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Abstract 
 
Proteomics will celebrate its 20th year in 2014. In this relatively short period of time, 
its has invaded most areas of biology and its use will probably continue to spread in 
the future. These two decades have seen a considerable increase in the speed and 
sensitivity of protein identification and characterization, even from complex samples. 
Indeed, what was a challenge twenty years ago is now little more than a daily 
routine. Although not completely over, the technological challenge now makes room 
to another challenge, which is the best possible appraisal and exploitation of 
proteomic data to draw the best possible conclusions on a biological point of view. 
The point developed in this paper is that proteomic data are almost always 
fragmentary. This means in turn that although better than a mRNA level, a protein 
level is often insufficient to draw a valid conclusion on a biological point of view, 
especially in a world where post-translational modifications play such an important 
role. This means in turn that transformation of proteomic data into biological data 
requires an important intermediate layer of functional validation, i.e. not merely the 
confirmation of protein abundance changes by other methods, but a functional 
appraisal of the biological consequences of the protein level changes highlighted by 
the proteomic screens.  
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Many if not most proteomic studies aim at comparing at least two different biological 
states to find differences in protein expression, most often quantitative differences. 
The conceptual rationale of these studies is based on homeostasis at the cell and 
organism levels, so that the proteins that change are perceived as important and 
linked to the differences in phenotypes between the various states compared. This 
concept is used by all functional -omics and is true for physiology or fundamental cell 
biology. In a nutshell, the concept is that changes observed with -omics translate into 
biologically relevant events or mechanisms. 
 
When proteomics is applied as the discovery tool for such comparative purposes, two 
major hurdles must be overcome.  
 
The first hurdle is the one of protein inference, i.e. how to convert mass spectrometry 
(MS) signals acquired on digestion peptides, or, in the case of gel-based proteomics, 
a combination of MS signals and image intensities, into a list of modulated proteins. 
MS data processing to obtain trustful lists of identified and relatively quantified 
proteins has been the subject of intense debate and investigation and was at the 
origin of proteomics data publication guidelines already almost 10 years ago [1-3]. As 
a positive consequence of those guidelines, no proteomics dataset can today be 
published without false discovery rate estimation at the peptide level, although the 
peptide to protein inference problem can still not be considered as a straightforward 
issue [4]. Concerning quantitative results extraction from MS data, the guidelines are 
still evolving, obviously as the field is not as mature as MS/MS identification 
interpretation. Overall, those guidelines have participated in significantly increasing 
the quality of published proteomics datasets, especially in the handful of specialized 
proteomics journals. Although not fully settled, this first hurdle will not be further 
commented in this paper. 
 
The second hurdle is the protein to biology inference and it is felt that the problems 
linked to this step are often overlooked, leading possibly to data over- or 
misinterpretation and thus to misleading conclusions. We would therefore like to 
comment on this biology inference problem and suggest some guidance, based on 
published examples, to circumvent possible interpretation issues.  
 
Although shotgun proteomics and gel-based proteomics behave differently in the 
protein to biology inference problem, the common root shared by all proteomic 
setups is that the characterization of the protein changes is most often not sufficient 
to draw solid biological conclusions directly. First, protein identification is based on 
subsets of peptides and information for correct characterization of protein family 
members or protein isoforms (PTM, cleavage) may be missing. Second, proteomic 
analysis rarely identifies all protagonists from a given metabolic pathway or functional 
network, and information on modulating or limiting factors is often lacking. Third, 
even assuming reliable identification and quantification, measuring a change in 
protein level does not always tell much about the biological effect, particularly when 
considering that many proteins have multiple functions or exist as active and inactive 
isoforms. In all these situations, the problem is the same: how to draw reliable 
conclusions on biological processes from sketchy and incomplete data? This should 
obviously not been considered as an irreducible flaw, and proteomics offers great 
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chances for solving biological and biochemical questions. It rather means that the 
strengths and limitations of the toolbox must be clearly understood to obtain the 
greatest solid benefit. 
 
In the case of shotgun proteomics, the most frequent situation is that proteins are 
identified by only a few peptides, covering a very low and non-uniform portion of the 
protein sequence. From these few peptides, a change in the biological activity 
represented by the protein is generally inferred, but this can be a strong 
overinterpretation.  
One reason is that the overall length of the protein is not documented. It is very rare 
that the identified peptides are positioned close to the termini of the proteins, so that 
it is not possible to know whether the complete protein or only a fragment is detected. 
This is trivial in gel-free proteomics, where only peptides are analyzed without any 
prior separation at the protein level. This is however also true in the GeLC setup, 
where SDS-PAGE of proteins is used as the first separation stage, followed by in-gel 
digestion and LC/MS/MS of the peptides [5]. This is due to the fact that the resolving 
power of SDS PAGE is not fully used, as a limited number of bands are usually cut in 
a shortly migrated gel lane. Just to take an example, if a gel able to separate proteins 
between 20 and 200 kDa is cut in ten fractions, the ten fractions will cover the 
following Mw ranges from 20-25 kDa to 159-200 kDa, through windows such as 40-
50kDa or 80-100kDa. This is due to the logarithmic law governing the relationship 
between migration distance and molecular mass [6]. The consequence is a 20% 
inaccuracy in the protein mass determination for each fraction, i.e. an important room 
for error. It has been shown that forms differing even moderately in molecular mass 
can have quite different properties, e.g. on an immunological  or clinical  point of view 
[7, 8]. Protein cleavage represents indeed a very complex way of regulation of 
protein activity, as exemplified by trypsin itself. After zymogen activation, which 
releases the active protease, trypsin autolyses progressively, producing various 
cleavage products   with trypsin activity [9, 10], no proteolytic activity at all [11], or 
with no trypsin activity but a low chymotrypsin activity [12]. This example underlines 
the difficulty to infer the actual  function of a protein from only a small subset of 
peptides, and the tendency to neglect the molecular mass information [13] is likely to 
introduce further difficulties in the functional interpretation of the proteomic data. 
 
More generally, it is now well-recognized but still underestimated that PTM represent 
a very important way of modulating protein activity, and this statement goes much 
beyond the classical example of phosphorylation. Acetylation [14, 15], methylation 
[16], glycosylation [17], or prenylation [18] have been documented to modulate 
strongly protein localization and/or activity. Even minimal chemical modifications, 
such as oxidation, can result in protein inactivation [19-21]. Thus, the absence of 
knowledge of the precise modification profile of a protein can result in a misleading 
interpretation of the observed quantitative changes. Indeed, an increase in a protein 
amount can reflect not a boost in the protein activity, but just an attempt of the cells 
to maintain a biological function that has been altered, e.g. by an oxidation (e.g. in 
[22]). Conversely, an activating PTM occurring on a protein (e.g. by phosphorylation 
or acetylation) can boost a protein function at constant level [14, 15] and may even 
compensate a decrease in protein level. 
 
It can be argued that the documentation provided in shotgun proteomics is 
comparable to the indirect one given by transcriptomics, or to the one obtained 
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through the epitopes recognized in a sandwich ELISA. This is certainly true, but it 
should be kept in mind that ELISA are rarely used as discovery tools but rather as 
scoring tools, and that transcriptomic data are now not considered in most journals 
as a sufficient evidence by themselves. Put bluntly, if not provocatively, the limited 
characterization afforded by shotgun proteomics, when used in a generic discovery 
mode, does not usually offer by itself sufficient information to infer a change in the 
protein activity, and thus to correlate reliably the proteomic data to biology.  
 
This caveat does not apply only to proteomics but to most omics, and just reflects an 
often overlooked lesson of genomics, i.e. that complex genomes are not that 
complex in terms of range of gene products expressed. For example, the human 
genome contains ca. 21,000 protein-coding genes [23], to produce an organism with 
ca. ten thousand billion cells [24]. This is only 10% more protein-coding genes than 
the worm genome, producing an organism with 1000 cells [25], and less than four 
times the number of protein-coding genes of the unicellular yeast genome [26]. This 
means in turn that the increase in regulations complexity is likely to hide not in the 
number of gene products, but in combinatorial regulations downstream, i.e. at the 
protein interaction level and at the PTM combinatorial level, both being of course 
intertwined. These downstream layers of regulations can produce paradoxical results 
when compared to mRNA or protein levels alone. This can be due to various 
modifications, including protein cleavages as mentioned above, but also to 
stoichiometry issues in protein complexes. As an example, when present in excess, a 
scaffolding subunit in a multiprotein complex can lead to a decreased activity by 
decreasing the proportion of fully assembled and fully active complexes. Thus, it 
should be kept in mind that a direct inference from a protein level to a biological 
effect can be an overspeed conclusion. 
 
Although different, the situation in 2D gel-based proteomics is problematic as well. 
2D gels provide a rather accurate characterization of the molecular mass and pI of 
the protein of interest, and will allow determining whether it is the full-length protein or 
a fragment that is investigated. Moreover, multiple PTM often result into multiple 
spots [27], so that it is often possible to know which form of the protein is changing. 
Knowing the exact nature and position of the PTM can however represent a difficult 
task [21, 28], at least in bottom-up proteomics. Last but not least, 2D gel-based 
proteomics also shows the unique ability to compare protein abundances within one 
sample due to the uniformity of protein staining [29]. This said, the main danger of 
overinterpretation in 2D gel-based proteomics is embedded in the way 2D gels are 
used to select quantitative changes. Most often, changes are detected on a spot by 
spot basis, so that proteins appearing as multiple spots pose the problem of taking a 
part for the whole. A typical example is malate dehydrogenase, which appears as 
three spots (Figure 1). In some circumstances, only the most acidic (i.e. most 
modified form) is induced, the other major spots being constant. In the classical 2D 
gel-based proteomic setup, the increased spot is excised, its nature determined by 
mass spectrometry, and an increase in malate dehydrogenase is deduced. On a 
purely quantitative point of view, this deduction is a nonsense, as the minor spot 
represents only a few percent of the total malate dehydrogenase. It happens 
however that malate dehydrogenase activity is strongly modulated by PTM such as 
acetylation [14], so that this minor spot may bear an important part of the malate 
dehydrogenase activity and its change may be relevant, functionally speaking. In this 
context, it is impossible to know which is the real functional inference to be made on 
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the sole basis of the proteomic data.  
 
In conclusion, no discovery proteomic setup is devoid of interpretation biases at the 
stage of drawing biological inference from proteomic data. Various parameters, such 
as the addressed biological question, study design, sample type and processing, will 
have an impact on data interpretation and must be carefully defined. Nevertheless, 
and independently of these aspects, validation by independent and preferably 
orthogonal techniques appears as an unavoidable process to consolidate the 
proteomic data. 
 
This validation can be divided in two distinct parts. The first stage of validation deals with 
the problem of protein inference and fragmentary data and aims at confirming the 
identity of the protein species/isoform/PTM identified from shotgun experiments or 2D 
gel-based proteomics. It will also  confirm quantitative data from proteomic experiments. 
This first stage of verification is usually performed with independent methods like 
immunoblotting (e.g. in [30] ) , qPCR, or SRM (e.g. in  [31] ). 
 
Although important for securing the protein identifications and the quantitative 
changes observed, this validation at the sole protein level is often not sufficient to 
infer biological changes. A second stage of validation is requested to address the 
question of functional inference. In most cases, what is inferred from the protein 
quantitative differences is a change in the activity of the protein.  Due to the 
numerous caveats discussed above, this has to be experimentally verified, and the 
functional validation of proteomic data can take various forms. The objective of this 
article is clearly not to review all of them, but to provide some examples, starting with 
siRNA, which can be extremely a valuable tool for investigating cell biology 
processes [32]. In many cases, however, a change in activity can be directly or 
indirectly documented by a biochemical validation. This can be an enzyme assay, a 
metabolite assay [30], or an indirect assay based on pharmacological inhibitors [33].  
The example of the pyruvate assay used in the frame of schizophrenia by Martins-
de-Souza et al. also illustrates an important point, which is that specificity should not 
be mistaken for relevance. Since the description of the "déjà vu in proteomics" [34, 
35], there is a tendency to consider that changes in metabolic enzymes represent a 
general adaptation of cells that has little to do with relevant cellular responses. This 
lecture grid is strongly influenced by the biomarker perspective, where specificity and 
selectivity are essential. Although not specific, changes in metabolic enzymes can be 
critical on a mechanistic point of view. Impaired carbohydrate metabolism in 
schizophrenia is a good example [36, 37], as well as sterol metabolism for immune 
control and inflammatory diseases [38, 39]. In this frame, the added value of 
proteomics is both to point out the pathway of interest (and thus pharmacological 
entry points to modulate it) and the proteins modulated within the pathway (e. g. in 
[40, 41] for statins). 
The latter example points out to another trend in proteomics that has developed due 
to the specific features of shotgun proteomics. In general, shotgun proteomics (or 
transcriptomics) delivers a huge list of modulated proteins, generated by automated 
in silico database search, so that individual validation becomes impossible. 
Researchers usually resort to pathway analysis to make the most of such massive 
data. These tools are helpful since they can provide some hints for further 
investigation of some of the identified proteins. However, the too frequent weak point 
is that the outcome of pathway analyses is not validated by additional experiments, 
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so that the reader is left short of solid data. There are happy exceptions however, as 
shown by an example on the proteomic analysis of Cornelia de Lange syndrome [42].  
This study highlighted a variety of proteins with no obvious link between themselves, 
but on the one hand oxidative stress was suspected and on the other hand the 
pathway analysis converged to Rad21 and c-myc. The authors validated both 
proteomic-driven hypotheses by a combination of western blotting, chromatin 
immunoprecipitation and qPCR. By doing so they closed the circle on both 
hypotheses and ended up with solid data that can be convincing much beyond the 
proteomic community.  
 
In conclusion, proteomic data are often not precise enough to make valid biologically 
inferences directly. Thus, targeted validation by non proteomic methods seems 
indispensable to warrant the validity and functional importance of the findings made 
by proteomics. It seems to us that ten years after securing the quality of the MS data, 
tending to this goal of securing the biological relevance should be the next objective 
for the proteomic literature. 
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Figure 1: RAW 264 macrophage cells were cultured either under control conditions or 
treated for 24 hours with 0.11mM zinc sulfate. The cellular proteins were extracted in 
a urea-thiourea buffer, and separated by 2D electrophoresis (1st dimension linear pH 
gradient from 4 to 8, 2nd dimension 10% acrylamide gel). Only the zones containing 
the malate dehydrogenase (Swissprot P14152) spots are shown. 
When the control (Panel A) and zinc-treated (panel B) conditions are compared by 
computerized image analysis (Delta 2D software) a significant change (reduction by 
zinc treatment) is found in spot a, but not in spots b and c, nor in the Hox2 spot. 


