}

dρw,Λn(u) =
1

(2π)(N−1)/2
e−

∑

j∈V uje−H(w,u)
√

D[m(w, u)]
∏

j∈V \{i0}

duj(1.3)

where
H(w, u) = 2

∑

{i,j}∈E

wi,j(cosh(ui − uj)− 1)

and D(w, u) is any diagonal minor of the N ×N matrix m(w, u) with coefficients

mi,j =







wi,je
ui+uj if i 6= j

−∑k∈V wi,ke
ui+uk if i = j

(ii) Let C be the following positive continuous additive functional of X:

C(s) =
∑

i∈V

L2
i (s)− 1,

and let
Zt = YC−1(t).

Then, conditionally on (Ui)i∈V , Zt is a Markov jump process starting from i0, with jump
rate from i to j

1

2
wi,je

Uj−Ui.
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In particular, the discrete time process associated with (Ys)s>0 is a mixture of reversible
Markov chains with conductances wi,je

Ui+Uj .

Remark 1. The diagonal minors of the matrix m(w, u) are all equal since the sum on any
line or column of the coefficients of the matrix are null. By the matrix-tree theorem, if we let
T be the set of spanning trees of (V,E,∼), then D[m(w, u)] =

∑

T∈T

∏

{i,j}∈T w{i,j}e
ui+uj .

Notation and convention. In the following we fix d > 3.

A sequence σ = (x0, . . . , xn) is a path from x to y in Z
d if x0 = x, xn = y and xi+1 ∼ xi

for all i = 1, . . . , n.

Let
Λn = {i ∈ Z

d, |i|∞ 6 n}
be the ball centred at 0 with radius n, and let

∂Λn = {i ∈ Z
d, |i|∞ = n}

be its boundary. We denote by E the set of edges in Z
d and by En the set of edges contained

in the hypercube Λn. We denote by Ẽn the associated set of directed edges.

Let (aij)i,j∈Zd,i∼j be the family of initial positive weights for the ERRW and

a := inf
e∈E

ae.

In the proofs, we will denote by Cst(a1, a2, . . . , ap) a positive constant depending only on
a1, a2, . . . ap, and by Cst a universal positive constant.

Let P0 (resp. PΛn
0 ) be the law of the ERRW on Z

d (resp. on Λn). Theorem 3 ensures that
on every finite volume Λn the ERRW is a mixture of reversible Markov chains with random
conductances (WU

e )e∈En where WU
ij = Wije

Ui+Uj and the law for the random variables

(W,U) has joint distribution on R
En
+ ×H0 given by

dρΛn(w, u) = dρw,Λn(u)
∏

e∈En

e−wewae−1
e

Γ(ae)
dwe,

where dρw,Λn(u) was defined in (1.3). Let EΛn
0 the average with respect to the joint law for

(W,U) (mixing measure). Note that we cannot define this average on an infinite volume,
since we do not know if the limiting measure exists. Denote by 〈·〉Λn the corresponding
marginal in U .

Warning. We use a capital letter W,U · · · to denote a random variable and a smallcase
letter w, u, . . . to denote a particular realization of the variable. The same is true for any
function of such variables. In some cases though we do not state the argument explicitely,
to avoid heavy notations. It should become clear from the context when the corresponding
argument has to be regarded as a random variable.

The proof of Theorem 1 will follow from the following result.

Theorem 4. Fix d > 3. For all m > 0, there exists ac(m, d) > 0 such that, if a > ac(m, d)
then, for all n ∈ N, x, y ∈ Λn,

〈coshm(Ux − Uy)〉Λn 6 2.
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The proof of Theorem 4 is the purpose of the rest of this paper, and adapts the argument
of Disertori, Spencer and Zirnbauer [7], which implied in particular transience of VRJP
with large conductances (we). But before, let us show how Theorem 4 implies Theorem 1.

Proof of Theorem 1. Given (w, u) ∈ R
E
+ × H0, denote by Pwu

0 the law of the Markov
chain in conductances wu

i,j = wije
ui+uj starting from 0. Let H∂Λn be the first hitting time

of the boundary ∂Λn and H̃0 be the first return time to the point 0.

We seek to estimate P0(H∂Λn < H̃0) the probability the ERRW hits the boundary of Λn

before coming back to 0. Since this event depends only on the history of the walk inside
the hypercube Λn, we have

(1.4) P0(H∂Λn < H̃0) = P
Λn
0 (H∂Λn < H̃0) = E

Λn
0

[

PWU

0 (H∂Λn < H̃0)
]

where in the last term we used the last part of Theorem 3. Now Pwu

0 (H∂Λn < H̃0) is the
probability for a Markov chain inside Λn with conductances wu to hit the boundary before
coming back to 0. This probability can be related to the effective resistance between 0 and
∂Λn (see for instance Chapter 2 of [8])

R(0, ∂Λn, w
u) = inf

θ:Ẽn→R

∑

e∈Ẽn

θ(e)2

wu
e

where the infimum is taken on unit flows θ from 0 to ∂Λn : θ is defined on the set of directed
edges Ẽn and must satisfy θ((i, j)) = −θ((j, i)) and

∑

j∼v θ((v, j)) = δv,0 for all v ∈ Λn.

Denote by R(0, ∂Λn) the effective resistance between 0 and ∂Λn for conductances 1.

Classically we have

wu
0R(0, ∂Λn, w

u) =
1

Pwu

0 (H∂Λn < H̃0)

with wu
0 =

∑

j∼0w
u
0,j. Using (1.4) and Jensen’s inequality

1

P0(H∂Λn < H̃0)
=

1

E
Λn
0

[

PWU

0 (H∂Λn < H̃0)
]

6 E
Λn
0

[

1

PWU

0 (H∂Λn < H̃0)

]

= E
Λn
0

[

WU
0 R(0, ∂Λn,W

U)
]

.(1.5)

We will show below that, if mine∈E ae = a > max{ac(3, d), 3}, then

E
Λn
0

[

WU
0 R(0, ∂Λn,W

U)
]

6 Cst(a, d)R(0, ∂Λn)(1.6)

This will enable us to conclude: since lim supR(0, ∂Λn) < ∞ for all d > 3, (1.5) and (1.6)
imply that P0(H̃0 = ∞) > 0. ✷

Proof of (1.6). Let θ be the unit flow from 0 to ∂Λn which minimizes the L2 norm. Then

R(0, ∂Λn, wu) 6
∑

{i,j}∈En

1

wu
i,j

θ2(i, j),

and
R(0, ∂Λn) =

∑

{i,j}∈En

θ2(i, j).
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Now, if a > max{ãc(3, d), 3} then, using Theorem 4,

E
Λn
0

[

WU
0

WU
i,j

]

=
∑

l∼0

E
Λn
0

[

W0,l

Wi,j
eU0−UieUl−Uj

]

6
∑

l∼0

(

E
Λn
0

[

W 3
0,l

W 3
i,j

]

E
Λn
0

[

e3(U0−Ui)
]

E
Λn
0

[

e3(Ul−Uj)
]

)1/3

=
∑

l∼0

(

E
Λn
0

[

W 3
0,l

]

E
Λn
0

[

W−3
i,j

]

〈e3(U0−Ui)〉Λn〈e3(Ul−Uj)〉Λn

)1/3
6 Cst(a, d),

where we also used the fact that Wi,j are independent Gamma distributed random variables.
✷

1.2. Organization of the paper. Section 2 introduces to the main lines of the proof,
the geometric objects that are needed (diamonds and deformed diamonds), and state some
Ward identities. Section 3 provides some estimates on the probability of existence of good
points i (from which there are no large deviations on Bij at small scales) in certain boxes.
Section 4 contains the main inductive argument. The Ward identities (Lemmas 1 and 4)
are shown in Section 5, and the estimate on the effective conductance given in Proposition
3 is proved in Section 6.

ACKNOWLEDGMENTS. It is our pleasure to thank T. Spencer for very important
suggestions on this work and many useful discussions. Margherita Disertori would like to
thank Martin Zirnbauer for introducing her to the H2|2 model that plays a crucial role in
this paper. Pierre Tarrès and Christophe Sabot are grateful to Krzysztof Gawedzki for
pointing to them the connection between history dependent processes and supersymmetric
non-linear sigma models.

2. Introduction to the Proof

2.1. Marginals of U and a first Ward identity. Let us now fix n ∈ N, and let Λ = Λn,
E = En, for simplicity.

A key step in our proof is to study the law of U after integration over the conduc-
tances We, in other words to focus on the marginal 〈.〉Λ. Note that it is one of several
possible approaches to the question of recurrence/transience for ERRW. Indeed, one could
instead focus on the analysis of the law of the random conductances Wije

Ui+Uj given by
Coppersmith-Diaconis formula, or directly study ERRW from its tree of discovery using the
existence of a limiting environment, as done in [1], or possibly conclude from a.s. results
conditionally on the conductances We, e ∈ E.

In fact we add a Gaussian Free Field variable S with conductances WU
ij before integrat-

ing over W , as in the first step of [7], since the corresponding joint law again has more
transparent symmetries and is better suited for the subsequent analysis. More precisely, let

Bxy := cosh(Ux − Uy) +
1

2
eUx+Uy(Sx − Sy)

2

for all x, y ∈ V (not necessarily neighbours).
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Then (W,U, S) has the following distribution on R
E
+ ×H0 ×H0

(2.1) 1
(2π)(N−1)/2 e

−
∑

j∈Λ uje−
∑

i,j∼i Wij(Bij−1)D[m(W,u)]
∏

k 6=i0

dukdsk
∏

e∈E

e−wewae−1
e

Γ(ae)
dwe

The marginal of this law in (U, S) after integration over W , which we still call 〈.〉Λ or 〈.〉
by a slight abuse of notation, is given in the following Proposition 2.

Proposition 2. The joint variables (U, S) have density on H0 ×H0

(2.2) µa,V (u, s) =
1

(2π)(N−1)/2

[

∏

e

1

Bae
e

]

e−
∑

j∈Λ ujD[MV (u, s)],

where D[MV (u, s)] is any diagonal minor of the N ×N matrix MV (u, s) defined by

Mi,j =







ci,j, i 6= j

−
∑

k ci,k, i = j

and

ci,j :=
ai,je

ui+uj

Bi,j
, ∀, i ∼ j

Note that we slightly abuse notation here, in that Bi,j is considered alternatively as function
of (u, s) and (U, S).

Proof. Integrating the density in (2.1) with respect to the random independent conduc-
tances We ∼ Gamma(a

e
, 1 ) we obtain

e−
∑

j uj

(2π)(N−1)/2

∫

∏

e

e−wewae−1
e dwe

Γ(ae)
e−

∑

j∼i wij(Bij−1)D(w, u)

= e
−

∑
j uj

(2π)(N−1)/2

∑

T

∏

i∼j∈T

eui+uj

[

∏

e 6∈T

Ie(ae)

][

∏

e∈T

Ie(ae + 1)

]

=

[

∏

e

1
Bae

e

]

e
−

∑
j uj

(2π)(N−1)/2

∑

T

∏

i∼j∈T

aije
ui+uj

Bij
= µa,V (u, s)

where in the second line we expand the determinant as a sum over spanning trees and

Ie(ae) =

∫

dwe

Γ(ae)
e−weBewae−1

e =
1

Bae
e

, Ie(ae + 1) =
ae

Bae+1
e

.

�

In the proof of delocalization in [7], the first step was a set of relations (Ward identities)
generated by internal symmetries. Their analogue is stated in Lemmas 1 and proved in
Section 5, and involves a term of effective resistance Dx,y depending on the variable U ,
defined as follows.

Definition 1. Let Dx,y be the effective resistance between x and y for the conductances

cx,yi,j := ci,jBx,ye
−ux−uy =

ai,je
ui+uj−ux−uyBx,y

Bi,j
.
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Lemma 1. For all m 6 a/4 then, for all x, y ∈ Λ (not necessarily neighbours),

〈Bm
x,y(1−mDx,y)〉 = 1.

One of the consequences of Lemma 1 is that, if the effective resistance Dxy is small,
then we can deduce a good bound on Bm

x,y. However, there is positive probability that
this resistance Dxy might be large, so that it would be more useful to show an inequality
restricted to the event that Dxy is small.

Although it is not possible to derive such an identity directly, we can define events χxy

on which such identities hold, and so that Dxy is small on χxy. These events will depend on
geometric objects defined in the next Section 2.2, called diamonds and deformed diamonds.

2.2. Diamonds and deformed diamonds.

Definition 2. Let l 6= 0 be a vector in R
d and x ∈ Z

d. We denote by C l
x the cone with base

x, direction l and angle π/4

C l
x = {z ∈ R

d, ∠(xz, l) 6
π

4
}

= {z ∈ R
d, (z − x) · l >

√
2

2
|z − x||l|}

where ∠(xz, l) is the angle between the vector xz and the vector l.

If x and y are in Z
d, we call Diamond the set

(

Cy−x
x ∩ Cx−y

y

)

∩ Z
d.

to which we add a few points close to x and close to y so that the set is connected in Z
d.

We denote this set by Rx,y.

Remark 2. By the expression " a few points" above we mean that we add some extra
points to

(

Cy−x
x ∩ Cx−y

y

)

∩ Z
d at a bounded distance from x, y so that the resulting set

becomes connected in the lattice. The distance at which the points can be added is bounded
by a constant depending only on the dimension. Of course, all the estimates below will
be independent of the choice of these points. We will repeat this operation several times
hereafter, without extra explanation.

In the course of the inductive argument, some deformed diamonds appear, they are
formed of the intersection of two cones with smaller angles than for diamonds. For l ∈ R

d,
l 6= 0, and x ∈ R

d we set

C̃ l
x = {z ∈ R

d, ∠(xz, l) 6
π

16
}.

Definition 3. A deformed diamond is a set of the following form
(

C̃ l
x ∩ C̃x−y

y

)

∩ Z
d,

(plus a few points close to x and to y so that the set is connected in Z
d, see Remark 2)

where x ∈ Z
d, l ∈ R

d, l 6= 0 and y ∈ Z
d is a point such that

y ∈ C̃ l
x.

We also denote a deformed diamond by Rx,y (and it will always be clear in the text wether
Rx,y is a diamond or deformed diamond).
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Definition 4. It will be useful to write each (exact or deformed) diamond as a non disjoint
union of two sets

Rx
x,y = {z ∈ Rx,y, |z − x| 6 fx|y − x|}, Ry

x,y = {z ∈ Rx,y, |z − y| 6 fy|y − x|},
where the pair (fx, fy) is such that 1/5 6 fx 6 1, 1/5 6 fy 6 1 and fx + fy > 1 + 1

5
.

This condition on (fx, fy), and the fact that the maximal angle in deformed diamonds is
π/16, indeed ensures that that Rx,y = Rx

x,y ∪ Ry
x,y. Note that the choice of (fx, fy) is not

unique.

2.3. Estimates on effective conductances.

Definition 5. Given a diamond or deformed diamond Rxy ⊆ Λ, let DN
xy be the effective

resistance of the electrical network with the same conductances cx,yi,j in Rxy as in Definition
1, and Neumann boundary conditions on ∂Rxy.

Definition 6. Fix b > 1 and α > 0. Given i, j ∈ Λ, let

χij = 1{Bij6b|i−j|α}.

Given a deformed diamond Rxy ⊆ Λ and the two corresponding regions Rx
xy and Ry

xy, let

χxy =
∏

j∈Rx
xy

χxj

∏

j∈Ry
xy

χyj .

Here is the main proposition of the section. It ensure that under the condition χxy, there

is a uniform bound on the effective resistance DN
x,y.

Proposition 3. Fix α ∈ (0, 1/4) and b > 0. There exists a constant C = Cst(d, α, b) such
that for any deformed diamond Rx,y ⊆ Λ, if χxy is satisfied, then

DN
x,y 6 C/a,

where a = inf(ai,j).

Remark 3. Note that the constant C is independent of the precise shape of the deformed
diamond.

Proposition 3 is proved in Section 6. It partly relies on the following two Lemmas 2 and
3, which will also be useful in other parts of the proof.

Lemma 2 (lemma 2 of [7]). For all x, y, z ∈ Λ,

Bxz 6 2BxyByz.

Proof. Elementary computation. �

Lemma 3. For all i, j ∈ Z
d, i ∼ j, x, y ∈ Z

d, we have

(2.3) (cxyij /a)
−1 6 16(Biz)

2(Bjz)
2.

for both z = x and z = y.

In particular, let c = b−4/64, β = 4α. Assume that χxy holds, then the electrical network
with conductances

(γi,j)i,j∈Λ, i∼j = (cxyij /a)i,j∈Λ, i∼j ,
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satisfies
γi,j > c|i− z|−β

for all i, j ∈ Rz
xy, i ∼ j, for z = x, y,.

The proof of Lemma 3 partly relies on the following two Lemmas, which will also be
useful in other parts of the proof.

Proof of Lemma 3. First note that

e±(ux−uy)Bxy > e±(ux−uy) cosh(ux − uy) > 1/2,

so that

(2.4) eui+uj−ux−uyBx,y >
1

2
max[eui+uj−2ux , eui+uj−2uy ].

Now

(2.5) eui+uj−2ux = eui−uxeuj−ux >
1

4
(cosh(ui − ux) cosh(uj − ux))

−1 >
1

4
(BixBjx)

−1.

On the other hand, note that

(2.6) Bij 6 2BixBjx.

Inequalities (2.4)–(2.6) together yield the first part. The second part is a consequence of
using Bix 6 b|i− x|α and Bjx 6 b|j − x|α 6 2b|i− x|α. ✷

2.4. Protected Ward estimates. Next, we obtain a “protected” Ward estimate, as fol-
lows.

Lemma 4. Let α > 0 and b > 1. For all i = 1, . . . , n, let mi 6 a/4 and let Rxiyi be regions
whose interiors are disjoint. Then

(2.7) 〈
n
∏

i=1

Bmi
xiyi

(1−miD
N
xiyi

)〉 6 1,

and

(2.8) 〈
n
∏

i=1

Bmi
xiyi

χxiyi(1−miD
N
xiyi

)〉 6 1.

Inequality (2.8) implies, by Lemma 3, that if, additionally, the regions Rxiyi, i = 1, . . . , n
are deformed diamonds and mi < a/C for all i, then

(2.9) 〈
n
∏

j=1

Bmj
xjyj

χxjyj
〉 6

n
∏

j=1

(1−mjC/a),

where C is the constant considered in Proposition 3.

Lemma 1 is proved in Section 5. The rest of the proof is similar to the argument in
[7], which consists in deducing upper bounds of 〈

∏n
j=1B

m
xjyj

〉 for some fixed m from these

“protected” estimates, through an induction on the maximal length |xi−yi| on the protected
estimates, i = 1 . . . n, using Chebyshev inequalities in order to deal with the “unprotected”
parts of the estimates. We summarise the argument in Section 4.
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3. Estimates on good points

Definition 7. A point x ∈ Λ is called n-good if

Bx,y 6 b|x− y|α,
for all y ∈ Λ with distance 1 6 |x− y| 6 4n from x.

Given z ∈ Λ, let Rn(z) (denoted by Rn when there is no ambiguity) the cube with side
4n and barycenter z. We denote by χc

Rn
the indicator of the event that there is no n-good

point in Rn.

In this section we present an estimate on the event χc
Rn

, more precisely we bound from

above the indicator function by a sum of terms involving
Bi,j

b|j−i|α
for points i, j at distance at

most 4n. This will be used in the main inductive argument in Section 4. It follows lemma
9 of [7], but, for convenience of the reader, we give the proof which is only a few lines long.

If Rn is a hypercube of side 4n then it is the disjoint union of 4d sub-hypercubes of side
4n−1. We can select the 2d corner subcubes that we denote (Ri

n, i = 1, . . . , 2d) so that
d(Ri

n, R
j
n) > 2× 4n−1 for i 6= j. Repeating this procedure hierarchically we can construct a

family of cubes (Rv
n) with side 4n−k for v running on the set {1, . . . , 2d}k. We consider the

natural structure of rooted (2d + 1)-regular tree of the set

R = {root} ∪
(

∪n
k=1{1, . . . , 2d}k

)

,

where "root" is the root of the tree, corresponding the cube Rn(= Rroot
n ). We denote by dv

the depth of a point v ∈ R with droot = 0 and dv = k if v ∈ {1, . . . , 2d}k. We denote by Tn

the set of connected subtrees T of R containing the root and which have the property that
any vertex x ∈ T have either 2d or 0 descendant in T . We denote by LT the set of leaves of
such a tree T ∈ Tn. (Remark that the set {LT , T ∈ Tn} is also the set of maximal totally
unordered subsets of R for the natural "genealogical order" on R.)

For an element v ∈ R with k = dv we set

Sc
Rv

n
=

∑

x∈Rv
n, y∈Λ

4n−k−1<|x−y|<4n−k

χc
x,y 6

∑

x∈Rv
n, y∈Λ

4n−k−1<|x−y|<4n−k

Bm
x,y

bm|x− y|αm

Lemma 5. (lemma 9 of [7]) With the notations above we have

χc
Rn

6
∑

T∈Tn

∏

v∈LT

Sc
Rv

n
.

Proof. If there is no n-good point in Rn then either there is no (n− 1)-good point in any of
the subcubes {Ri

n, i = 1, . . . , 2d} or else there exists at least one pair (x, y) ∈ Rn × Λ with
4n−1 < |x− y| < 4n and Bx,y > b|x− y|α. This gives the first level inequality

χc
Rn

6 Sc
Rn

+

2d
∏

i=1

χc
Ri

n−1
.

Then the proof follows by induction on the integer n. For n = 0, R0(z) is the singleton z
and χc

R0
= Sc

R0
= 0 which initializes the induction. If lemma 5 is valid at level n− 1, then,

obviously, the previous inequality implies it at level n. �
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4. Inductive argument

Fix b > 1 and α ∈ (0, 1/4), which will be chosen later; let C = Cst(d, α, b) be the constant
considered in Proposition 3.

Definition 8. The sets Rxy in our induction are classified as follows:

• Class 1: diamonds Rxy, with |x− y| > a1/4;
• Class 2: deformed diamonds Rxy, with |x− y| > a1/4;
• Class 3: deformed diamonds Rxy, with |x− y| 6 a1/4.

Our goal in this section is to prove the following theorem.

Theorem 5. Let m = a1/8, let ρ = 1/2 and assume a > a0 for some constant a0 > 1. For
all n1, n2 and n3 > 0, let Rxiyi, i = 1, . . . n1, Rpjqj , j = 1, . . . n2, and Rrksk , k = 1, . . . n3 be
respectively subsets of class 1, 2 and 3. Then we have

〈
n1
∏

i=1

Bm
xiyi

n2
∏

j=1

B3m
pjqj

χpjqj

n3
∏

k=1

B3m
rksk

〉 6 2n1(1 + ρ)n22n3 .

The proof is by induction on max16i6n1 |xi − yi|. Let (H)ℓ be the following statement:
Theorem 5 holds if

max
16i6n1

|xi − yi| 6 ℓ.

The first step in the induction is the case n1 = 0, proved in Section 4.1.

Let us now show that (H)ℓ−1 implies (H)ℓ. We do the proof only in the case where
n1 = 1, the general case being only notationally more involved.

Assume (H)ℓ−1. Let x, y ∈ Λ be such that |x−y| = ℓ. Let R̃xy be the deformed diamond

between x and y introduced in Definition 3, with l = y − x; let R̃x
xy and R̃y

xy be its two
parts in Definition 4, respectively from x and y, with fx = fy = 1/(2 cos(π/16)).

Define
uxy =

∏

j∈R̃x
xy

χxj

∏

j∈R̃y
xy

χyj,

and let
R(x, y) =

∑

z∈R̃x
xy

Bm
xyχ

c
xz

∏

j: |j−x|<|z−x|

χxj.

Then it follows from the expansion of the partition of the unity

1 =
∏

j∈R̃x
xy

(χxj + χc
xj)

∏

j∈R̃y
xy

(χyj + χc
yj)

that

(4.1) 〈Bm
xy〉 6 〈Bm

xyuxy〉+ 〈R(x, y)〉+ 〈R(y, x)〉.
The first term in the right-hand side of (4.1) can be upper bounded, by (2.9) in Lemma 4:
if a > Cst(C) (recall m = a1/8), then

(4.2) 〈Bm
xyuxy〉 6 (1−mC/a)−1 6 1 + ρ 6 3/2.

It remains to upper bound 〈R(x, y)〉.
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Now, R(x, y) being an expansion over “bad” points z (i.e. sites z such that χc
xz holds),

we expand it into four terms.

(i) First, the sites z close x, i.e. with |z − x| 6 a1/4:

R1(x, y) =
∑

z∈R̃x
xy: |z−x|6a1/4

Bm
xyχ

c
xz

∏

j: |j−x|<|z−x|

χxj.

We prove in Section 4.2 that 〈R1(x, y)〉 6 1/16 if b > Cst(a) and αm > d (Case 1 in [7]).

(ii) Second, fix a constant M , which will only depend on the dimension d. For a site z
far from x (i.e. with |z − x| > a1/4), let

vx,y,z =
∏

j,k∈R̃x
xy∪R̃

y
xy , |j−z|6|z−x|1/2,

M |z−x|1/26|j−k|6|z−x|/5

χjk,

and let
R2(x, y) =

∑

z∈R̃x
xy: |z−x|>a1/4

Bm
xyχ

c
xzv

c
x,y,z

∏

j: |j−x|<|z−x|

χxj .

Then vcx,y,z = 1 if there is a large scale “bad” event originating from a point near z. We
will show in Section 4.3 that the corresponding term 〈R2(x, y)〉 6 1/16 if if b > Cst(a) and
αm > 10d (Case 2a in [7]).

(iii) Third, we consider the case where vx,y,z holds, i.e. there is no large scale “bad” event
near z and, furthermore, there is exists a point g with |g − z| 6 |z − x|1/2 that is good up
to scale |z − x|1/2.

More precisely, given i ∈ Λ, R > 0, let

G(i, R) =
∏

h: |i−h|6R

χih;

then G(i, R) = 1 iff i is “good” up to distance R. Recall the similar Definition 7 that a site
x ∈ Λ is called n-good if χxy = 1, for all y with |y − x| 6 4n.

Let
gx,y,z = max

g: |g−z|6|z−x|1/2
G(g,M |z − x|1/2).

Then gx,y,z = 1 iff we can find a site g in the ball of radius |z − x|1/2 centered at z, which
is good up to distance M |z − x|1/2.

Now, if vx,y,z = gx,y,z = 1, then we can find a deformed diamond from x to g close to z
such that χx,g = 1, so that we can apply the induction hypothesis. If we let

R3(x, y) =
∑

z∈R̃x
xy: |z−x|>a1/4

Bm
xyχ

c
xzvx,y,zgx,y,z

∏

j: |j−x|<|z−x|

χxj,

then 〈R3(x, y)〉 6 1/16 if a > Cst and αm > 3d (Case 2b in [7]): this is proved in Section
4.4.

(iv) Fourth, if gx,y,z = 0 and M 6 Cst(d) then there is no good point up to distance
M |z−x|1/2 in the hypercube of side length 4M |z−x|1/2. This implies that χc

Rn(x,z)(z)
holds,
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where n(x, z) is the part of M log |z − x|/(2 log 4). Then, if we let

R4(x, y) =
∑

z∈R̃x
xy: |z−x|>a1/4

Bm
xyχ

c
xzvx,y,zχ

c
Rn(x,z)(z)

∏

j: |j−x|<|z−x|

χxj,

we apply the “good points” expansion obtained in Section 3 to show in Section 4.5 that
〈R4(x, y)〉 6 1/16 if a > Cst, b > Cst(α, d) and αm > 4d (Case 2c in [7]).

In summary,

〈R(x, y)〉 6
4
∑

i=1

〈Ri(x, y)〉,

and 〈Ri(x, y)〉 6 1/16 is proved in Sections 4.2, 4.3, 4.4 and 4.5, respectively in the cases
i = 1, 2, 3 and 4.

4.1. Proof of Theorem 5 in the case n1 = 0. The proof is similar to the one of lemma
8 in [7]. First, note that the case n3 = 0 follows from Lemma 4, for a > Cst(C).

Let us do the proof in the case n2 = 0 and n3 = 1, the argument for the general case
being only notationally more involved.

Let δ > 0. For all p, q ∈ Λ, p ∼ q, let

ξpq = 1I{Bpq61+δ}.

Using 1 6
∏

{p,q},p,q∈Rxy
ξpq +

∑

{p,q},p,q∈Rxy
ξcpq, we have

(4.3) 〈B3m
xy 〉 6 〈B3m

xy

∏

{p,q},p,q∈Rxy

ξpq〉+
∑

{p,q},p,q∈Rxy

〈B3m
xy ξ

c
pq〉.

Let us first deal with the first term in the right-hand side of (4.3): Bpq 6 1 + δ implies

0 6 (Up − Uq)
2/2 6 cosh(Up − Uq)− 1 6 δ.

Choose δ > 0 such that a1/4
√
2δ = 1, i.e. δ = a−1/2/2.

Let z = x, y, and assume
∏

{p,q},p,q∈Rxy
ξpq holds. Then, for all j ∈ Rxy,

(4.4) |Uz − Uj | 6 a1/4
√
2δ = 1.

Subsequently, for all p, q ∈ Rxy, p ∼ q,

e−2

2
e2Uz(Sp − Sq)

2 6
eUp+Uq

2
(Sp − Sq)

2 6 Bpq − 1 6 δ,

which implies eUz |Sp − Sq| 6
√
2δe. Using again our choice of δ, we deduce that, again if

j ∈ Rxy, e
Uz |Sz − Sj| 6 a1/4

√
2δe = e, so that

(4.5)
eUj+Uz

2
(Sj − Sz)

2 6
e

2
e2Uz(Sj − Sz)

2 6
e3

2
.

Inequalities (4.4)-(4.5) together imply that Bzj 6 cosh(1) + e3/2 = Cst.

Therefore χxy holds with b = Cst and α = 0 implies

(4.6) 〈B3m
xy

∏

{p,q},p,q∈Rxy

ξpq〉 6 (1− 3mC/a)−1 6 3/2,

assuming a > Cst(C) (recall m = a1/8).
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Let us now deal with the second term in the right-hand side of (4.3): fix p, q ∈ Rxy,
p ∼ q, and use that, by Markov inequality,

ξpq 6

(

Bpq

1 + a

)a/2

.

Let (x0, . . . , xn) be a path of minimal distance from x to y inside Rxy, which does not go
through the edge {p, q}. By repeated application of Lemma 2,

2Bxy 6
∏

06j6n−1

2Bxjxj+1
.

Therefore, letting ℓ = |x− y|, we have

〈B3m
xy ξ

c
pq〉 6

23m(ℓ−1)

(1 + δ)a/2
〈Ba/2

pq

∏

06j6n−1

B3m
xjxj+1

〉 6 23m(ℓ−1)

(1 + δ)a/2
2

(

1− 3m

a

)−ℓ

6 exp (3mℓ− aδ/3) 6 exp
(

3a3/8 − a1/2/6
)

.(4.7)

In the second inequality, we use (2.7) and note that, if r ∼ s, then DN
rs = ars > a. In the

third inequality we assume a > Cst and, for x ∈ [0, 1/2], 1−x 6 e−x and (1+x)−1 6 e−2x/3.
Finally, we use δ = a−1/2/2, m = a1/8 and ℓ 6 a1/4 (since Rxy is of Class 3) in the last
inequality.

In summary, (4.3), (4.6) and (4.7) together imply, if a > Cst(C),

〈B3m
xy 〉 6 3/2 + Cst(d)ℓd exp

(

3a3/8 − a1/2/6
)

6 2

if a > Cst(d).

4.2. Proof of 〈R1(x, y)〉 6 1/16. Let z ∈ R̃x
xy be such that |z − x| 6 a1/4. Using χc

xz 6

B2m
xz b

−2m|z − x|−2αm and Lemma 2, we obtain

Bm
xyχ

c
xz 6 2mBm

xzB
m
zyχ

c
xz 6 2mb−2m|z − x|−2αmB3m

xz B
m
zy.

In order to apply the induction assumption, we would need to construct a deformed
diamond Rxz and diamond Rzy which do not intersect within Rxy. This is not true in
general, but we can add an intermediate point a ∈ Rxy such that Rxz, Rza and Rxz are
respectively one deformed diamond and two diamonds within Rxy and disjoint, except at
endpoints (see Figure 1, and Lemma 12 [1] in [7] for more details). Now, using again Lemma
2,

Bm
xyχ

c
xz 6 22mb−2m|z − x|−2αmB3m

xz B
m
zaB

m
ay.

Therefore, using the induction assumption,

〈R1(x, y)〉 6
∑

z∈R̃x
xy: |z−x|6a1/4

4mb−2m|z − x|−2αm4(1 + ρ) 6

(

4

b2

)m

Cst

a1/4
∑

r=1

rd−1−2αm 6 1/16

if b > Cst(a) and αm > d.
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x yxxxxx

a
w

θ

θ1

2

Figure 1. (Figure 5 in [7]) We add one intermediate point a. The two angles
θ1 and θ2 are greater than π/8.

a1 a2

w2

w1

w1

a1

a2
a3

a4

w2

a) b)

x yx y

Figure 2. (Figure 6 in [7]) a) If the pair w1w2 is right in the middle, then
we need to add four intermediate points a1, . . . , a4 in order to find a minimal
connected path around w1w2 paved with disjoint diamonds. b) Even if the

pair w1w2 is located on the boundary of R̃x
xy , the region Rw1w2 still lies inside

Rxy .

4.3. Proof of 〈R2(x, y)〉 6 1/16. Let z ∈ R̃x
xy be such that |z − x| > a1/4, and let j, k

∈ R̃x
xy ∪ R̃y

xy such that

(4.8) |j − z| 6 |z − x|1/2 and M |z − x|1/2 6 |j − k| 6 |z − x|/5.
As above, we use

(4.9) χc
jk 6 Bm

jkb
−m|j − k|−αm.

In order to apply the induction assumption, we need to expand B2m
jk B

m
xy into a product of

terms arising from disjoint diamonds within Rxy. It is an easy geometric result to show
that, under our assumptions on z, j and k, we can choose four intermediate points ai ∈ Rxy,
so that Rxa1 , Raiai+1

(i = 1, . . . , 3) and Ra4y are diamonds with disjoint interiors which do
not overlap with the diamond Rjk (see Figure 2, and Lemma 12 [2] in [7] for more details).
Now, using (4.9) and Lemma 2,
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Bm
xyχ

c
jk 6 24mBm

xa1

3
∏

i=1

Bm
aiai+1

Bm
a4yB

m
jkb

−m|j − k|−αm,

which implies, using the induction assumption,

〈Bm
xyχ

c
jk〉 6 24m26b−m|z − x|−αm/2.

Now, for each z ∈ R̃x
xy, there are of the order of |z − x|d+d/2 pairs (j, k) satisfying (4.8).

Therefore

〈R2(x, y)〉 6
(

16

b

)m

Cst

∑

r>a1/4

r(d−1)+d+d/2−αm/2 6
1

16

if b > Cst(a) and αm > 10d.

4.4. Proof of 〈R3(x, y)〉 6 1/16. Let z ∈ R̃x
xy be such that |z − x| > a1/4.

If vx,y,z = gx,y,z = 1, then there exists g with |g− z| 6 |z−x|1/2 such that, for all h ∈ Rxy

with |g−h| 6 |z−x|/5, χgh holds. Let Rxg be the deformed diamond in Definition 3, with
l = y − x, and choose fx = (|z − x| − 1)/|g − x| = 1 − O(a−1/8), fy = 1/5 in Definition 4.
Then χxg holds.

On the other hand, if χc
xz occurs then, using Bgz 6 b|z− g|α 6 b|z−x|α/2 and Lemma 2,

we deduce that 2Bxg > Bxz/Bgz > b|z − x|α/(b|z − x|α/2) = |z − x|α/2.
Hence

Bm
xyχ

c
xzχxg 6 2mBm

xgB
m
gyχ

c
xzχxg 6 23m(B3m

xg χxg)B
m
gy|z − x|−αm.

As in the proof of the case i = 1, we introduce an intermediate point a ∈ Rxy such that
Rga and Ray are diamonds, disjoint from each other and from Rxg, except at endpoints (see
Figure 1, and Lemma 12 [1] in [7] for more details).

Therefore
〈Bm

xyχ
c
xzχxg〉 6 23m(1 + ρ)22|z − x|−αm.

There are less than |z − x|d/2 choices for g, so that

〈R3(x, y)〉 6 23m
∑

r>a1/4

rd−1+d/2−αm 6 1/16

if αm > 3d and a > Cst.

4.5. Proof of 〈R4(x, y)〉 6 1/16. If a > Cst, then Rn(x,z)(z) is inside Rxy; recall that its

side length is of the order of |z−x|1/2 << |y−x|. As in the proof of the case i = 2, we can
choose four intermediate points ai ∈ Rxy, so that Rxa1 , Raiai+1

(i = 1, . . . , 3) and Ra4y are
diamonds with disjoint interiors which do not overlap with the hypercube Rn(x,z)(z) (see
Figure 2, and Lemma 12 [2] in [7] for more details).

Now, using Lemma 5,

Bm
xyχ

c
Rn(x,z)(z)

6 24mBm
xa1

3
∏

i=1

Bm
aiai+1

Bm
a4y

∑

T∈Tn

∑

xv∈Rv, yv∈Λ,v∈LT
4n−kv−1<|xv−yv |64n−kv

∏

v∈LT

Bm
xvyv

bm|xv − yv|αm
.
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This implies, letting nv = n− dv and using the induction assumption,

〈Bm
xyχ

c
Rn(x,z)(z)

〉 6 24m26
∑

T∈Tn

∏

v∈LT

(4nv)d(4nv2)d

bm4(nv−1)αm
= 24m+6In(x,z)

where, for all n > 0,

In =
∑

T∈Tn

∏

v∈LT

γ2−ζnv ,

with γ = (4α/b)m2d, ζ = 2(αm− 2d).

It follows from the structure of the trees Tn that

In = γ2−ζn + (In−1)
2d , I0 = γ.

Assume αm > 4d and b > Cst(α, d), so that γ 6 1/4 and ζ > αm. Then we deduce by
elementary induction that

In 6 2−αmn for all n > 1.

Note that 4n(x,z) > 2M
√

|z − x|. In summary,

〈R4(x, y)〉 6 24m2−αmM/2
Cst

∑

r>a1/4

rd−1−αm/4 6 1/16

if αm > 8d and a > Cst.

5. Proof of Ward inequalities: Lemmas 1 and 4

We start this section with two lemmas, that will be useful in the subsequent proofs. The
first is an elementary lemma which expresses the equivalent resistance on a conductance
network as a quadratic form and relates the quantity Dx,y to the corresponding term in [7].

Lemma 6. Let (Λ, E) be a finite connected graph and (ce)e∈E a conductance network on
E. We set ci =

∑

j∼i ci,j. Let i0 ∈ Λ be a fixed vertex and M be the matrix given by

(Mi,j) =







ci,j, i 6= j

−ci, i = j

(which is the Matrix of the generator of the Markov process with jump rates (ci,j)). Let N
be the restriction of M to Λ \ {i0}. Denote by G the Λ × Λ symmetric matrix defined by
G(i0, y) = G(y, i0) = 0 for any y and G(x, y) = −N−1

x,y if x, y 6= i0. If Dx,y is the equivalent
resistance between x and y, then

Dx,y = G(x, x)− 2G(x, y) +G(y, y) =< (δx − δy), G(δx − δy) > .

Remark 4. In comparison with [7], it means that the term Gx,y which appears in for-
mula (5.4) in [7] is the equivalent resistance between x and y with conductances cx,yi,j =
e−tx−tyBx,yβi,je

ti+tj .

Proof. We first interpret probabilistically the matrix G. Let Gi0(x, y) be the Markov chain
with transition probabilities pi,j =

ci,j
ci

and killed at its first entrance hitting time of i0

Gi0(x, y) = Ex





Hi0
∑

k=0

1Xk=y



 ,



18 M. DISERTORI, C. SABOT, AND P. TARRES

where Hi0 = inf{k > 0, Xk = i0}. Then, clearly,

G(x, y) =
1

cx
Gi0(x, y),

Then exercise 2.61 in chapter 2 of [8] yields the result. �

The next lemma ensures that the joint density µa,V (u, s) given in (2.2) has bounded
“moments” up to a certain order.

Lemma 7. Let (xi, yi), i = 1, . . . n be n pairs of nearest neighbor points and let e1, . . . en be
the corresponding undirected edges in E. Then

〈
n
∏

j=1

Bmj
ej

〉 6 2n

for any choice of m1, . . .mn such that mj 6 a/2 for all j = 1, .., n.

Proof. By expression (2.2), we have

〈
n
∏

j=1

Bmj
ej

〉 = 1
(2π)(N−1)/2

∫

[

∏

e

1

Bāe
e

]

D[Ma,V (u, s)]e
−
∑

j∈Λ uj

∏

k 6=i0

dukdsk,

where we set āej = aej − mj for j = 1, ..n and āe = ae for all other edges. Note that
āej > aej/2 since mj 6 a/2 for all j. Expanding the minor as a sum over spanning trees we
deduce

〈
n
∏

j=1

Bmj
ej

〉 = 1
(2π)(N−1)/2

∑

T

∫

[

∏

e

1

Bāe
e

][

∏

e∈T

ce

]

e−
∑

j∈Λ uj

∏

k 6=i0

dukdsk,

6 2n 1
(2π)(N−1)/2

∫

[

∏

e

1

Bāe
e

]

D[Mā,V (u, s)]e
−
∑

j∈Λ uj

∏

k 6=i0

dukdsk = 2n
∫

dµā,V (u, s) = 2n

where we have used the bound aej 6 2(aej − mj) so we can replace ae with ā in the
determinant. �

Proof of lemma 1. For more readability we provide an elementary derivation of the
Ward identity which does not involve fermionic integral, even though it could be deduced
from the more general proof of lemma 4. Consider the graph (V, Ẽ) where we add an extra
edge ẽ = {x, y} to E (possibly creating a double edge). We put a weight aẽ = −m on

this edge. Denote by µ̃a,V (u, s) the corresponding density, and by M̃a,V the corresponding
matrix in (2.1). Using the expression (2.2), we deduce

|µ̃a,V (u, s)| 6
[

∏

e∈E

1

Bae
e

]

Bm
xyD[M̃|a|,V ] =





∏

e∈Ẽ

1

Bae
e



B2m
xy D[M̃|a|,V ]

where |a|xy = m and |ae| = ae > 0 for all e ∈ E. Now let γ a simple path in E connecting
x to y. Then, by Lemma 2,

Bm
xy 6 2m(|γ|−1)

∏

e∈γ

B2m
e ,
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and, by the same argument as in the proof Lemma 7 above,

|µ̃a,V (u, s)| 6 2m(|γ|−1)

[

∏

e∈γ

B2m
e

]

µ̃|a|,V (u, s) 6 2m(|γ|−1)2|γ|µ̃ ¯|a|,V (u, s)

where ¯|a|e = |a|e−2m for all e ∈ γ and ¯|a|e = |a|e otherwise. By Proposition 2, dµ̃ ¯|a|,V (u, s)

is a probability measure on Ẽ. The bound above holds for any m 6 a/4, hence µ̃a,V (u, s)
is integrable. Moreover it is an analytic function in the parameters ae, and therefore

(5.1)

∫

µ̃a,V (u, s)
∏

k 6=i0

dukdsk = 1.

Now let N(u, s) be the restriction of MV (u, s) to the subset V \ {i0}, and let Ñ(u, s) be the
corresponding matrix for the new graph. Expanding the determinant with respect to the
extra term coming from the new edge ẽ we deduce, letting N = N(u, s),

det(Ñ(u, s)) = det(N)

−(−m)
eux+uy

Bx,y

(1x 6=i0 det(N)x,x − 21x 6=i0 ,y 6=i0 det(N)x,y + 1y 6=i0 det(N)y,y)

= det(N)

[

1−m
eux+uy

Bx,y

< (δx − δy), G(δx − δy) >

]

,

where in the previous expressions, det(N(u, s))x,y is the minor where we remove line x
and column y, and where in the last line G is the matrix defined in Lemma 6, with the
conductances ci,j defined in Proposition 2. Using lemma 6, we deduce

det(Ñ(u, s)) = det(N(u, s))(1−mDx,y).

Therefore

1 =

∫

µ̃a,V (u, s)
∏

k 6=i0

dukdsk =

∫

Bm
x,y(1−mDx,y)µa,V (u, s)

∏

k 6=i0

dukdsk.

�

Proof of Lemma 4. In [7], the protected Ward estimates are a consequence of Berezin
identity stated in appendix C, proposition 2 of [7]. The starting point is to write the
determinant term D[M(W,u)] as a fermionic integral (cf e.g. [5, 7]) with new pairs of anti
commuting variables (ψi, ψi). This leads to

(5.2) µa,V (u, s, ψ, ψ) =

[

∏

e∈E

1

Bae
e

]

e−
∑

e∈E
ae
Be

(Se−Be)e−
∑

j∈Λ uj ,

where
Si,j = Bij + eui+uj(ψi − ψj)(ψi − ψj)

is the same supersymmetric expression introduced in [7], ui0 = si0 = 0 and ψi0 = ψi0 = 0.
Then

dµa,V (u, s) =

∫

dµa,V (u, s, ψ, ψ)
∏

k 6=i0

dψkdψk.
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From the mathematical point of view, the fermionic integral should be understood as an
interior product with respect to the variables (ψk, ψk), cf e.g. [5]. Since the fermionic
variables are antisymmetric, we have (Se − Be)

2 = 0, and

e−
ae
Be

(Se−Be) = 1− ae
Be

(Se − Be) =
1

1 + ae
Be
(Se − Be)

Then

(5.3) µa,V (u, s, ψ, ψ) =

[

∏

e∈E

1

Sae
e

]

e−
∑

j∈Λ uj

If f(sij) is a smooth function of the variable (si,j), we understand f(Si,j) as the function

obtained by Taylor expansion of the fermionic variables (ψi, ψi, ψj , ψj); this expansion is
finite since the fermionic variables are antisymmetric. Hence, formally f(Si,j) is function

with values in the exterior algebra constructed from (ψi, ψi, ψj , ψj). The same can be
generalized to f [(Sij)i,j∈V×V ]. The Berezin identity (see for instance proposition 2 in [7])
implies that for any smooth function f [(sij)ij ], then

(5.4)

∫

f [(Sij)ij]dµa,V (u, s, ψ, ψ) = f(0),

if f [(sij)ij ] is integrable with respect to dµa,V (u, s, ψ, ψ) (which means that after integration
with respect to the fermionic variables it is integrable in the usual sense).

Remark that if f is a polynomial (of degree bounded by a), then it is a direct consequence
of the fact that the measure dµa,V (u) has integral one, which can be proved either by
supersymmetric or probabilistic arguments (as we did in (5.1) above). Indeed let (xi, yi),
i = 1, . . . , n be n pairs of points such that Rxiyi are regions whose interiors are disjoint. As

in the proof of lemma 1 above let Ẽ = E ∪ (∪n
i=1{xi, yi}) the graph obtained by adding the

edges {xi, yi}. We assign to each new edge {xi, yi} the conductance axi,yi = −mi. Let M̃a,V

be the corresponding matrix. Then

〈
n
∏

i=1

Smi
xiyi

〉 = 1
(2π)(N−1)/2

∫





∏

e∈Ẽ

1

Bae
e



D[M̃a,V (u, s)]e
−
∑

j∈Λ uj

∏

k 6=i0

dukdsk,

In order to show that the density is integrable, we proceed as in the proof of Lemma 1.
This time we have to choose n simple paths γi, i = 1, ..n in E connecting xi to yi, which
do not intersect; this is possible, since the regions Rxiyi have disjoint interiors. Then

〈
n
∏

i=1

Smi
xiyi

〉 = 1

Now by the same arguments as in [7, lemma 7] we have

D[M̃a,V (u, s)] 6 D[Ma,V (u, s)]
n
∏

j=1

(1−mjD
N
xjyj

).

This completes the proof of (2.7). Finally to prove the “protected” Ward estimate (2.7)
we proceed exactly as in [7, lemma 6]. The main idea is to approximate the characteristic
function χ(x) by a sequence of smooth decreasing functions χδ(x). Now, by symmetry,

〈Sm
xyχδ(Sxy)〉 = 1 ∀x, y.
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Integration over the fermionic variables yields

〈Sm
xy χδ(Sxy)〉 = 〈Bm

xy χδ(Bxy)e

[

m+
χ′(Bxy)

χ(Bxy)

]

(Sxy−Bxy)〉

= 1
(2π)(N−1)/2

∫

[

∏

e∈

1

Bae
e

]

Bm
xy χδ(Bxy)D[M̃a,V (u, s)]e

−
∑

j∈Λ uj

∏

k 6=i0

dukdsk,

where M̃a,V is defined on the graph Ẽ = E ∪ (x, y) and the edge (x, y) has conductance

axy = −m+Bxy
−χ′(Bxy)

χ(Bxy)
eux+uy > −m,

since χ′ < 0. Hence

D[M̃a,V (u, s)] > D[M̃ā,V (u, s)] = D[Ma,V (u, s)](1−mDxy)

where āxy = −m and āe = ae for all other e. Finally

〈Bm
xyχδ(Bxy)(1−mDxy)〉 6 1.

The proof of the general statement follows from a combination of this argument with the
ideas used for the estimate (2.7). �

6. Proof of Proposition 3

Denote by
Ex,y = {{i, j}, i ∈ Rx,y, j ∈ Rx,y, i ∼ j}

the set of non-directed edges in Rx,y. We denote by Ẽx,y the associated set of directed
edges. By construction, aDN

x,y is the effective conductance between x and y of the network
with edges Ex,y and conductances (γi,j){i,j}∈Ex,y . Let Fx,y be the set of unit flows from x

to y with support in Ẽx,y : precisely, θ ∈ Fx,y if θ is a function θ : Ẽx,y → R which is
antisymetric (i.e. θ(i, j) = −θ(j, i)) and such that

div(θ) = δx − δy,

where div : Rx,y → R is the function

div(θ)(i) =
∑

j∈Rx,y, j∼i

θ(i, j).

Recall that (see for instance [8], Chapter 2)

aDN
x,y = inf

θ∈Fx,y

∑

{i,j}∈Ex,y

1

γi,j
(θ(i, j))2.(6.1)

The strategy is now to construct explicitly a flow θ such that under the condition χx,y, the
energy (6.1) is bounded by a constant depending only on d, α and b. This flow will be
constructed as an integral of flows associated to sufficiently spread paths.

Remind that a deformed diamond is a set of the following form

Z
d ∩ (C̃ l

x ∩ C̃x−y
y ),

(plus a few points close to x and to y so that the set is connected in Z
d) where x ∈ Z

d,

l ∈ R
d, l 6= 0 and y ∈ Z

d is a point such that y ∈ C̃ l
x
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For z ∈ R
d we set

r(z) =
(z − x) · (y − x)

|y − x|2 ,

and p(z) = x+ r(z)(y − x) the projection of z on the line (x, y).

For h ∈ (0, 1) we denote

R̂x
x,y = {i ∈ Rx,y, r(i) 6 h}, R̂y

x,y = {i ∈ Rx,y, r(i) > h}.
From the assumption on fx, fy, there exists h ∈ [1/10, 9/10] such that R̂x

x,y ⊆ Rx
x,y and

R̂y
x,y ⊆ Ry

x,y
1. We fix now such a h ∈ [1/10, 9/10]. We set

∆h = {z ∈ R
d, r(z) = h} ∩

(

C̃ l
x ∩ C̃x−y

y

)

.

If is clear from the construction that

|∆h| > Cst(d)|x− y|d−1,

where |∆h| is the surface of ∆h (note that Cst(d) does not depend on the value of h ∈
[1/10, 9/10]).

To any path σ = (x0 = x, . . . , xn = y) from x to y we can associate the unit flow from x
to y defined by

θσ =

n
∑

i=1

1(xi−1 ,xi) − 1(xi ,xi−1).

For u ∈ ∆h, let Lu be the union of segments

Lu = [x, u] ∪ [u, y].

Clearly Lu ⊆ C̃ l
x∩ C̃x−y

y by convexity. There is a constant Cst(d), such that for any u ∈ ∆h,
we can find a simple path σu in Rx,y from x to y such that for all k = 0, . . . , |σu|

dist(Lu, σu(k)) 6 Cst(d),(6.2)

and we define θ as

θ =
1

|∆h|

∫

∆h

θσu du,

which is a unit flow from x to y.

The path σu can visit a vertex i only if dist(i, Lu) 6 c0 = Cst(d). This implies that, for
all i,

∑

j: j∼i

|θ(i, j)| 6 1

|∆h|

∫

∆h

1
{dist(i,Lu)6c0}

du.

Now if r(i) ∈ [0, h], then
∫

∆h

1
{dist(i,Lu)6c0}

du 6 Cst(d)

(

h

r(i)

)d−1

1Indeed, if i ∈ Rx,y, the angle ∠(z, i), (x, y) 6 π/8 for z = x, y. Hence, if i ∈ R̂x
x,y, then |i − x| 6

h
cos(π/8) |x − y|. Hence R̂x

x,y ⊆ Rx
x,y as soon as h 6 fx cos(π/8). But cos(π/8) > 0.92 and fx > 1/5 so

that fxcos(π/8) > 0.18. Similarly R̂y
x,y ⊆ Ry

x,y as soon as 1 − h 6 fy cos(π/8), since fy cos(π/8) > 0.18.
Using fx + fy > 1 + 1/5 it implies that (fx + fy) cos(π/8) > 1 and we can find h ∈ [1/10, 9/10] such that
R̂x

x,y ⊆ Rx
x,y and R̂y

x,y ⊆ Ry
x,y.
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Hence, if r(i) ∈ [0, h]

∑

j: j∼i

|θ(i, j)| 6 Cst(d)
1

|x− y|d−1

( |x− y|
|i− x|

)d−1

=
Cst(d)

|i− x|d−1
.

Similarly we have if r(i) ∈ [h, 1]
∑

j: j∼i

|θ(i, j)| 6 Cst(d)

|i− y|d−1
.

Now, under the condition χx,y, we know that if i ∈ R̂x
x,y ⊆ Rx

x,y, then γi,j > c|i − x|−β

and if i ∈ R̂y
x,y ⊆ Ry

x,y, then γi,j > c|i− y|−β with β = 4α < 1. This implies

aDN
x,y 6

∑

i∈R̂x
x,y, i 6=x

c−1|i− x|β
(

∑

j: j∼i

|θ(i, j)|
)2

+
∑

i∈R̂y
x,y, i 6=y

c−1|i− y|β
(

∑

j: j∼i

|θ(i, j)|
)2

6 Cst(d)





∑

i∈R̂x
x,y, i 6=x

c−1|i− x|β−2(d−1) +
∑

i∈R̂y
x,y, i 6=y

c−1|i− y|β−2(d−1)





For k ∈ N,
|{i ∈ Rx,y, k 6 |i− x| < k + 1}| 6 Cst(d)kd−1,

and similarly for x replaced by y. Therefore

aDN
x,y 6 Cst(d)

∞
∑

k=1

c−1kβ−(d−1) 6 Cst(d, α, b).

since β = 4α < 1 and d > 3.
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