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TRANSIENCE OF EDGE-REINFORCED RANDOM WALK

MARGHERITA DISERTORI, CHRISTOPHE SABOT, AND PIERRE TARRES

ABSTRACT. We show transience of the edge-reinforced random walk for small reinforce-
ment in dimension d > 3. The argument adapts the proof of quasi-diffusive behaviour of
the SuSy hyperbolic model for fixed conductances by Disertori, Spencer and Zirnbauer [7],
using the representation of edge-reinforced random walk as a mixture of vertex-reinforced
jump processes (VRJP) with independent gamma conductances, and the interpretation of
the limit law of VRJP as a supersymmetric (SuSy) hyperbolic sigma model developed by
Sabot and Tarrés in [9].

1. INTRODUCTION

1.1. Setting and main result. Let (€2, F,P) be a probability space. Let G = (V, E, ~)
be a nonoriented connected locally finite graph without loops. Let (a.)ecr and (we)eer two
sequences of positive weights associated to each edge e € F.

Let (X, )nen be a random process that takes values in V', and let F,, = 0(Xo, ..., X,,) be
the filtration of its past. For any e € E, n € NU {o0}, let

(1.1) Zn(e) = ac+ > Tiix,_, x,)=c)
k=1

be the number of crosses of e up to time n plus the initial weight a.. Then (X,,),en is called
Edge Reinforced Random Walk (ERRW) with starting point iy € V' and weights (ac)cer,
if Xo =19 and, for all n € N,
g Tl

Y ex, Za({ X, K})

On the other hand, let (Y;);>0 be a continuous-time process on V', starting at time 0
at some vertex ig € V. Then (Y;)io is called a Vertex-Reinforced Jump Process (VRJP)
with starting point iy and weights (we)eep if Yo = 79 and if Y; = ¢ then, conditionally on
(Ys, s < t), the process jumps to a neighbour j of i at rate wy; ;3L;(t), where

t
Lj(t) =1 —I—/O ]I{yszj} ds.

The Edge Reinforced Random Walk was introduced in 1986 by Diaconis [2]; the Vertex-
Reinforced Jump Process was proposed by Werner in 2000, and initially studied by Davis
and Volkov [3, 4]; for more details on these models and related questions, see [9] for instance.

(1.2) P(Xni1 =7 | Fn)

The aim of this paper is to prove transience of the edge-reinforced random walk (ERRW)
for large a. > 0, i.e. small reinforcement.

2000 Mathematics Subject Classification. primary 60K37, 60K35, secondary 81T25, 81T60.
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2 M. DISERTORI, C. SABOT, AND P. TARRES

Theorem 1. On Z¢, d > 3, there exists a.(d) > 0 such that, if a. > a.(d) for alle € E,
then the ERRW with weights (a.)ecr is transient a.s.

Recall that almost-sure positive recurrence of ERRW and VRJP for large reinforcement
(i.e. if ae < @, resp. w, < W, for all e € E, for some a., w. > 0), and transience of VRJP
for small reinforcement (i.e. if w, > w, for some w, > 0) were proved by Sabot and Tarrés
in [9], using localisation/delocalisation results of Disertori, Spencer and Zirnbauer [6, 7|.
Another proof of recurrence of the ERRW and VRJP was proposed, shortly afterwards, by
Angel, Crawford and Kozma [1].

The proof of Theorem 1 follows from estimates on the fluctuation of a field (U;) associated
to the limiting behaviour of the reinforced-random walk. Let us first recall two earlier results
from Sabot and Tarrés [9].

Theorem 2 (Sabot and Tarrés [9]). On any locally finite graph G, the ERRW (X,,)n>0 18
equal in law to the discrete time process associated with a VRJP in random independent
conductances W, ~ Gamma(ae, 1).

The next result concerns VRJP (Y;)i=o on a finite graph G, with |V| = N, given fixed
weights (we)eer; let PY P be its law, starting from ig € V.

Proposition 1 (Sabot and Tarrés [9]). Suppose that G is finite and set N = |V|. For all
1 €V, the following limits exist IP’%RJP a.s.

Ui = tlim (log L;(t) — log Ly, (t)) .
—00

Theorem 3 (Sabot and Tarres [9]). (i) Under P} ", (U;)icy has the following distribution

on
Ho = {(u;) € RV : w;, =0}
1 S . _Lu; —H(w,u
(1.3) dpuw,a, (u) = 2n2° Ziev e W /Dim(w,w)] [ du
7€V\{io}
where
H(w,u) =2 Z w; j(cosh(u; —uj) — 1)
{i,j}eE
and D(w,u) is any diagonal minor of the N x N matriz m(w,u) with coefficients
w; jeti ifi# g

mij =
’ wi+u e
— D kev Wike" T ifi=j

(ii) Let C be the following positive continuous additive functional of X :

C(s) =) Lis) -1,
=%
and let
Zt - YC_l(t)-
Then, conditionally on (U;)icv, Zs is a Markov jump process starting from iy, with jump
rate from i to j

1 UL
—wi7jeUJ UZ.
2



TRANSIENCE OF EDGE-REINFORCED RANDOM WALK 3

In particular, the discrete time process associated with (Ys)sso is a mixture of reversible
Markov chains with conductances w; ;e V.

Remark 1. The diagonal minors of the matriz m(w,u) are all equal since the sum on any
line or column of the coefficients of the matrix are null. By the matriz-tree theorem, if we let
T be the set of spanning trees of (V, E,~), then Dim(w,w)] = > rer [11; jyer wiijpe ™.

Notation and convention. In the following we fix d > 3.

A sequence o = (zg,...,2,) is a path from z to y in Z% if xg = , v, = y and x;41 ~ 25
foralle=1,...,n.
Let

A, ={i € 7% |iloo < n}
be the ball centred at 0 with radius n, and let
ON,, = {i € Z°, |ijoo = n}
be its boundary. We denote by E the set of edges in Z% and by E,, the set of edges contained
in the hypercube A,,. We denote by E,, the associated set of directed edges.
Let (ai;); jezd i~; be the family of initial positive weights for the ERRW and

= inf a..
o= iafa.
In the proofs, we will denote by Cst(ay,as,...,a,) a positive constant depending only on
ai, Qg, ... ap, and by Cst a universal positive constant.

Let Py (resp. P3™) be the law of the ERRW on Z? (resp. on A,,). Theorem 3 ensures that
on every finite volume A,, the ERRW is a mixture of reversible Markov chains with random
conductances (WY).cp, where VVZ[]] = W;;eVUi and the law for the random variables

(W,U) has joint distribution on R”" x H, given by

dpa, (w,u) = dpya, () || ——5—duw,

ek, ['(a)

where dpy,, (1) was defined in (1.3). Let E5" the average with respect to the joint law for
(W,U) (mixing measure). Note that we cannot define this average on an infinite volume,
since we do not know if the limiting measure exists. Denote by (-),, the corresponding
marginal in U.

Warning. We use a capital letter W, U --- to denote a random variable and a smallcase
letter w,u, ... to denote a particular realization of the variable. The same is true for any
function of such variables. In some cases though we do not state the argument explicitely,
to avoid heavy notations. It should become clear from the context when the corresponding
argument has to be regarded as a random variable.

The proof of Theorem 1 will follow from the following result.

Theorem 4. Fiz d > 3. For all m > 0, there exists a.(m,d) > 0 such that, if a > a.(m,d)
then, for alln € N, x, y € A,

(cosh™(Uy — Uy))a, < 2.



4 M. DISERTORI, C. SABOT, AND P. TARRES

The proof of Theorem 4 is the purpose of the rest of this paper, and adapts the argument
of Disertori, Spencer and Zirnbauer [7], which implied in particular transience of VRJP
with large conductances (w.). But before, let us show how Theorem 4 implies Theorem 1.

Proof of Theorem 1. Given (w,u) € RY x Hy, denote by P the law of the Markov
chain in conductances wy'; = w;;e" i starting from 0. Let Hpy,, be the first hitting time
of the boundary dA, and Hy be the first return time to the point 0.

We seek to estimate Po(Hgp, < ﬁ]o) the probability the ERRW hits the boundary of A,

before coming back to 0. Since this event depends only on the history of the walk inside
the hypercube A,,, we have

(1.4) Po(Hon, < Ho) = P (Hpr, < Ho) = Ed | PV (Hyn, < Hy)

where in the last term we used the last part of Theorem 3. Now PY"(Hyy, < H,) is the
probability for a Markov chain inside A,, with conductances w" to hit the boundary before
coming back to 0. This probability can be related to the effective resistance between 0 and
OA,, (see for instance Chapter 2 of [8])

2
R(0,0A,, w") = inf Ze(e)

where the infimum is taken on unit flows ¢ from 0 to A, : 0 is defined on the set of directed
edges E,, and must satisfy 0((¢,7)) = —0((j,4)) and >, , 0((v,7)) = d,0 for all v € A,.
Denote by R(0,0A,,) the effective resistance between 0 and dA,, for conductances 1.

(Classically we have
1

P&Uu(HaAn < ]jfo)
with wf = > oo Wo ;- Using (1.4) and Jensen’s inequality
1 B 1
]P)O<H3An < HO) Eé\" [P(}A/U(HQAn < f{o)}

Wy R(0, 00, u") =

1
1.5 < Eb» __ | = EM [WYR(0,0M,, WY)] .
(15 v | )~ B IR )

We will show below that, if min.cp a. = a > max{a.(3,d), 3}, then

(1.6) Eg™ [W¢ R(0,0A,, WY)] < Cst(a,d)R(0,0A,,)

This will enable us to conclude: since limsup R(0,9A,) < oo for all d > 3, (1.5) and (1.6)
imply that Py(Hy = o0) > 0. O

Proof of (1.6). Let 6 be the unit flow from 0 to A,, which minimizes the L? norm. Then

1
R(OaaAnawu) < Z —ueQ(Zvj)a
{(i}eEn
and

R(0,0M,) = Y 6°(ij).

{i,j}EER
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Now, if a > max{a.(3,d), 3} then, using Theorem 4,

EAn WOU _ EAn WOJ Uo=Ui JUi=Uj | EAn W(il EAn [3U0—Ui)] phAn [p3(U-U;) e

0" || = D Eo | e e <D (B 55| B0 [e J B [e ]
Y I~0 b 1~0 b

_ _U, _U. 1/3
=3 (B W B W] (20 (20U, )P < Ct(a, d),
1~0
where we also used the fact that W; ; are independent Gamma distributed random variables.
O

1.2. Organization of the paper. Section 2 introduces to the main lines of the proof,
the geometric objects that are needed (diamonds and deformed diamonds), and state some
Ward identities. Section 3 provides some estimates on the probability of existence of good
points ¢ (from which there are no large deviations on B;; at small scales) in certain boxes.
Section 4 contains the main inductive argument. The Ward identities (Lemmas 1 and 4)
are shown in Section 5, and the estimate on the effective conductance given in Proposition
3 is proved in Section 6.

ACKNOWLEDGMENTS. 1t is our pleasure to thank T. Spencer for very important
suggestions on this work and many useful discussions. Margherita Disertori would like to
thank Martin Zirnbauer for introducing her to the H?? model that plays a crucial role in
this paper. Pierre Tarrés and Christophe Sabot are grateful to Krzysztof Gawedzki for
pointing to them the connection between history dependent processes and supersymmetric
non-linear sigma models.

2. INTRODUCTION TO THE PROOF

2.1. Marginals of U and a first Ward identity. Let us now fix n € N, and let A = A,,,
E = E,, for simplicity.

A key step in our proof is to study the law of U after integration over the conduc-
tances We, in other words to focus on the marginal (.)5. Note that it is one of several
possible approaches to the question of recurrence/transience for ERRW. Indeed, one could
instead focus on the analysis of the law of the random conductances W;;eVit% given by
Coppersmith-Diaconis formula, or directly study ERRW from its tree of discovery using the
existence of a limiting environment, as done in [1], or possibly conclude from a.s. results
conditionally on the conductances W,, e € F.

In fact we add a Gaussian Free Field variable S with conductances W, before integrat-
ing over W, as in the first step of [7], since the corresponding joint law again has more
transparent symmetries and is better suited for the subsequent analysis. More precisely, let

1
B,y := cosh(U, — U,) + an”Uy(Sx —S,)?

for all z, y € V' (not necessarily neighbours).
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Then (W, U, S) has the following distribution on RY x Hy x H
—We p, Qe — 1
(21) (27-()(1\7%)/267 ZjEA Ujef Zi,sz ij Bz]*l W u H ddeSk H We We
k#io eck

The marginal of this law in (U, S) after integration over W, which we still call <)A or (.)
by a slight abuse of notation, is given in the following Proposition 2.

Proposition 2. The joint variables (U, S) have density on Ho x Ho

H Bae

where DMy (u, s)| is any diagonal minor of the N x N matriz My (u, s) defined by

(2.2) o (u,8) = ~Sents DMy (u, )],

(2m) (N

) Gigs i F )
/[:7.7 - . .
— Dk Ciky =]
and

it
C,,._a’lyjel ’ VZN -
i, T B ) ) J

i7j

Note that we slightly abuse notation here, in that B, ; is considered alternatively as function

of (u,s) and (U, S).

Proof. Integrating the density in (2.1) with respect to the random independent conduc-
tances W, ~ Gamma(a,., 1) we obtain

1
Z] ; ’wewae dwe _Z' rwi-(Bi-—l)
) e T

= &n (% 1;/2 Z H Uit [HI Ao ] [H I.(a.+1)

T i~jeT e¢T ecT

e~ XiY ai et
[H Bae] enN-D/2 E: H Ty = Hav(u,s)

T i~jeT

where in the second line we expand the determinant as a sum over spanning trees and
1 Qe

dw@ —w, Qe —
[e<ae) = / I‘(a )e eBewee 1 = Bae7 [ (ae + 1) Bae+1

e

4

In the proof of delocalization in [7], the first step was a set of relations (Ward identities)
generated by internal symmetries. Their analogue is stated in Lemmas 1 and proved in
Section 5, and involves a term of effective resistance D, , depending on the variable U,
defined as follows.

Definition 1. Let D, , be the effective resistance between x and y for the conductances
a@jeuﬂrujfuzfuy Bm,y

B

Z7j

7y
7]

—Ugz—Uy __

c;7 = ¢ By ye
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Lemma 1. For all m < a/4 then, for all x, y € A (not necessarily neighbours),
(B,(1=mD,,)) = 1.

One of the consequences of Lemma 1 is that, if the effective resistance D,, is small,
then we can deduce a good bound on Bj',. However, there is positive probability that
this resistance D,, might be large, so that it would be more useful to show an inequality
restricted to the event that D,, is small.

Although it is not possible to derive such an identity directly, we can define events Y,
on which such identities hold, and so that D,, is small on X,,. These events will depend on
geometric objects defined in the next Section 2.2, called diamonds and deformed diamonds.

2.2. Diamonds and deformed diamonds.

Definition 2. Let [ # 0 be a vector in R? and x € Z*. We denote by C.. the cone with base
x, direction | and angle 7 /4

C. = {zeR? ZL(xz,]) <

= {zeR? (z—2)-1>

where Z(xz,1) is the angle between the vector xz and the vector [.
If x and y are in Z%, we call Diamond the set
(Cyn C’;:*y) N7z

to which we add a few points close to x and close to y so that the set is connected in 7.
We denote this set by R, ,,.

Remark 2. By the expression " a few points” above we mean that we add some extra

points to (C’g*l‘ ﬂC’;*y) NZ* at a bounded distance from x, y so that the resulting set
becomes connected in the lattice. The distance at which the points can be added is bounded
by a constant depending only on the dimension. Of course, all the estimates below will
be independent of the choice of these points. We will repeat this operation several times
hereafter, without extra explanation.

In the course of the inductive argument, some deformed diamonds appear, they are
formed of the intersection of two cones with smaller angles than for diamonds. For [ € R,
[ #0, and r € R? we set

Cl={zeR? L(zz]) < 116}
Definition 3. A deformed diamond is a set of the following form
(C‘i N C*g‘y) Nz,
(plus a few points close to x and to y so that the set is connected in 7%, see Remark 2)
where x € Z2, 1 € R, 1 # 0 and y € Z% is a point such that
yeCL.
We also denote a deformed diamond by R, (and it will always be clear in the text wether
R, , is a diamond or deformed diamond).
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Definition 4. [t will be useful to write each (exact or deformed) diamond as a non disjoint
union of two sets

Ry, ={2€ Rey, |z —a| < foly— 2|}, RY,={2€ Roy, [z =yl < fyly —l},
where the pair (fy, f,) is such that 1/5 < f, <1, 1/5< f, <l and fo + f, > 1+ %

This condition on (fy, f,), and the fact that the maximal angle in deformed diamonds is
7/16, indeed ensures that that R, , = Ri U RY . Note that the choice of (fa, f,) is not
UNIQUE.

2.3. Estimates on effective conductances.

Definition 5. Given a diamond or deformed diamond R,, C A, let DQL be the effective
resistance of the electrical network with the same conductances cf,’]y in Ryy as in Definition
1, and Neumann boundary conditions on OR,,.

Definition 6. Fiz b > 1 and o > 0. Given i, j € A, let
Xij = HBy; <bli—j|o}-
Gwen a deformed diamond Ry, C A and the two corresponding regions Ry, and R, , let
JERE, JjERY,

Here is the main proposition of the section. It ensure that under the condition %,,, there
is a uniform bound on the effective resistance Di,\{ .

Proposition 3. Fiz o € (0,1/4) and b > 0. There exists a constant C = Cst(d, o, b) such
that for any deformed diamond R., C A, if X, is satisfied, then

N
D, ,<C/a,
where a = inf(a; ;).
Remark 3. Note that the constant C' is independent of the precise shape of the deformed

diamond.

Proposition 3 is proved in Section 6. It partly relies on the following two Lemmas 2 and
3, which will also be useful in other parts of the proof.

Lemma 2 (lemma 2 of [7]). For all z, y, z € A,
B,. < 2BmyByz-

Proof. Elementary computation. O

Lemma 3. Foralli, j € Z¢, i ~ j, x, y € Z¢, we have
(23) (27 o)™ < 16(B.0)(Bo )
for both z =x and z = y.

In particular, let c = b=4/64, 8 = 4. Assume that Xy holds, then the electrical network
with conductances

(Vi )igeh,ing = (€] /@i jen. ings
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satisfies
Yij = cli — 2P
foralli, j € R, i~ 7, for z=u,y,.
The proof of Lemma 3 partly relies on the following two Lemmas, which will also be
useful in other parts of the proof.
Proof of Lemma 3. First note that
et B > eF =) cogh(u, — u,) = 1/2,

so that

(2.4) ehittT T g, ;max[e“i’L“f_Z“”,e“"+”f_2“y].

Now

(2.5) elitui—2ue — Uitz gUj—Us > i(cosh(ui — u,) cosh(u; — ugc))_1 > i(B Bﬂ)_l.

On the other hand, note that
Inequalities (2.4)—(2.6) together yield the first part. The second part is a consequence of
using By, < bji —z|* and By, < blj — z|* < 2b[i —2|*. O

2.4. Protected Ward estimates. Next, we obtain a “protected” Ward estimate, as fol-
lows.

Lemma 4. Leta >0 and b > 1. Foralli=1,...,n, let m; < a/4 and let R,,,, be regions
whose interiors are disjoint. Then

n

(2.7) (I B, (1 —mDY, ) <1,
i=1

and

(2.8) HBWXI L (L=m; DY 1)) < 1.

Inequality (2.8) implies, by Lemma 3, that if, additionally, the regions Ry, i =1,...,n
are deformed diamonds and m; < a/C for all i, then

(29) < xijYm]yJ H ]' - mjc/a
i=1 j=1
where C' is the constant considered in Proposition 3.

Lemma 1 is proved in Section 5. The rest of the proof is similar to the argument in
[7], which consists in deducing upper bounds of (H?Zl Bg;yj> for some fixed m from these
“protected” estimates, through an induction on the maximal length |z; —y;| on the protected
estimates, ¢ = 1 ... n, using Chebyshev inequalities in order to deal with the “unprotected”
parts of the estimates. We summarise the argument in Section 4.
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3. ESTIMATES ON GOOD POINTS

Definition 7. A point x € A is called n-good if
Bay < blz -yl
for all y € A with distance 1 < |z — y| < 4™ from x.
Given z € A, let R,(2) (denoted by R, when there is no ambiguity) the cube with side

4" and barycenter z. We denote by X% the indicator of the event that there is no n-good
point in R, .

In this section we present an estimate on the event x% , more precisely we bound from
above the indicator function by a sum of terms involving b|f+i|a for points ¢, j at distance at

most 4”. This will be used in the main inductive argument in Section 4. It follows lemma
9 of [7], but, for convenience of the reader, we give the proof which is only a few lines long.

If R, is a hypercube of side 4" then it is the disjoint union of 4¢ sub-hypercubes of side
4"t We can select the 2¢ corner subcubes that we denote (R, i = 1,...,2%) so that
d(R!,R}) > 2 x 4" ! for 1 # j. Repeating this procedure hierarchically we can construct a
family of cubes (R?) with side 4"~* for v running on the set {1,...,2¢}%. We consider the
natural structure of rooted (2¢ + 1)-regular tree of the set

R = {root} U (Up_ {1,...,27}%),

where "root" is the root of the tree, corresponding the cube R, (= R:°*"). We denote by d,
the depth of a point v € R with d,e; = 0 and d, = k if v € {1,...,2%}*. We denote by 7,
the set of connected subtrees T of R containing the root and which have the property that
any vertex z € T have either 2d or 0 descendant in 7. We denote by Ly the set of leaves of
such a tree T' € T,,. (Remark that the set {Lr,T € T,} is also the set of maximal totally
unordered subsets of R for the natural "genealogical order" on R.)

For an element v € R with k = d, we set
Bm
7y

Sc _ ¢ < z
Ry Z Xoy S Z bm|x _ y|ozm
zERY, yEA zERY, yeEA
qn—k—1c|z—y|<qn—Fk an—k—1lcjz_y|<yn—k

Lemma 5. (lemma 9 of [7|) With the notations above we have

i, < D I Sk

T€7Tn, UGLT

Proof. If there is no n-good point in R,, then either there is no (n — 1)-good point in any of
the subcubes {R!,i =1,...,2%} or else there exists at least one pair (z,y) € R, x A with
4n=t < |z — y| < 4™ and B, > blx — y|*. This gives the first level inequality

2d

X, < Sk, + [ -
i=1

Then the proof follows by induction on the integer n. For n = 0, Ry(z) is the singleton z
and x%, = Sk, = 0 which initializes the induction. If lemma 5 is valid at level n — 1, then,
obviously, the previous inequality implies it at level n. O
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4. INDUCTIVE ARGUMENT

Fix b > 1 and a € (0,1/4), which will be chosen later; let C' = Cst(d, a, b) be the constant
considered in Proposition 3.

Definition 8. The sets R, in our induction are classified as follows:

e Class 1: diamonds Ry, with |x —y| > a'/*;
e Class 2: deformed diamonds Ry, with |x —y| > a'/*;
e Class 3: deformed diamonds R.,, with |x —y| < a'/*.

Our goal in this section is to prove the following theorem.

Theorem 5. Let m = a'/®, let p = 1/2 and assume a > ag for some constant ag > 1. For
allny, ny andng 2 0, let Ry, i =1,...m1, Ryg., J=1,... 09, and R, 5, k=1,...n3 be
respectively subsets of class 1, 2 and 3. Then we have

n3

ni no
1B 1L BoaXoe LT Birm) < 27 (14 pyre2s.
i=1 j=1 k1

The proof is by induction on maxjc;<,, |r; — y;|. Let (H), be the following statement:
Theorem 5 holds if

b ul <l

The first step in the induction is the case n; = 0, proved in Section 4.1.

Let us now show that (H),_; implies (H),. We do the proof only in the case where
ny; = 1, the general case being only notationally more involved.

Assume (H),_;. Let z, y € A be such that |z —y| = £. Let R,, be the deformed diamond
between x and y introduced in Definition 3, with [ = y — z; let R7, and RY, be its two
parts in Definition 4, respectively from = and y, with f, = f, = 1/(2 cos(7/16)).

Define
Ugy = H Xzj H Xyj

jERZ,  jERY,

Rzy)= > Brxe. T[]

chz it li—a|<lz—a|

Ty

and let

Then it follows from the expansion of the partition of the unity
L= ] i+ x50 TT O +x5)
jERZ, jERY,
that
(4.1) (Bry) < (Biytay) + (R(x,y)) + (R(y, ©)).

The first term in the right-hand side of (4.1) can be upper bounded, by (2.9) in Lemma 4:
if a > Cst(C) (recall m = a'/®), then

(4.2) (Bugyy < (1=mC/a)™" <1+ p<3/2.
It remains to upper bound (R(z,y)).
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Now, R(z,y) being an expansion over “bad” points z (i.e. sites z such that x5, holds),
we expand it into four terms.
(i) First, the sites z close z, i.e. with |z — z| < a!/*:
Riwy)= > Bixe. I xw
zeng: |z—z|<al/4 Jilj—z|<|z—a|
We prove in Section 4.2 that (Rq(z,y)) < 1/16 if b > Cst(a) and am > d (Case 1 in [7]).

(ii) Second, fix a constant M, which will only depend on the dimension d. For a site z
far from x (i.e. with |z — 2| > a'/*), let

U‘Tvyyz = H X.]k7

jik€RE,URY,, |j—2|<|o—=|/2,
M|z—z|Y2<|j—k|<|2—2| /5

R2($’, y) = Z BmyXJ:z T,Y,2 H Xaj-

zeégy:|z—x\>al/4 Jili—a|<|z—=|

and let

Then vg, , = 1 if there is a large scale “bad” event originating from a point near z. We
will show in Section 4.3 that the corresponding term (Ro(x,y)) < 1/16 if if b > Cst(a) and
am > 10d (Case 2a in [7]).

(iii) Third, we consider the case where v, , , holds, i.e. there is no large scale “bad” event
near z and, furthermore, there is exists a point g with |g — z| < |z — x|"/? that is good up
to scale |z — x|'/2.

More precisely, given i € A, R > 0, let

Gi, R = [ xn
h:li—h|<R
then G(i, R) = 1 iff 7 is “good” up to distance R. Recall the similar Definition 7 that a site
x € A is called n-good if x,, = 1, for all y with |y — x| < 4™

Let
Gzy,z = max G(ga M|Z - ZL‘|1/2).

g: lg—2|<|z—x|1/2

|1/2 centered at z, which

Then g¢,,. = 1 iff we can find a site ¢ in the ball of radius |z —
is good up to distance M|z — z|'/2.

Now, if vy, . = gzy. = 1, then we can find a deformed diamond from z to g close to z
such that %, , = 1, so that we can apply the induction hypothesis. If we let

Rs(z,y) = E BmyszU:v,y,zgm,y z H Xzj>
2€ERZ,: |z—x[>al/4 Jilj—z|<|z—a|

then (Rs3(z,y)) < 1/16 if a > Cst and am > 3d (Case 2b in [7]): this is proved in Section
4.4.

(iv) Fourth, if ¢, ,. = 0 and M < Cst(d) then there is no good point up to distance
M|z —z|'/? in the hypercube of side length 4M |z —z|'/2. This implies that X%y 0.0y () DOMS,
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where n(x, z) is the part of M log |z — z|/(21log4). Then, if we let
R4 (':U’ y) = Z B:ZLJX;,ZUL%ZXCRR(%Z) (2) H Xl']’
ZEng: |z—z|>al/4 jili—zl<|z—a|

we apply the “good points” expansion obtained in Section 3 to show in Section 4.5 that
(Ry(z,y)) < 1/16 if a > Cst, b > Cst(a, d) and am > 4d (Case 2c¢ in [7]).

In summary,
(R(z,y)) < Z(Rz(ay)%

and (R;(z,y)) < 1/16 is proved in Sections 4.2, 4.3, 4.4 and 4.5, respectively in the cases
1 =1, 2, 3 and 4.

4.1. Proof of Theorem 5 in the case n; = 0. The proof is similar to the one of lemma
8 in [7]. First, note that the case ng = 0 follows from Lemma 4, for a > Cst(C).

Let us do the proof in the case ny = 0 and ng = 1, the argument for the general case
being only notationally more involved.

Let 0 > 0. For all p,q € A, p ~ q, let
gpq = ]I{qu<1+5}'
Using 1 < H{p,q},p,qERzy &pa + E{p,q},p,qeRzy gzc)q’ we have

(4.3) B < By I G+ Y. (BYG,.
{p,a},p,q€ Ry {p,a},p,q€ Ry
Let us first deal with the first term in the right-hand side of (4.3): B,, < 1+ J implies
0< (U, —U,)?/2 < cosh(U, —U,) —1<6.
Choose § > 0 such that a'/*v/26 = 1, i.e. 6 = a~/?/2.
Let z = x, y, and assume H{p7q}7p7qeRw &pq holds. Then, for all j € R,,,

(4.4) U. — Uj| < a/*V26 = 1.
Subsequently, for all p, ¢ € R,y, p ~ ¢,

o2 eUr+tUq

762(]2(512 —8,)* < — (S~ Sq)? < Bpg =1 <6,
which implies eY:|S, — S,| < v2de. Using again our choice of §, we deduce that, again if
j € Ruy, V7|5, — S;| < al/*V/26e = e, so that

oUi+U: o3

e
(45) T(SJ — Sz)2 < §€2UZ(S]' - 52)2 < 5

Inequalities (4.4)-(4.5) together imply that B,; < cosh(1) + /2 = Cst.
Therefore X, holds with b = Cst and « = 0 implies
(4.6) By I &) < —=3mC/a)™ <3/2,
{p.q},p,.q€ERay

assuming a > Cst(C) (recall m = a'/®).
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Let us now deal with the second term in the right-hand side of (4.3): fix p, ¢ € Ry,
p ~ q, and use that, by Markov inequality,

a/2
qu < (ﬁ) )
14+a

Let (xo,...,2,) be a path of minimal distance from z to y inside R,,, which does not go
through the edge {p, q}. By repeated application of Lemma 2,

H 2ijxj+1'

0<j<n—1
Therefore, letting ¢ = |z — y|, we have
93m(¢-1) 93m(¢-1) 3m —L
Bime) < 2 g [[ BT) <o (1_ _)
< Ty PQ> (1 + 5)a/2< rq ogg . xeJ+1> (1 + 5)a/2 a
(4.7) < exp (3ml — ad/3) < exp (3¢*® — a'/?/6) .

In the second inequality, we use (2.7) and note that, if r ~ s, then DY = a,, 2 a. In the
third inequality we assume a > Cst and, for z € [0, 1/2], l—z<e” * and (14+z)7! e 22/3,
Finally, we use § = a='/2/2, m = a® and ¢ < a/* (since R,, is of Class 3) in the last
inequality.

In summary, (4.3), (4.6) and (4.7) together imply, if a > Cst(C),
(B3m) < 3/2 4 Cst(d)("exp (3a*® — a'/?/6) < 2
if a > Cst(d).

4.2. Proof of (Ri(z,y)) < 1/16. Let z € R%, be such that |z — 2| < a/*. Using x¢. <
B2mp=2™m |z — z|72*™ and Lemma 2, we obtain

m pm mip—2m 2am 3m m
BiyXe: < 2" BB XG. <2707z — 2| T BB

In order to apply the induction assumption, we would need to construct a deformed
diamond R,. and diamond R., which do not intersect within R,,. This is not true in
general, but we can add an intermediate point a € R, such that R,., R., and R,. are
respectively one deformed diamond and two diamonds within R,, and disjoint, except at
endpoints (see Figure 1, and Lemma 12 [1] in |7] for more details). Now, using again Lemma
2

Bmmez 22mb72m |Z .§L’| 2amB3mBZBZgL/
Therefore, using the induction assumption,

al/4

Ri(wy) < Y 4"z —a 2M4(L 4 p) < (bi‘;) CstZ'r’d 1=2am /16

ZEng: |z—x|<al/4

if b > Cst(a) and am > d.
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s

\

FIGURE 1. (Figure 5 in [7]) We add one intermediate point a. The two angles
0, and 6, are greater than /8.

a) b)

FIGURE 2. (Figure 6 in [7]) a) If the pair wjws is right in the middle, then
we need to add four intermediate points aq, ..., a4 in order to find a minimal
connected path around wyws paved with disjoint diamonds. b) Even if the
pair wywy is located on the boundary of R;‘y , the region R,,, ., still lies inside
R,y .

4.3. Proof of (Ry(z,y)) < 1/16. Let z € Rﬁy be such that |z — x| > a'/*, and let j, k
€ R7, U RY, such that

(4.8) j— 2| < |z —2|Y? and M|z — 2|'2 < |j — k| < |z — z|/5.

As above, we use

(4.9) Xjp < Bjpb ™| — k|7

In order to apply the induction assumption, we need to expand B?,:”B;’Zj into a product of
terms arising from disjoint diamonds within R,,. It is an easy geometric result to show
that, under our assumptions on z, j and k, we can choose four intermediate points a; € Ry,
so that R, Raye,, (0 =1,...,3) and R,,, are diamonds with disjoint interiors which do
not overlap with the diamond R, (see Figure 2, and Lemma 12 [2] in [7] for more details).
Now, using (4.9) and Lemma 2,
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B, ijk 24mB;r¢LleBaa+1 aqy jkb m|.]_k‘ amn

which implies, using the induction aussumptlon7
<B:va]k> 24m26b7m|z - x|7am/2'

Now, for each z € Re

z,, there are of the order of |z — x|*™¥/2 pairs (j, k) satisfying (4.8).
Therefore

16\"™ 1
(Ra(z,y)) < (?) Cst Z plA=Dtd+d/2—am/2 o

16
r>al/4
if b > Cst(a) and am > 10d.

4.4. Proof of (R3(z,y)) < 1/16. Let z € RZ, be such that |z — x| > a'/4

If Uyy. = Guy. = 1, then there exists g with |g — 2| < |2 — 2|"/? such that, for all h € R,,
with |g — h| < |z —2|/5, xgn holds. Let R,, be the deformed diamond in Definition 3, with
| =y — =, and choose f, = (|z —z| —1)/|g — 2| =1 — O(a'/®), f, = 1/5 in Definition 4.
Then ,, holds.

On the other hand, if x¢_ occurs then, using By, < b|z — g|* < bz — x|*/? and Lemma 2,
we deduce that 2B,, > B,./B,. > blz — z|*/(b|z — z|*/?) = |z — z|*/2.
Hence

By Xo:Xag < 2" By By X5 Xag < 277 (Byy Xag) Byy |2 — 7™

As in the proof of the case ¢ = 1, we introduce an intermediate point a € R,, such that
R,, and R,, are diamonds, disjoint from each other and from R,,, except at endpoints (see
Figure 1, and Lemma 12 [1] in [7] for more details).

Therefore
m.,c — 3m 2 —am
(BryXazXag) < 27" (1+ p)2°|z — o[~
There are less than |z — 2|%? choices for g, so that

<R3<.§L’,y)> < 93m Z T,d71+d/27am < 1/16

r>al/4

if am > 3d and a > Cst.

4.5. Proof of (R4(z,y)) < 1/16. If @ > Cst, then R, .)(2) is inside R,,; recall that its
side length is of the order of |z — 2|2 << |y — z|. As in the proof of the case i = 2, we can
choose four intermediate points a; € Ry, so that R.q,, Raq,., (i = 1,...,3) and R,,, are
diamonds with disjoint interiors which do not overlap with the hypercube R, .y(2) (see
Figure 2, and Lemma 12 [2] in [7] for more details).

Now, using Lemma 5,

4m pm B™ :vvyv
BJCyXRn( ) 2 Bxal HB‘INZ-H aqy Z H bm|xv |am

TETn zy€Ry, yoEAVELD veELp
4n*kv*1<\zv*yu\<4n*kv
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This implies, letting n, = n — d,, and using the induction assumption,

4”1} 4nv
4m o6 4m+-6

T€Tn vELT

where, for all n > 0,

- > e

Te’Tn ’UELT
with v = (4%/b)m2%, ¢ = 2(am — 2d).
It follows from the structure of the trees 7, that
L =727+ (L.)*, Iy =7.

Assume am > 4d and b > Cst(a, d), so that v < 1/4 and ¢ > am. Then we deduce by
elementary induction that
L, <279 foralln > 1.

Note that 4™(®2) > 2M, /|z — z|. In summary,
<R4(ZL‘,y)> < 24m2—amM/2Cst Z Td—l—ozm/4 < ]_/]_6

r>al/4

if am > 8d and a > Cst.

5. PROOF OF WARD INEQUALITIES: LEMMAS 1 AND 4

We start this section with two lemmas, that will be useful in the subsequent proofs. The
first is an elementary lemma which expresses the equivalent resistance on a conductance
network as a quadratic form and relates the quantity D, , to the corresponding term in |7].

Lemma 6. Let (A, E) be a finite connected graph and (c.)ecp a conductance network on
E. We set ¢; = ij‘ cij. Letig € A be a fized vertex and M be the matriz given by
Ci,j7 { # j

—Cy, ’l:j

(M;;) =

(which is the Matriz of the generator of the Markov process with jump rates (c;;)). Let N
be the restriction of M to A\ {ig}. Denote by G the A x A symmetric matriz defined by
G(io,y) = G(y,i0) = 0 for any y and G(x,y) = —N;; if x,y # 19. If Dy, is the equivalent
resistance between x and y, then

Remark 4. In comparison with 7|, it means that the term G., which appears in for-
mula (5.4) in [7] is the equivalent resistance between x and y with conductances ¢;j =
e T By B et

Proof. We first interpret probabilistically the matrix G. Let G;,(x,y) be the Markov chain
with transition probabilities p; ; = cci’," and killed at its first entrance hitting time of 7

glo Zz y lek =y | >
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where H;, = inf{k > 0, X} =io}. Then, clearly,
Gw.9) = —Guw.0)
Then exercise 2.61 in chapter 2 of [8] yields the result. O

The next lemma ensures that the joint density pq v (u,s) given in (2.2) has bounded
“moments” up to a certain order.

Lemma 7. Let (z;,y;), i = 1,...n be n pairs of nearest neighbor points and let ey, . . . e, be
the corresponding undirected edges in E. Then

([ Br) <2
j=1

for any choice of my,...m, such that m; < a/2 forall j=1,..,n

Proof. By expression (2.2), we have
1 _ w
HB = G 1>/2/ HBae DMy (u, s)le”>sens | dugdsy,
e € k+#io
where we set a.; = a., —m; for j = 1,.n and a. = a. for all other edges. Note that

Ge; = G, /2 since m; < a/2 for all j. Expanding the minor as a sum over spanning trees we
deduce

0152 = e 3 [ |11
j=1

1 - (' n n
<22 m/ H T D[Mj v (u, s)]e” 2ieat H duyds, =2 /dua,v(u, s) =2
e € k#i0

where we have used the bound a.; < 2(aej — m;) so we can replace a. with a in the
determinant. O

e~ 2jents H dugdsy,,
k#io

Ce

Bae
ecT

Proof of lemma 1. For more readability we provide an elementary derivation of the
Ward identity which does not involve fermionic integral, even though it could be deduced
from the more general proof of lemma 4. Consider the graph (V, E) where we add an extra
edge ¢ = {z,y} to E (possibly creating a double edge). We put a weight a; = —m on
this edge. Denote by fi, v (u, s) the corresponding density, and by May the corresponding
matrix in (2.1). Using the expression (2.2), we deduce

1
H Bae

ecE €

m Y 1 m Y
BxyD[M\aLV] = H Bae Bgy D[M‘GLV]

eckE

|ﬂa,\/(u7 5)| <

where |a|,, = m and |a.| = a. > 0 for all e € E. Now let v a simple path in E connecting
x to y. Then, by Lemma 2,
m m(|y|—1) 2m
Bxy <2mn H Be !

ecry
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and, by the same argument as in the proof Lemma 7 above,

I

ey

|/]0L7V<u7 S)| < Qm(h'il) la\a|7v(u7 S) < 2m(|7|71)2|7|ﬂ\&|,\/(u7 S)

where |a|, = |a|.—2m for all e € v and |a|, = |al. otherwise. By Proposition 2, ditjg).v(u, s)
is a probability measure on E. The bound above holds for any m < a/4, hence fiq v (u, s)
is integrable. Moreover it is an analytic function in the parameters a., and therefore

(5.1) /[Lay(u, s) H dugdsy, = 1.

k+#io

Now let N(u, s) be the restriction of My (u, s) to the subset V'\ {ig}, and let N(u, s) be the
corresponding matrix for the new graph. Expanding the determinant with respect to the
extra term coming from the new edge é we deduce, letting N = N(u, s),

det(N(u,s)) = det(N)

eueruy
—(=m) 5 (Lastio det(N )i — 21uig yotio LN )z y + 1yzio det(N)y,)
x,y
Uz +Uy
= det(N) |1—m < (6; — 6y), G(6, — 0y) >,

x?y
where in the previous expressions, det(N(u,s)),, is the minor where we remove line z
and column y, and where in the last line GG is the matrix defined in Lemma 6, with the
conductances ¢; ; defined in Proposition 2. Using lemma 6, we deduce

det(N(u, s)) = det(N(u,s))(1 —mD,,).
Therefore
1= /[Lay(u, s) H dupds, = /Bgfy(l —mDy ) fta,v(u, s) H duydsy.

k#io k#io
O
Proof of Lemma 4. In [7], the protected Ward estimates are a consequence of Berezin
identity stated in appendix C, proposition 2 of [7]. The starting point is to write the
determinant term D[M (W, u)] as a fermionic integral (cf e.g. [5, 7]) with new pairs of anti
commuting variables (¢;,1);). This leads to

1
H Bae

ecE ¢

67 ZEGE g’_‘z (SeiBe)ei ZjGA Uuj
)

(52) Ma,V(uu S, Ea w> =

where o

Si; = By + e (¢, — V) (i — )
is the same supersymmetric expression introduced in [7], Ui, = S;, = 0 and Eio = 1;, = 0.
Then

dpta,v(u,s) = /dua,v(u, S,E,@Z)) H d@kdwk.

k#io
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From the mathematical point of view, the fermionic integral should be understood as an
interior product with respect to the variables (¢, ), cf e.g. [5]. Since the fermionic
variables are antisymmetric, we have (S, — B,)? = 0, and

1

1+ 2 (Se — Be)

THGeB) - Ze(g,_B,) =
€ Be< e e)

Then

(5.3) o (1 [ 5

If f(si;) is a smooth function of the variable (s;;), we understand f(.S;;) as the function
obtained by Taylor expansion of the fermionic variables (v;, s, wj,wj) this expansion is
finite since the fermionic variables are antisymmetric. Hence, formally f(S;;) is function
with values in the exterior algebra constructed from (wi,@bz,@bj,w]). The same can be
generalized to f[(S;;)ijevxv]. The Berezin identity (see for instance proposition 2 in [7])
implies that for any smooth function f[(s;;);;], then

(5.4) / FISs)is ]ty (u, 5.0,00) = F(0),

if f[(si;)i;] is integrable with respect to dpiay (1, s,%,) (which means that after integration
with respect to the fermionic variables it is integrable in the usual sense).

]EA uj

Remark that if f is a polynomial (of degree bounded by a), then it is a direct consequence
of the fact that the measure dp, 1 (u) has integral one, which can be proved either by
supersymmetric or probabilistic arguments (as we did in (5.1) above). Indeed let (z;,v;),
i =1,...,n be n pairs of points such that R,,, are regions whose interiors are disjoint. As
in the proof of lemma 1 above let £ = E U (U™, {x;,:}) the graph obtained by adding the
edges {x;,y;}. We assign to each new edge {z;, y;} the conductance a,, ,, = —m;. Let Ma,\/
be the corresponding matrix. Then

n

<H S;ny> 2n = 1)/2/ Bae aV(u 8)]6721“”]’ H duydsy,

i=1 e€E k#io

In order to show that the density is integrable, we proceed as in the proof of Lemma 1.
This time we have to choose n simple paths v;, ¢ = 1,..n in E connecting z; to y;, which
do not intersect; this is possible, since the regions R,,,, have disjoint interiors. Then
n
qIsm0 =1
i=1
Now by the same arguments as in |7, lemma 7| we have

n

D[Ma,y (u, )] < D[May (u,s)] [[(1 = m;DY, ).
j=1
This completes the proof of (2.7). Finally to prove the “protected” Ward estimate (2.7)
we proceed exactly as in [7, lemma 6]. The main idea is to approximate the characteristic
function x(z) by a sequence of smooth decreasing functions xs(x). Now, by symmetry,

(STyXs(Sey)) =1 Va,y.
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Integration over the fermionic variables yields

"(Bg

(Siy X5(Sey)) = (Biy Xs(Be )6{

1
— _(27'(')(]\171)/2\/ H Bae

ec €
where M, v is defined on the graph E = E U (z,y) and the edge (z,7) has conductance

I(BJ»’Z/)
(Bxy)

)
By Xo(Bay) D[Myv (u, 5)]e™ 2iea"s ] dusdsy,
k#i0

Oy = —M + Bxy ety > m,

since x' < 0. Hence
D[M, v (u,s)] > D[Mav(u,s)] = D[Myv(u, s)](1 — mD,,)
where a,, = —m and a. = a, for all other e. Finally
(B Buy) (1 — mDyy)) < 1.

The proof of the general statement follows from a combination of this argument with the
ideas used for the estimate (2.7). O

6. PROOF OF PROPOSITION 3

Denote by
E.,={{i,j}, 1€ Ry, jE Ryy, i~j}
the set of non-directed edges in R,,. We denote by FE,, the associated set of directed
edges. By construction, aDN is the effective conductance between x and y of the network
with edges E,, and conductances (Vi) {ijyeEs,- Let Fry be the set of unit flows from x

to y with support in vay . precisely, 8 € F,, if 0 is a function 0 : Ewy — R which is
antisymetric (i.e. 0(i,j) = —0(j4,7)) and such that

div(f) = 6, — 4y,
where div : R, , — R is the function

div() (i)=Y 0(i,j).

jeRx,yy jNi

Recall that (see for instance [8], Chapter 2)

(6.1) Dy, = inf 1 }

€ o (id)esy 1
The strategy is now to construct explicitly a flow ¢ such that under the condition , ,, the
energy (6.1) is bounded by a constant depending only on d, a and b. This flow will be

constructed as an integral of flows associated to sufficiently spread paths.

(63, 5))*.

Remind that a deformed diamond is a set of the following form
d ~l ~Np—
Nn(C,NC;™),
(plus a few points close to z and to y so that the set is connected in 7%) where x € Z4,
I €RY [ +#0and y € Z? is a point such that y € C!



22 M. DISERTORI, C. SABOT, AND P. TARRES
For z € R% we set
7’(2) _ (z—x)-(y—x)

ly — |
and p(z) = x + r(z)(y — x) the projection of z on the line (z,y).

For h € (0,1) we denote
Ry, ={i € Ryy, r(i) < h}, RY, ={i € Ray, r(i) > h}.

From the assumption on fg, fy, there exists h € [1/10,9/10] such that Rﬁy C R;, and
Ry, C Ry, *. We fix now such a h € [1/10,9/10]. We set

Yy —
Ap=1{zeR% r(z) = h}N (é; N ég*y) .

Y

If is clear from the construction that
|Ap| = Cst(d)|z —y|*,

where |Ay| is the surface of A, (note that Cst(d) does not depend on the value of h €
[1/10,9/10)).

To any path ¢ = (zg = x,...,x, = y) from z to y we can associate the unit flow from x

to y defined by
Z (@im1,2:) — L(@izior)-
=1

For u € Ay, let L, be the union of segments
L, = [z,u] U[u,yl.
Clearly L, C CL ﬂég_y by convexity. There is a constant Cst(d), such that for any u € Ay,

we can find a simple path o, in R, , from z to y such that for all k =0,...,|o,]
(6.2) dist(Ly, 0y (k)) < Cst(d),
and we define 0 as .
0=—— 0y, du,
|Anl Ja,

which is a unit flow from z to y.

The path o, can visit a vertex ¢ only if dist(7, L,) < ¢ = Cst(d). This implies that, for

all 4,
Z ‘9 { .7 |Ah| / {dlSt(z Ly <co}d

Jijevi

Now if (i) € [0, h], then

NG
1. 7: . d < C t d N
/Ah (dist (i, Lu)<co} T¥ st( >(r(z))

'Indeed, if i € R,,, the angle Z(z,4), (x,y) < n/8 for z = z,y. Hence, if i € R? o
m|x y|. Hence Rfcy C R;, assoon as h < f cos(7r/8) But cos(7/8) > 0.92 and f, > 1/5 so
that fycos(m/8) > 0.18. Similarly Ry C RY, assoon as 1 — h < f, cos(m/8), since f, cos(m/8) > 0.18.
Using fo + fy > 1+ 1/5 it implies that (fz + fy) cos(m/8) > 1 and we can find h € [1/10,9/10] such that
RC” C Ry, and Ry CRY,

then |i — z| <
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Hence, if (i) € [0, h]
> 16.9)] < Cst(d)
jijevi
Similarly we have if (i) € [h, 1]

S joe )] < =D

;o oyld—1"

s () e

v —y|Tt \]i — | i— x|t

T

Now, under the condition %, ,, we know that if i € Riy C Ry, then ~;; > cfi — x| ™"
and if i € RY, C RY, then v, ; > c|i — y[~" with § = 4o < 1. This implies
2 2

aDY, < Y i=a? ([ D106+ D M-yt D 166, 5)

i€RE,, i#w VNI i€RY ., iy VNI

< Gst(d) Z i — 2D 4 Z ¢ Ui — y|f2d-D)
i€RE i i€RY ., iy
For k € N,
{i € Ry, k < i — | <k+ 1} < Cst(d)k*,

and similarly for = replaced by y. Therefore

aD), < Cst(d) Y ¢ kP < Cst(d, a, b).
k=1
since § =4a <1 and d > 3.
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