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1. Introduction 1.1. Setting and main result. Let (Ω, F , P) be a probability space. Let G = (V, E, ∼) be a nonoriented connected locally finite graph without loops. Let (a e ) e∈E and (w e ) e∈E two sequences of positive weights associated to each edge e ∈ E.

Let (X n ) n∈N be a random process that takes values in V , and let F n = σ(X 0 , . . . , X n ) be the filtration of its past. For any e ∈ E, n ∈ N ∪ {∞}, let (1.1) Z n (e) = a e + n k=1

1I {{X k-1 ,X k }=e} be the number of crosses of e up to time n plus the initial weight a e . Then (X n ) n∈N is called Edge Reinforced Random Walk (ERRW) with starting point i 0 ∈ V and weights (a e ) e∈E , if X 0 = i 0 and, for all n ∈ N,

(1.2) P(X n+1 = j | F n ) = ½ {j∼Xn } Z n ({X n , j}) k∼Xn Z n ({X n , k})
.

On the other hand, let (Y t ) t 0 be a continuous-time process on V , starting at time 0 at some vertex i 0 ∈ V . Then (Y t ) t 0 is called a Vertex-Reinforced Jump Process (VRJP) with starting point i 0 and weights (w e ) e∈E if Y 0 = i 0 and if Y t = i then, conditionally on (Y s , s t), the process jumps to a neighbour j of i at rate w {i,j} L j (t), where

L j (t) := 1 + t 0 1I {Ys=j} ds.
The Edge Reinforced Random Walk was introduced in 1986 by Diaconis [START_REF] Coppersmith | Random walks with reinforcement[END_REF]; the Vertex-Reinforced Jump Process was proposed by Werner in 2000, and initially studied by Davis and Volkov [START_REF] Davis | Continuous time vertex-reinforced jump processes[END_REF][START_REF] Davis | Vertex-reinforced jump processes on trees and finite graphs[END_REF]; for more details on these models and related questions, see [START_REF] Sabot | Edge-reinforced random walk, vertex-reinforced jump process and the supersymmetric hyperbolic sigma model[END_REF] for instance.

The aim of this paper is to prove transience of the edge-reinforced random walk (ERRW) for large a e > 0, i.e. small reinforcement.

2000 Mathematics Subject Classification. primary 60K37, 60K35, secondary 81T25, 81T60. This work was partly supported by the LABEX project MILYON and ANR project MEMEMO 2. Theorem 1. On Z d , d 3, there exists α c (d) > 0 such that, if a e > α c (d) for all e ∈ E, then the ERRW with weights (a e ) e∈E is transient a.s.

Recall that almost-sure positive recurrence of ERRW and VRJP for large reinforcement (i.e. if a e < αc , resp. w e < wc for all e ∈ E, for some αc , wc > 0), and transience of VRJP for small reinforcement (i.e. if w e > w c for some w c > 0) were proved by Sabot and Tarrès in [START_REF] Sabot | Edge-reinforced random walk, vertex-reinforced jump process and the supersymmetric hyperbolic sigma model[END_REF], using localisation/delocalisation results of Disertori, Spencer and Zirnbauer [START_REF] Disertori | Anderson localization for a supersymmetric sigma model[END_REF][START_REF] Disertori | Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model[END_REF]. Another proof of recurrence of the ERRW and VRJP was proposed, shortly afterwards, by Angel, Crawford and Kozma [START_REF] Angel | Localization for linearly edge reinforced random walks[END_REF].

The proof of Theorem 1 follows from estimates on the fluctuation of a field (U i ) associated to the limiting behaviour of the reinforced-random walk. Let us first recall two earlier results from Sabot and Tarrès [START_REF] Sabot | Edge-reinforced random walk, vertex-reinforced jump process and the supersymmetric hyperbolic sigma model[END_REF].

Theorem 2 (Sabot and Tarrès [START_REF] Sabot | Edge-reinforced random walk, vertex-reinforced jump process and the supersymmetric hyperbolic sigma model[END_REF]). On any locally finite graph G, the ERRW (X n ) n 0 is equal in law to the discrete time process associated with a VRJP in random independent conductances W e ∼ Gamma(a e , 1 ).

The next result concerns VRJP (Y t ) t 0 on a finite graph G, with |V | = N, given fixed weights (w e ) e∈E ; let P V RJP i 0 be its law, starting from i 0 ∈ V .

Proposition 1 (Sabot and Tarrès [START_REF] Sabot | Edge-reinforced random walk, vertex-reinforced jump process and the supersymmetric hyperbolic sigma model[END_REF]). Suppose that G is finite and set N = |V |. For all i ∈ V , the following limits exist P V RJP i 0 a.s.

U i = lim t→∞ (log L i (t) -log L i 0 (t)) .
Theorem 3 (Sabot and Tarrès [START_REF] Sabot | Edge-reinforced random walk, vertex-reinforced jump process and the supersymmetric hyperbolic sigma model[END_REF]). (i) Under P V RJP i 0 , (U i ) i∈V has the following distribution on H 0 = {(u i ) ∈ R V : u i 0 = 0} dρ w,Λn (u) = 1 (2π) (N -1)/2 e -j∈V u j e -H(w,u) D[m(w, u)] j∈V \{i 0 } du j (1.3) where H(w, u) = 2 {i,j}∈E w i,j (cosh(u i -u j ) -1)

and D(w, u) is any diagonal minor of the N × N matrix m(w, u) with coefficients

m i,j =    w i,j e u i +u j if i = j -k∈V w i,k e u i +u k if i = j
(ii) Let C be the following positive continuous additive functional of X:

C(s) = i∈V L 2 i (s) -1,
and let Z t = Y C -1 (t) . Then, conditionally on (U i ) i∈V , Z t is a Markov jump process starting from i 0 , with jump rate from i to j 1 2 w i,j e U j -U i .

In particular, the discrete time process associated with (Y s ) s 0 is a mixture of reversible Markov chains with conductances w i,j e U i +U j .

Remark 1. The diagonal minors of the matrix m(w, u) are all equal since the sum on any line or column of the coefficients of the matrix are null. By the matrix-tree theorem, if we let T be the set of spanning trees of (V, E, ∼), then D[m(w, u)] = T ∈T {i,j}∈T w {i,j} e u i +u j .

Notation and convention. In the following we fix d 3.

A sequence σ = (x 0 , . . . , x n ) is a path from x to y in Z d if x 0 = x, x n = y and x i+1 ∼ x i for all i = 1, . . . , n.

Let

Λ n = {i ∈ Z d , |i| ∞ n} be the ball centred at 0 with radius n, and let

∂Λ n = {i ∈ Z d , |i|∞ = n}
be its boundary. We denote by E the set of edges in Z d and by E n the set of edges contained in the hypercube Λ n . We denote by Ẽn the associated set of directed edges. Let (a ij ) i,j∈Z d ,i∼j be the family of initial positive weights for the ERRW and

a := inf e∈E a e .
In the proofs, we will denote by Cst(a 1 , a 2 , . . . , a p ) a positive constant depending only on a 1 , a 2 , . . . a p , and by Cst a universal positive constant.

Let P 0 (resp. P Λn 0 ) be the law of the ERRW on Z d (resp. on Λ n ). Theorem 3 ensures that on every finite volume Λ n the ERRW is a mixture of reversible Markov chains with random conductances (W U e ) e∈En where W U ij = W ij e U i +U j and the law for the random variables (W, U) has joint distribution on R En + × H 0 given by dρ Λn (w, u) = dρ w,Λn (u) e∈En e -we w ae-1 e Γ(a e ) dw e , where dρ w,Λn (u) was defined in (1.3). Let E Λn 0 the average with respect to the joint law for (W, U) (mixing measure). Note that we cannot define this average on an infinite volume, since we do not know if the limiting measure exists. Denote by • Λn the corresponding marginal in U.

Warning. We use a capital letter W, U • • • to denote a random variable and a smallcase letter w, u, . . . to denote a particular realization of the variable. The same is true for any function of such variables. In some cases though we do not state the argument explicitely, to avoid heavy notations. It should become clear from the context when the corresponding argument has to be regarded as a random variable.

The proof of Theorem 1 will follow from the following result. 

c (m, d) > 0 such that, if a a c (m, d) then, for all n ∈ N, x, y ∈ Λ n , cosh m (U x -U y ) Λn 2.
The proof of Theorem 4 is the purpose of the rest of this paper, and adapts the argument of Disertori, Spencer and Zirnbauer [START_REF] Disertori | Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model[END_REF], which implied in particular transience of VRJP with large conductances (w e ). But before, let us show how Theorem 4 implies Theorem 1.

Proof of Theorem 1. Given (w, u) ∈ R E + × H 0 , denote by P w u 0 the law of the Markov chain in conductances w u i,j = w ij e u i +u j starting from 0. Let H ∂Λn be the first hitting time of the boundary ∂Λ n and H0 be the first return time to the point 0.

We seek to estimate P 0 (H ∂Λn < H0 ) the probability the ERRW hits the boundary of Λ n before coming back to 0. Since this event depends only on the history of the walk inside the hypercube Λ n , we have

(1.4) P 0 (H ∂Λn < H0 ) = P Λn 0 (H ∂Λn < H0 ) = E Λn 0 P W U 0 (H ∂Λn < H0 )
where in the last term we used the last part of Theorem 3. Now P w u 0 (H ∂Λn < H0 ) is the probability for a Markov chain inside Λ n with conductances w u to hit the boundary before coming back to 0. This probability can be related to the effective resistance between 0 and ∂Λ n (see for instance Chapter 2 of [START_REF] Lyons | Probability on Trees and Networks[END_REF])

R(0, ∂Λ n , w u ) = inf θ: Ẽn→R e∈ Ẽn θ(e) 2 w u e
where the infimum is taken on unit flows θ from 0 to ∂Λ n : θ is defined on the set of directed edges Ẽn and must satisfy θ((i, j)) = -θ((j, i)) and j∼v θ((v, j)) = δ v,0 for all v ∈ Λ n . Denote by R(0, ∂Λ n ) the effective resistance between 0 and ∂Λ n for conductances 1.

Classically we have

w u 0 R(0, ∂Λ n , w u ) = 1 P w u
0 (H ∂Λn < H0 ) with w u 0 = j∼0 w u 0,j . Using (1.4) and Jensen's inequality 1

P 0 (H ∂Λn < H0 ) = 1 E Λn 0 P W U 0 (H ∂Λn < H0 ) E Λn 0 1 P W U 0 (H ∂Λn < H0 ) = E Λn 0 W U 0 R(0, ∂Λ n , W U ) . (1.5)
We will show below that, if min e∈E a e = a > max{a c (3, d), 3}, then

E Λn 0 W U 0 R(0, ∂Λ n , W U ) Cst(a, d)R(0, ∂Λ n ) (1.6)
This will enable us to conclude: since lim sup R(0, ∂Λ n ) < ∞ for all d 3, (1.5) and (1.6) imply that P 0 ( H0 = ∞) > 0. ✷ Proof of (1.6). Let θ be the unit flow from 0 to ∂Λ n which minimizes the L 2 norm. Then

R(0, ∂Λ n , w u ) {i,j}∈En 1 w u i,j θ 2 (i, j), and R(0, ∂Λ n ) = {i,j}∈En θ 2 (i, j).
Now, if a > max{ã c (3, d), 3} then, using Theorem 4,

E Λn 0 W U 0 W U i,j = l∼0 E Λn 0 W 0,l W i,j e U 0 -U i e U l -U j l∼0 E Λn 0 W 3 0,l W 3 i,j E Λn 0 e 3(U 0 -U i ) E Λn 0 e 3(U l -U j ) 1/3 = l∼0 E Λn 0 W 3 0,l E Λn 0 W -3 i,j e 3(U 0 -U i ) Λn e 3(U l -U j ) Λn 1/3 Cst(a, d),
where we also used the fact that W i,j are independent Gamma distributed random variables. ✷ 1.2. Organization of the paper. Section 2 introduces to the main lines of the proof, the geometric objects that are needed (diamonds and deformed diamonds), and state some Ward identities. Section 3 provides some estimates on the probability of existence of good points i (from which there are no large deviations on B ij at small scales) in certain boxes. A key step in our proof is to study the law of U after integration over the conductances W e , in other words to focus on the marginal . Λ . Note that it is one of several possible approaches to the question of recurrence/transience for ERRW. Indeed, one could instead focus on the analysis of the law of the random conductances W ij e U i +U j given by Coppersmith-Diaconis formula, or directly study ERRW from its tree of discovery using the existence of a limiting environment, as done in [START_REF] Angel | Localization for linearly edge reinforced random walks[END_REF], or possibly conclude from a.s. results conditionally on the conductances W e , e ∈ E.

In fact we add a Gaussian Free Field variable S with conductances W U ij before integrating over W , as in the first step of [START_REF] Disertori | Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model[END_REF], since the corresponding joint law again has more transparent symmetries and is better suited for the subsequent analysis. More precisely, let

B xy := cosh(U x -U y ) + 1 2 e Ux+Uy (S x -S y ) 2
for all x, y ∈ V (not necessarily neighbours).

Then (W, U, S) has the following distribution on

R E + × H 0 × H 0 (2.1) 1 (2π) (N-1)/2 e -j∈Λ u j e -i,j∼i W ij (B ij -1) D[m(W, u)] k =i 0 du k ds k e∈E e -we w ae-1 e Γ(a e ) dw e
The marginal of this law in (U, S) after integration over W , which we still call . Λ or . by a slight abuse of notation, is given in the following Proposition 2.

Proposition 2. The joint variables (U, S) have density on

H 0 × H 0 (2.2) µ a,V (u, s) = 1 (2π) (N -1)/2 e 1 B ae e e -j∈Λ u j D[M V (u, s)],
where

D[M V (u, s)] is any diagonal minor of the N × N matrix M V (u, s) defined by M i,j =    c i,j , i = j -k c i,k , i = j and c i,j := a i,j e u i +u j B i,j , ∀, i ∼ j
Note that we slightly abuse notation here, in that B i,j is considered alternatively as function of (u, s) and (U, S).

Proof. Integrating the density in (2.1) with respect to the random independent conductances W e ∼ Gamma(a e , 1 ) we obtain e -j u j (2π) (N-1)/2 e e -we w ae-1 e dw e Γ(a e ) e -j∼i w ij (B ij -1) D(w, u)

= e -j u j (2π) (N-1)/2
T i∼j∈T e u i +u j 

(2π) (N-1)/2 T i∼j∈T a ij e u i +u j B ij = µ a,V (u, s)
where in the second line we expand the determinant as a sum over spanning trees and In the proof of delocalization in [START_REF] Disertori | Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model[END_REF], the first step was a set of relations (Ward identities) generated by internal symmetries. Their analogue is stated in Lemmas 1 and proved in Section 5, and involves a term of effective resistance D x,y depending on the variable U, defined as follows.

I
Definition 1. Let D x,y be the effective resistance between x and y for the conductances c x,y i,j := c i,j B x,y e -ux-uy = a i,j e u i +u j -ux-uy B x,y B i,j .

Lemma 1. For all m a/4 then, for all x, y ∈ Λ (not necessarily neighbours),

B m x,y (1 -mD x,y ) = 1.
One of the consequences of Lemma 1 is that, if the effective resistance D xy is small, then we can deduce a good bound on B m x,y . However, there is positive probability that this resistance D xy might be large, so that it would be more useful to show an inequality restricted to the event that D xy is small. Although it is not possible to derive such an identity directly, we can define events χ xy on which such identities hold, and so that D xy is small on χ xy . These events will depend on geometric objects defined in the next Section 2.2, called diamonds and deformed diamonds.

Diamonds and deformed diamonds.

Definition 2. Let l = 0 be a vector in R d and x ∈ Z d . We denote by C l

x the cone with base x, direction l and angle π/4

C l x = {z ∈ R d , ∠(xz, l) π 4 } = {z ∈ R d , (z -x) • l √ 2 2 |z -x||l|}
where ∠(xz, l) is the angle between the vector xz and the vector l.

If x and y are in Z d , we call Diamond the set

C y-x x ∩ C x-y y ∩ Z d .
to which we add a few points close to x and close to y so that the set is connected in Z d . We denote this set by R x,y .

Remark 2. By the expression " a few points" above we mean that we add some extra points to C y-x

x ∩ C x-y y ∩ Z d at a bounded distance from x, y so that the resulting set becomes connected in the lattice. The distance at which the points can be added is bounded by a constant depending only on the dimension. Of course, all the estimates below will be independent of the choice of these points. We will repeat this operation several times hereafter, without extra explanation.

In the course of the inductive argument, some deformed diamonds appear, they are formed of the intersection of two cones with smaller angles than for diamonds. For l ∈ R d , l = 0, and x ∈ R d we set

Cl x = {z ∈ R d , ∠(xz, l) π 16 }. Definition 3. A deformed diamond is a set of the following form Cl x ∩ Cx-y y ∩ Z d ,
(plus a few points close to x and to y so that the set is connected in

Z d , see Remark 2) where x ∈ Z d , l ∈ R d , l = 0 and y ∈ Z d is a point such that y ∈ Cl x .
We also denote a deformed diamond by R x,y (and it will always be clear in the text wether R x,y is a diamond or deformed diamond). Definition 4. It will be useful to write each (exact or deformed) diamond as a non disjoint union of two sets

R x x,y = {z ∈ R x,y , |z -x| f x |y -x|}, R y x,y = {z ∈ R x,y , |z -y| f y |y -x|}, where the pair (f x , f y ) is such that 1/5 f x 1, 1/5 f y 1 and f x + f y 1 + 1
5 . This condition on (f x , f y ), and the fact that the maximal angle in deformed diamonds is π/16, indeed ensures that that R x,y = R x x,y ∪ R y x,y . Note that the choice of (f x , f y ) is not unique. Here is the main proposition of the section. It ensure that under the condition χ xy , there is a uniform bound on the effective resistance D N x,y . Proposition 3. Fix α ∈ (0, 1/4) and b > 0. There exists a constant C = Cst(d, α, b) such that for any deformed diamond R x,y ⊆ Λ, if χ xy is satisfied, then

χ ij = ½ {B ij b|i-j| α } .
D N x,y C/a,
where a = inf(a i,j ).

Remark 3. Note that the constant C is independent of the precise shape of the deformed diamond.

Proposition 3 is proved in Section 6. It partly relies on the following two Lemmas 2 and 3, which will also be useful in other parts of the proof.

Lemma 2 (lemma 2 of [START_REF] Disertori | Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model[END_REF]). For all x, y, z ∈ Λ,

B xz 2B xy B yz . Proof. Elementary computation. Lemma 3. For all i, j ∈ Z d , i ∼ j, x, y ∈ Z d , we have (2.3) (c xy ij /a) -1 16(B iz ) 2 (B jz ) 2 . for both z = x and z = y.
In particular, let c = b -4 /64, β = 4α. Assume that χ xy holds, then the electrical network with conductances

(γ i,j ) i,j∈Λ, i∼j = (c xy ij /a) i,j∈Λ, i∼j , satisfies γ i,j c|i -z| -β for all i, j ∈ R z xy , i ∼ j, for z = x, y,.
The proof of Lemma 3 partly relies on the following two Lemmas, which will also be useful in other parts of the proof.

Proof of Lemma 3. First note that e ±(ux-uy) B xy e ±(ux-uy) cosh(u x -u y ) 1/2, so that (2.4) e u i +u j -ux-uy B x,y 1 2 max[e u i +u j -2ux , e u i +u j -2uy ].

Now

(2.5)

e u i +u j -2ux = e u i -ux e u j -ux 1 4 (cosh(u i -u x ) cosh(u j -u x )) -1 1 4 (B ix B jx ) -1 .
On the other hand, note that

(2.6) B ij 2B ix B jx .
Inequalities 

B m i x i y i (1 -m i D N x i y i ) 1,

and

(2.8)

n i=1 B m i x i y i χ x i y i (1 -m i D N x i y i ) 1.
Inequality (2.8) implies, by Lemma 3, that if, additionally, the regions R x i y i , i = 1, . . . , n are deformed diamonds and m i < a/C for all i, then (2.9)

n j=1 B m j x j y j χ x j y j n j=1 (1 -m j C/a),
where C is the constant considered in Proposition 3.

Lemma 1 is proved in Section 5. The rest of the proof is similar to the argument in [START_REF] Disertori | Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model[END_REF], which consists in deducing upper bounds of n j=1 B m

x j y j for some fixed m from these "protected" estimates, through an induction on the maximal length |x i -y i | on the protected estimates, i = 1 . . . n, using Chebyshev inequalities in order to deal with the "unprotected" parts of the estimates. We summarise the argument in Section 4.

Estimates on good points

Definition 7. A point x ∈ Λ is called n-good if B x,y b|x -y| α ,
for all y ∈ Λ with distance 1 |x -y| 4 n from x.

Given z ∈ Λ, let R n (z) (denoted by R n when there is no ambiguity) the cube with side 4 n and barycenter z. We denote by χ c

Rn the indicator of the event that there is no n-good point in R n .

In this section we present an estimate on the event χ c

Rn , more precisely we bound from above the indicator function by a sum of terms involving B i,j b|j-i| α for points i, j at distance at most 4 n . This will be used in the main inductive argument in Section 4. It follows lemma 9 of [START_REF] Disertori | Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model[END_REF], but, for convenience of the reader, we give the proof which is only a few lines long.

If R n is a hypercube of side 4 n then it is the disjoint union of 4 d sub-hypercubes of side 4 n-1 . We can select the 2 d corner subcubes that we denote

(R i n , i = 1, . . . , 2 d ) so that d(R i n , R j n ) > 2 × 4 n-1 for i = j.
Repeating this procedure hierarchically we can construct a family of cubes (R v n ) with side 4 n-k for v running on the set {1, . . . , 2 d } k . We consider the natural structure of rooted (2 d + 1)-regular tree of the set

R = {root} ∪ ∪ n k=1 {1, . . . , 2 d } k ,
where "root" is the root of the tree, corresponding the cube R n (= R root n ). We denote by d v the depth of a point v ∈ R with d root = 0 and

d v = k if v ∈ {1, . . . , 2 d } k .
We denote by T n the set of connected subtrees T of R containing the root and which have the property that any vertex x ∈ T have either 2d or 0 descendant in T . We denote by L T the set of leaves of such a tree T ∈ T n . (Remark that the set {L T , T ∈ T n } is also the set of maximal totally unordered subsets of R for the natural "genealogical order" on R.)

For an element v ∈ R with k = d v we set S c R v n = x∈R v n , y∈Λ 4 n-k-1 <|x-y|<4 n-k χ c x,y x∈R v n , y∈Λ 4 n-k-1 <|x-y|<4 n-k B m
x,y b m |x -y| αm Lemma 5. (lemma 9 of [START_REF] Disertori | Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model[END_REF]) With the notations above we have

χ c Rn T ∈Tn v∈L T S c R v n .
Proof. If there is no n-good point in R n then either there is no (n -1)-good point in any of the subcubes {R i n , i = 1, . . . , 2 d } or else there exists at least one pair (x, y) ∈ R n × Λ with 4 n-1 < |x -y| < 4 n and B x,y > b|x -y| α . This gives the first level inequality

χ c Rn S c Rn + 2d i=1 χ c R i n-1
.

Then the proof follows by induction on the integer n. For n = 0, R 0 (z) is the singleton z and χ c R 0 = S c R 0 = 0 which initializes the induction. If lemma 5 is valid at level n -1, then, obviously, the previous inequality implies it at level n. Our goal in this section is to prove the following theorem.

Theorem 5. Let m = a 1/8 , let ρ = 1/2 and assume a a 0 for some constant a 0 1. For all n 1 , n 2 and n 3 0, let R x i y i , i = 1, . . . n 1 , R p j q j , j = 1, . . . n 2 , and R r k s k , k = 1, . . . n 3 be respectively subsets of class 1, 2 and 3. Then we have

n 1 i=1 B m x i y i n 2 j=1 B 3m p j q j χ p j q j n 3 k=1 B 3m r k s k 2 n 1 (1 + ρ) n 2 2 n 3 .
The proof is by induction on max 1 i n 1 i -y i |. Let (H) ℓ be the following statement: Theorem 5 holds if max

1 i n 1 |x i -y i | ℓ.
The first step in the induction is the case n 1 = 0, proved in Section 4.1.

Let us now show that (H) ℓ-1 implies (H) ℓ . We do the proof only in the case where n 1 = 1, the general case being only notationally more involved. It remains to upper bound R(x, y) . Now, R(x, y) being an expansion over "bad" points z (i.e. sites z such that χ c xz holds), we expand it into four terms. We prove in Section 4.2 that R 1 (x, y) 1/16 if b Cst(a) and αm d (Case 1 in [START_REF] Disertori | Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model[END_REF]).

(ii) Second, fix a constant M, which will only depend on the dimension d. For a site z far from x (i.e. with |z -x| > a Then v c x,y,z = 1 if there is a large scale "bad" event originating from a point near z. We will show in Section 4.3 that the corresponding term R 2 (x, y)

1/16 if if b Cst(a) and αm 10d (Case 2a in [START_REF] Disertori | Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model[END_REF]).

(iii) Third, we consider the case where v x,y,z holds, i.e. there is no large scale "bad" event near z and, furthermore, there is exists a point g with |g -z| |z -x| 1/2 that is good up to scale |z -x| 1/2 .

More precisely, given

i ∈ Λ, R > 0, let G(i, R) = h: |i-h| R χ ih ;
then G(i, R) = 1 iff i is "good" up to distance R. Recall the similar Definition 7 that a site x ∈ Λ is called n-good if χ xy = 1, for all y with |y -x| 4 n .

Let

g x,y,z = max

g: |g-z| |z-x| 1/2 G(g, M|z -x| 1/2 ).
Then g x,y,z = 1 iff we can find a site g in the ball of radius |z -x| 1/2 centered at z, which is good up to distance M|z -x| 1/2 . Now, if v x,y,z = g x,y,z = 1, then we can find a deformed diamond from x to g close to z such that χ x,g = 1, so that we can apply the induction hypothesis. If we let

R 3 (x, y) = z∈ Rx xy : |z-x|>a 1/4 B m xy χ c xz v x,y,z g x,y,z j: |j-x|<|z-x| χ xj , then R 3 (x, y)
1/16 if a Cst and αm 3d (Case 2b in [START_REF] Disertori | Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model[END_REF]): this is proved in Section 4.4.

(iv) Fourth, if g x,y,z = 0 and M Cst(d) then there is no good point up to distance M|z -x| 1/2 in the hypercube of side length 4M|z -x| 1/2 . This implies that χ c R n(x,z) (z) 4.1. Proof of Theorem 5 in the case n 1 = 0. The proof is similar to the one of lemma 8 in [START_REF] Disertori | Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model[END_REF]. First, note that the case n 3 = 0 follows from Lemma 4, for a Cst(C).

Let us do the proof in the case n 2 = 0 and n 3 = 1, the argument for the general case being only notationally more involved.

Let δ > 0. For all p, q ∈ Λ, p ∼ q, let ξ pq = 1I {Bpq 1+δ} . Let us first deal with the first term in the right-hand side of (4.3): B pq 1 + δ implies 0 (U p -U q ) 2 /2 cosh(U p -U q ) -1 δ.

Using

Choose δ > 0 such that a 1/4 √ 2δ = 1, i.e. δ = a -1/2 /2.

Let z = x, y, and assume {p,q},p,q∈Rxy ξ pq holds. Then, for all j ∈ R xy , (4.4)

|U z -U j | a 1/4 √ 2δ = 1.
Subsequently, for all p, q ∈ R xy , p ∼ q, e -2 2 e 2Uz (S p -S q ) 2 e Up+Uq 2 (S p -S q ) 2 B pq -1 δ,

which implies e Uz |S p -S q | √ 2δe. Using again our choice of δ, we deduce that, again if Let us now deal with the second term in the right-hand side of (4.3): fix p, q ∈ R xy , p ∼ q, and use that, by Markov inequality,

j ∈ R xy , e Uz |S z -S j | a 1/4 √ 2δe = e, so that
ξ pq B pq 1 + a a/2
.

Let (x 0 , . . . , x n ) be a path of minimal distance from x to y inside R xy , which does not go through the edge {p, q}. By repeated application of Lemma 2,

2B xy 0 j n-1 2B x j x j+1 .
Therefore, letting ℓ = |x -y|, we have

B 3m xy ξ c pq 2 3m(ℓ-1) (1 + δ) a/2 B a/2 pq 0 j n-1 B 3m x j x j+1 2 3m(ℓ-1) (1 + δ) a/2 2 1 - 3m a -ℓ
exp (3mℓ -aδ/3) exp 3a 3/8 -a 1/2 /6 . (4.7)

In the second inequality, we use (2.7) and note that, if r ∼ s, then D N rs = a rs a. In the third inequality we assume a Cst and, for x ∈ [0, 1/2], 1 -x e -x and (1 + x) -1 e -2x/3 . Finally, we use δ = a -1/2 /2, m = a 1/8 and ℓ a 1/4 (since R xy is of Class 3) in the last inequality.

In summary, (4.3), (4.6) and (4.7) together imply, if a Cst(C), In order to apply the induction assumption, we would need to construct a deformed diamond R xz and diamond R zy which do not intersect within R xy . This is not true in general, but we can add an intermediate point a ∈ R xy such that R xz , R za and R xz are respectively one deformed diamond and two diamonds within R xy and disjoint, except at endpoints (see Figure 1, and Lemma 12 [START_REF] Angel | Localization for linearly edge reinforced random walks[END_REF] in [START_REF] Disertori | Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model[END_REF] for more details). Now, using again Lemma 2,

B 3m xy 3/2 + Cst(d)ℓ d exp 3a 3/8 -a 1/2 /6 2 if a Cst(d).
B m xy χ c xz 2 2m b -2m |z -x| -2αm B 3m xz B m za B m
ay . Therefore, using the induction assumption,

R 1 (x, y) z∈ Rx xy : |z-x| a 1/4 4 m b -2m |z -x| -2αm 4(1 + ρ) 4 b 2 m Cst a 1/4 r=1 r d-1-2αm 1/16
if b Cst(a) and αm d. As above, we use

(4.9) χ c jk B m jk b -m |j -k| -αm .
In order to apply the induction assumption, we need to expand B 2m jk B m xy into a product of terms arising from disjoint diamonds within R xy . It is an easy geometric result to show that, under our assumptions on z, j and k, we can choose four intermediate points a i ∈ R xy , so that R xa 1 , R a i a i+1 (i = 1, . . . , 3) and R a 4 y are diamonds with disjoint interiors which do not overlap with the diamond R jk (see Figure 2, and Lemma 12 [START_REF] Coppersmith | Random walks with reinforcement[END_REF] in [START_REF] Disertori | Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model[END_REF] for more details). Now, using (4.9) and Lemma 2,

B m xy χ c jk 2 4m B m xa 1 3 i=1 B m a i a i+1 B m a 4 y B m jk b -m |j -k| -αm ,
which implies, using the induction assumption,

B m xy χ c jk 2 4m 2 6 b -m |z -x| -αm/2 .
Now, for each z ∈ Rx xy , there are of the order of |z -x| d+d/2 pairs (j, k) satisfying (4.8). Therefore On the other hand, if χ c xz occurs then, using B gz b|z -g| α b|z -x| α/2 and Lemma 2, we deduce that

2B xg B xz /B gz b|z -x| α /(b|z -x| α/2 ) = |z -x| α/2 . Hence B m xy χ c xz χ xg 2 m B m xg B m gy χ c xz χ xg 2 3m (B 3m xg χ xg )B m gy |z -x| -αm .
As in the proof of the case i = 1, we introduce an intermediate point a ∈ R xy such that R ga and R ay are diamonds, disjoint from each other and from R xg , except at endpoints (see Figure 1, and Lemma 12 [START_REF] Angel | Localization for linearly edge reinforced random walks[END_REF] in [START_REF] Disertori | Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model[END_REF] for more details).

Therefore B m xy χ c xz χ xg 2 3m (1 + ρ)2 2 |z -x| -αm .
There are less than |z -x| d/2 choices for g, so that

R 3 (x, y) 2 3m r>a 1/4 r d-1+d/2-αm 1/16
if αm 3d and a Cst.

4.5. Proof of R 4 (x, y) 1/16. If a Cst, then R n(x,z) (z) is inside R xy ; recall that its side length is of the order of |z -x| 1/2 << |y -x|.
As in the proof of the case i = 2, we can choose four intermediate points a i ∈ R xy , so that R xa 1 , R a i a i+1 (i = 1, . . . , 3) and R a 4 y are diamonds with disjoint interiors which do not overlap with the hypercube R n(x,z) (z) (see Figure 2, and Lemma 12 [START_REF] Coppersmith | Random walks with reinforcement[END_REF] in [START_REF] Disertori | Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model[END_REF] for more details). Now, using Lemma 5,

B m xy χ c R n(x,z) (z) 2 4m B m xa 1 3 i=1 B m a i a i+1 B m a 4 y T ∈Tn xv ∈Rv, yv∈Λ,v∈L T 4 n-kv -1 <|xv -yv | 4 n-kv v∈L T B m xvyv b m |x v -y v | αm .
This implies, letting n v = n -d v and using the induction assumption,

B m xy χ c R n(x,z) (z) 2 4m 2 6 T ∈Tn v∈L T (4 nv ) d (4 nv 2) d b m 4 (nv-1)αm = 2 4m+6 I n(x,z)
where, for all n 0,

I n = T ∈Tn v∈L T γ2 -ζnv , with γ = (4 α /b) m 2 d , ζ = 2(αm -2d).
It follows from the structure of the trees T n that

I n = γ2 -ζn + (I n-1 ) 2 d , I 0 = γ.
Assume αm 4d and b Cst(α, d), so that γ 1/4 and ζ αm. Then we deduce by elementary induction that I n 2 -αmn for all n 1. Note that 4 n(x,z) 2 M |z -x|. In summary,

R 4 (x, y) 2 4m 2 -αmM/2 Cst r>a 1/4 r d-1-αm/4 1/16
if αm 8d and a Cst.

Proof of Ward inequalities: Lemmas 1 and 4

We start this section with two lemmas, that will be useful in the subsequent proofs. The first is an elementary lemma which expresses the equivalent resistance on a conductance network as a quadratic form and relates the quantity D x,y to the corresponding term in [START_REF] Disertori | Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model[END_REF]. Lemma 6. Let (Λ, E) be a finite connected graph and (c e ) e∈E a conductance network on E. We set c i = j∼i c i,j . Let i 0 ∈ Λ be a fixed vertex and M be the matrix given by

(M i,j ) =    c i,j , i = j -c i , i = j
(which is the Matrix of the generator of the Markov process with jump rates (c i,j )). Let N be the restriction of M to Λ \ {i 0 }. Denote by G the Λ × Λ symmetric matrix defined by G(i 0 , y) = G(y, i 0 ) = 0 for any y and G(x, y) = -N -1

x,y if x, y = i 0 . If D x,y is the equivalent resistance between x and y, then

D x,y = G(x, x) -2G(x, y) + G(y, y) =< (δ x -δ y ), G(δ x -δ y ) > .
Remark 4. In comparison with [START_REF] Disertori | Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model[END_REF], it means that the term G x,y which appears in formula (5.4) in [START_REF] Disertori | Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model[END_REF] is the equivalent resistance between x and y with conductances c x,y i,j = e -tx-ty B x,y β i,j e t i +t j .

Proof. We first interpret probabilistically the matrix G. Let G i 0 (x, y) be the Markov chain with transition probabilities p i,j = c i,j c i and killed at its first entrance hitting time of i 0

G i 0 (x, y) = E x   H i 0 k=0 ½ X k =y   ,
where

H i 0 = inf{k 0, X k = i 0 }. Then, clearly, G(x, y) = 1 c x G i 0 (x, y),
Then exercise 2.61 in chapter 2 of [START_REF] Lyons | Probability on Trees and Networks[END_REF] yields the result.

The next lemma ensures that the joint density µ a,V (u, s) given in (2.2) has bounded "moments" up to a certain order. for any choice of m 1 , . . . m n such that m j a/2 for all j = 1, .., n.

Proof. By expression (2.2), we have

n j=1 B m j e j = 1 (2π) (N-1)/2 e 1 B āe e D[M a,V (u, s)]e -j∈Λ u j k =i 0 du k ds k ,
where we set āe j = a e j -m j for j = 1, ..n and āe = a e for all other edges. Note that āe j a e j /2 since m j a/2 for all j. Expanding the minor as a sum over spanning trees we deduce where we have used the bound a e j 2(a e j -m j ) so we can replace a e with ā in the determinant.

Proof of lemma 1. For more readability we provide an elementary derivation of the Ward identity which does not involve fermionic integral, even though it could be deduced from the more general proof of lemma 4. Consider the graph (V, Ẽ) where we add an extra edge ẽ = {x, y} to E (possibly creating a double edge). We put a weight a ẽ = -m on this edge. Denote by μa,V (u, s) the corresponding density, and by Ma,V the corresponding matrix in (2.1). Using the expression (2.2), we deduce ,s) is a probability measure on Ẽ. The bound above holds for any m a/4, hence μa,V (u, s) is integrable. Moreover it is an analytic function in the parameters a e , and therefore (5.1) μa,V (u, s)

k =i 0 du k ds k = 1.
Now let N(u, s) be the restriction of M V (u, s) to the subset V \ {i 0 }, and let Ñ(u, s) be the corresponding matrix for the new graph. Expanding the determinant with respect to the extra term coming from the new edge ẽ we deduce, letting N = N(u, s),

det( Ñ(u, s)) = det(N) -(-m) e ux+uy B x,y (½ x =i 0 det(N) x,x -2½ x =i 0 ,y =i 0 det(N) x,y + ½ y =i 0 det(N) y,y ) = det(N) 1 -m e ux+uy B x,y < (δ x -δ y ), G(δ x -δ y ) > ,
where in the previous expressions, det(N(u, s)) x,y is the minor where we remove line x and column y, and where in the last line G is the matrix defined in Lemma 6, with the conductances c i,j defined in Proposition 2. Using lemma 6, we deduce

det( Ñ(u, s)) = det(N(u, s))(1 -mD x,y ). Therefore 1 = μa,V (u, s) k =i 0 du k ds k = B m x,y (1 -mD x,y )µ a,V (u, s) k =i 0 du k ds k .
Proof of Lemma 4. In [START_REF] Disertori | Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model[END_REF], the protected Ward estimates are a consequence of Berezin identity stated in appendix C, proposition 2 of [START_REF] Disertori | Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model[END_REF]. The starting point is to write the determinant term D[M(W, u)] as a fermionic integral (cf e.g. [START_REF] Disertori | Modèles de matrices aléatoires et supersymétrie[END_REF][START_REF] Disertori | Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model[END_REF]) with new pairs of anti commuting variables (ψ i , ψ i ). This leads to

(5.2) µ a,V (u, s, ψ, ψ) = e∈E 1 B ae e e -e∈E ae Be (Se-Be) e -j∈Λ u j , where S i,j = B ij + e u i +u j (ψ i -ψ j )(ψ i -ψ j )
is the same supersymmetric expression introduced in [START_REF] Disertori | Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model[END_REF],

u i 0 = s i 0 = 0 and ψ i 0 = ψ i 0 = 0. Then dµ a,V (u, s) = dµ a,V (u, s, ψ, ψ) k =i 0 dψ k dψ k .
From the mathematical point of view, the fermionic integral should be understood as an interior product with respect to the variables (ψ k , ψ k ), cf e.g. [START_REF] Disertori | Modèles de matrices aléatoires et supersymétrie[END_REF]. Since the fermionic variables are antisymmetric, we have (S e -B e ) 

(s ij ) ij ], then (5.4) f [(S ij ) ij ]dµ a,V (u, s, ψ, ψ) = f (0), if f [(s ij ) ij ]
is integrable with respect to dµ a,V (u, s, ψ, ψ) (which means that after integration with respect to the fermionic variables it is integrable in the usual sense).

Remark that if f is a polynomial (of degree bounded by a), then it is a direct consequence of the fact that the measure dµ a,V (u) has integral one, which can be proved either by supersymmetric or probabilistic arguments (as we did in (5.1) above). Indeed let (x i , y i ), i = 1, . . . , n be n pairs of points such that R x i y i are regions whose interiors are disjoint. As in the proof of lemma 1 above let Ẽ = E ∪ (∪ n i=1 {x i , y i }) the graph obtained by adding the edges {x i , y i }. We assign to each new edge {x i , y i } the conductance a x i ,y i = -m i . Let Ma,V be the corresponding matrix. Then

n i=1 S m i x i y i = 1 (2π) (N-1)/2   e∈ Ẽ 1 B ae e   D[ Ma,V (u, s)]e -j∈Λ u j k =i 0 du k ds k ,
In order to show that the density is integrable, we proceed as in the proof of Lemma 1. This time we have to choose n simple paths γ i , i = 1, ..n in E connecting x i to y i , which do not intersect; this is possible, since the regions R x i y i have disjoint interiors. Then

n i=1 S m i x i y i = 1
Now by the same arguments as in [7, lemma 7] we have

D[ Ma,V (u, s)] D[M a,V (u, s)] n j=1 (1 -m j D N x j y j ).
This completes the proof of (2.7). Finally to prove the "protected" Ward estimate (2.7) we proceed exactly as in [7, lemma 6]. The main idea is to approximate the characteristic function χ(x) by a sequence of smooth decreasing functions χ δ (x). Now, by symmetry, S m xy χ δ (S xy ) = 1 ∀x, y.

Integration over the fermionic variables yields

S m xy χ δ (S xy ) = B m xy χ δ (B xy )e m+ χ ′ (Bxy ) χ(Bxy ) (Sxy-Bxy) = 1 (2π) (N-1)/2 e∈ 1 B ae e B m xy χ δ (B xy )D[ Ma,V (u, s)]e -j∈Λ u j k =i 0 du k ds k ,
where Ma,V is defined on the graph Ẽ = E ∪ (x, y) and the edge (x, y) has conductance

a xy = -m + B xy -χ ′ (B xy ) χ(B xy ) e ux+uy > -m, since χ ′ < 0. Hence D[ Ma,V (u, s)] > D[ Mā,V (u, s)] = D[M a,V (u, s)](1 -mD xy )
where āxy = -m and āe = a e for all other e. Finally

B m xy χ δ (B xy )(1 -mD xy ) 1.
The proof of the general statement follows from a combination of this argument with the ideas used for the estimate (2.7).

Proof of Proposition 3

Denote by E x,y = {{i, j}, i ∈ R x,y , j ∈ R x,y , i ∼ j} the set of non-directed edges in R x,y . We denote by Ẽx,y the associated set of directed edges. By construction, aD N x,y is the effective conductance between x and y of the network with edges E x,y and conductances (γ i,j ) {i,j}∈Ex,y . Let F x,y be the set of unit flows from x to y with support in Ẽx,y : precisely, θ ∈ F x,y if θ is a function θ : Ẽx,y → R which is antisymetric (i.e. θ(i, j) = -θ(j, i)) and such that div(θ) = δ x -δ y , where div : R x,y → R is the function div(θ)(i) = j∈Rx,y, j∼i θ(i, j).

Recall that (see for instance [START_REF] Lyons | Probability on Trees and Networks[END_REF], Chapter 2) aD N

x,y = inf θ∈Fx,y {i,j}∈Ex,y 1 γ i,j (θ(i, j)) 2 . (6.1)

The strategy is now to construct explicitly a flow θ such that under the condition χ x,y , the energy (6.1) is bounded by a constant depending only on d, α and b. This flow will be constructed as an integral of flows associated to sufficiently spread paths.

Remind that a deformed diamond is a set of the following form and p(z) = x + r(z)(y -x) the projection of z on the line (x, y).

For h ∈ (0, 1) we denote Rx x,y = {i ∈ R x,y , r(i) h}, Ry x,y = {i ∈ R x,y , r(i) h}. From the assumption on f x , f y , there exists h ∈ [1/10, 9/10] such that Rx

x,y ⊆ R x x,y and Ry

x,y ⊆ R y

x,y

1 . We fix now such a h ∈ [1/10, 9/10]. We set

∆ h = {z ∈ R d , r(z) = h} ∩ Cl x ∩ Cx-y y .
If is clear from the construction that

|∆ h | Cst(d)|x -y| d-1 ,
where |∆ h | is the surface of ∆ h (note that Cst(d) does not depend on the value of h ∈ [1/10, 9/10]).

To any path σ = (x 0 = x, . . . , x n = y) from x to y we can associate the unit flow from x to y defined by

θ σ = n i=1 ½ (x i-1 ,x i ) -½ (x i ,x i-1 ) .
For u ∈ ∆ h , let L u be the union of segments

L u = [x, u] ∪ [u, y].
Clearly L u ⊆ Cl

x ∩ Cx-y y by convexity. There is a constant Cst(d), such that for any u ∈ ∆ h , we can find a simple path σ u in R x,y from x to y such that for all k = 0, . . . , |σ u | dist(L u , σ u (k)) Cst(d), (6.2) and we define θ as

θ = 1 |∆ h | ∆ h θ σu du,
which is a unit flow from x to y.

The path σ u can visit a vertex i only if dist(i, L u ) c 0 = Cst(d). This implies that, for all i, j: j∼i

|θ(i, j)| 1 |∆ h | ∆ h ½ {dist(i,Lu) c 0 } du. Now if r(i) ∈ [0, h], then ∆ h ½ {dist(i,Lu) c 0 } du Cst(d) h r(i) d-1
1 Indeed, if i ∈ R x,y , the angle ∠(z, i), (x, y) π/8 for z = x, y. Hence, if i ∈ Rx x,y , then |i -x| h cos(π/8) |x -y|. Hence Rx x,y ⊆ R x x,y as soon as h f x cos(π/8). But cos(π/8) 0.92 and f x 1/5 so that f x cos(π/8) 0.18. Similarly Ry x,y ⊆ R y x,y as soon as 1 -h f y cos(π/8), since f y cos(π/8) 0.18. Using f x + f y > 1 + 1/5 it implies that (f x + f y ) cos(π/8) > 1 and we can find h ∈ [1/10, 9/10] such that Rx

x,y ⊆ R x x,y and Ry x,y ⊆ R y x,y .

Hence, if r(i) ∈ [0, h] Now, under the condition χ x,y , we know that if i ∈ Rx

x,y ⊆ R x x,y , then γ i,j c|i -x| -β and if i ∈ Ry

x,y ⊆ R y x,y , then γ i,j c|i -y| -β with β = 4α < 1. This implies 

Theorem 4 .

 4 Fix d 3. For all m > 0, there exists a

  e (a e ) = dw e Γ(a e ) e -weBe w ae-

2. 3 .

 3 Estimates on effective conductances. Definition 5. Given a diamond or deformed diamond R xy ⊆ Λ, let D N xy be the effective resistance of the electrical network with the same conductances c x,y i,j in R xy as in Definition 1, and Neumann boundary conditions on ∂R xy . Definition 6. Fix b > 1 and α 0. Given i, j ∈ Λ, let

  Given a deformed diamond R xy ⊆ Λ and the two corresponding regions R x xy and R y xy , let χ xy = j∈R x xy χ xj j∈R y xy χ yj .

4 .Definition 8 .

 48 Inductive argument Fix b > 1 and α ∈ (0, 1/4), which will be chosen later; let C = Cst(d, α, b) be the constant considered in Proposition 3. The sets R xy in our induction are classified as follows: • Class 1: diamonds R xy , with |x -y| > a 1/4 ; • Class 2: deformed diamonds R xy , with |x -y| > a 1/4 ; • Class 3: deformed diamonds R xy , with |x -y| a 1/4 .

  Assume (H) ℓ-1 . Let x, y ∈ Λ be such that |x -y| = ℓ. Let Rxy be the deformed diamond between x and y introduced in Definition 3, with l = y -x; let Rx xy and Ry xy be its two parts in Definition 4, respectively from x and y, withf x = f y = 1/(2 cos(π/16)). |j-x|<|z-x| χ xj .Then it follows from the expansion of the partition of the unity u xy + R(x, y) + R(y, x) . The first term in the right-hand side of (4.1) can be upper bounded, by (2.9) in Lemma 4: if a Cst(C) (recall m = a 1/8 ), then (4.2) B m xy u xy (1 -mC/a) -1 1 + ρ 3/2.

( i )

 i First, the sites z close x, i.e. with |z -x| a 1/4 : R 1 (x, y) = z∈ Rx xy : |z-x| a 1/4 B m xy χ c xz j: |j-x|<|z-x| χ xj .

(4. 5 ) e U j +Uz 2 (e 3 2 .

 522 S j -S z ) 2 e 2 e 2Uz (S j -S z ) 2 Inequalities (4.4)-(4.5) together imply that B zj cosh(1) + e 3 /2 = Cst. Therefore χ xy holds with b = Cst and α = 0 implies (4.6) B 3m xy {p,q},p,q∈Rxy ξ pq (1 -3mC/a) -1 3/2, assuming a Cst(C) (recall m = a 1/8 ).

4. 2 .m xy χ c xz 2 m B m xz B m zy χ c xz 2 m

 22 Proof of R 1 (x, y) 1/16. Let z ∈ Rx xy be such that |z -x| a 1/4 . Using χ c xz B 2m xz b -2m |z -x| -2αm and Lemma 2, we obtain B b -2m |z -x| -2αm B 3m xz B m zy .

Figure 1 .Figure 2 .

 12 Figure 1. (Figure 5 in [7]) We add one intermediate point a. The two angles θ 1 and θ 2 are greater than π/8.

R 2 ( 4 . 4 .

 244 Cst(a) and αm 10d. Proof of R 3 (x, y) 1/16. Let z ∈ Rx xy be such that |z -x| > a 1/4 . If v x,y,z = g x,y,z = 1, then there exists g with |g -z| |z -x| 1/2 such that, for all h ∈ R xy with |g -h| |z -x|/5, χ gh holds. Let R xg be the deformed diamond in Definition 3, with l = y -x, and choose f x = (|z -x| -1)/|g -x| = 1 -O(a -1/8 ), f y = 1/5 in Definition 4. Then χ xg holds.

Lemma 7 .

 7 Let (x i , y i ), i = 1, . . . n be n pairs of nearest neighbor points and let e 1 , . . . e n be the corresponding undirected edges in E. Then

c e e -j∈Λ u j k =i 0 du k ds k ,

 0 ā,V (u, s)]e -j∈Λ u j k =i 0 du k ds k = 2 n dµ ā,V (u, s) = 2 n

  xy D[ M|a|,V ] where |a| xy = m and |a e | = a e > 0 for all e ∈ E. Now let γ a simple path in E connecting x to y. Then, by Lemma 2, the same argument as in the proof Lemma 7 above, |μ a,V (u, s)| 2 m(|γ|-1) e∈γ B 2m e μ|a|,V (u, s) 2 m(|γ|-1) 2 |γ| μ | a|,V (u, s) where | a| e = |a| e -2m for all e ∈ γ and | a| e = |a| e otherwise. By Proposition 2, dμ | a|,V (u

  few points close to x and to y so that the set is connected inZ d ) where x ∈ Z d , l ∈ R d , l = 0 and y ∈ Z d is a point such that y ∈ Cl x For z ∈ R d we set r(z) = (z -x) • (y -x) |y -x| 2 ,

1 =

 1 Cst(d) |i -x| d-1 . Similarly we have if r(i) ∈ [h, 1]

  j: j∼i |θ(i, j)| Cst(d) |i -y| d-1 .



  x,y , i =x c -1 |i -x| β-2(d-1) + i∈ Ry x,y , i =y c -1 |i -y| β-2(d-1)  For k ∈ N, |{i ∈ R x,y , k |i -x| < k + 1}| Cst(d)k d-1 , and similarly for x replaced by y. k β-(d-1) Cst(d, α, b). since β = 4α < 1 and d 3.

  holds, where n(x, z) is the part of M log |z -x|/(2 log 4). Then, if we let R 4 (x, y) =

		B m xy χ c xz v x,y,z χ c R n(x,z) (z)	χ xj ,
		z∈ Rx xy : |z-x|>a 1/4		j: |j-x|<|z-x|
	we apply the "good points" expansion obtained in Section 3 to show in Section 4.5 that
	1/16 if a Cst, b Cst(α, d) and αm 4d (Case 2c in [7]). In summary, R 4 (x, y)
			4
		R(x, y)	i=1	R i (x, y) ,
	and R i (x, y) i = 1, 2, 3 and 4.	1/16 is proved in Sections 4.2, 4.3, 4.4 and 4.5, respectively in the cases

  If f (s ij ) is a smooth function of the variable (s i,j ), we understand f (S i,j ) as the function obtained by Taylor expansion of the fermionic variables (ψ i , ψ i , ψ j , ψ j ); this expansion is finite since the fermionic variables are antisymmetric. Hence, formally f (S i,j ) is function with values in the exterior algebra constructed from (ψ i , ψ i , ψ j , ψ j ). The same can be generalized to f [(S ij ) i,j∈V ×V ]. The Berezin identity (see for instance proposition 2 in[START_REF] Disertori | Quasi-diffusion in a 3D supersymmetric hyperbolic sigma model[END_REF]) implies that for any smooth function f [

					2 = 0, and
	Then	e -ae Be (Se-Be) = 1 -	a e B e	(S e -B e ) =	1 Be (S e -B e ) 1 + ae
	(5.3)	µ a,V (u, s, ψ, ψ) =	e∈E	1 e S ae	e -j∈Λ u j