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ABSTRACT   

The well-known Yule-Nielsen modified spectral Neugebauer model is one of the most accurate predictive models for the 
spectral reflectance of printed halftone colors which expresses the spectral reflectance of halftones raised to the power 
1/n as a linear combination of the spectral reflectance of the fulltone colors (Neugebauer primaries) also raised to the 
power 1/n, where n is a tunable real number. The power 1/n transform, characteristic of the Yule-Nielsen transform, 
empirically models the nonlinear relationship between the spectral reflectances of halftones and fulltones due to the 
internal propagation of light by scattering into the printing support, a phenomenon known as “optical dot gain” or “Yule-
Nielsen effect”. In this paper, we propose a graphical method permitting to observe this non-linear relationship in the 
case of single-ink halftones and to experimentally check the capacity of the Yule-Nielsen model to predict it accurately. 
In the case where the Yule-Nielsen transform is not well adapted to the considered type of prints, we propose alternative 
transforms in order to improve the prediction accuracy.   

Keywords: Color reproduction, spectral model, halftone color, printing, reflectance, transmittance, Yule-Nielsen model.  

1. INTRODUCTION  

Digital printing technologies have considerably increased the number of applications and printable materials in a context 

where designers and even customers themselves are more and more used to select the printing materials and parameters 

in order to precisely obtain the expected appearance. Precise color management needs a calibration of the printing system 

for the selected printing support, inks and halftoning technique [1]. The classical calibration method is based on a color 

profile established by measuring the color of about one thousand of halftones [2], a procedure that must be repeated each 
time the printing support, the ink set or the halftoning technique is modified. The use of a color prediction model can 

considerably ease the color calibration since only a few tens of colors need to be printed and measured. One of the most 

accurate models available today is the Yule-Nielsen modified spectral Neugebauer model [3], or simply “spectral Yule-

Nielsen model”, which is widely used for the calibration of printing systems [4, 5, 6, 7] and can be improved by the 

method by Crété & al. for estimating the effective surface coverage of the inks [8].  

The spectral Yule-Nielsen model predicts the spectral reflectance of halftone raised to the power 1/n as a linear 

combination of the spectral reflectances of the fulltone colors (i.e. colors made by covering the whole surface with one or 

several inks, also called “colorants” or “Neugebauer primaries”) also raised to the power 1/n, where n is a tunable 

parameter. The weights attributed to the different fulltone colors are the effective surface coverages of these colors in the 

halftone. The power 1/n transform empirically models the nonlinear relationship between the spectral reflectances of 

halftones and fulltones due to the internal propagation of light by scattering into the printing support, a well-known 

phenomenon also called “optical dot gain” or “Yule-Nielsen effect” [9]. In this paper, we propose a graphical method 
showing this non-linear relationship in an intelligible way for single-ink halftones. The graph represents the reflectance 

of a single-ink halftone as a function of the reflectance of this fulltoned ink. If the spectral measurement contains k 

wavebands, then k points can be displayed in the graph and it is easy to check how well the Yule-Nielsen function 

matches them. The measured points generally follow a curved line which fairly coincides with the plot of the Yule-

Nielsen transform computed with the appropriate n value and effective ink surface coverage. In some cases however, the 

coincidence is not perfect and alternative transforms, based on other functions than the power 1/n function, may be 

found. We propose a few ones which provide modest but appreciable gain in prediction accuracy, this latter being 

measured in terms of average CIELAB ΔE1994 values over several tens of printed colors. The graphical method is also 

very interesting to display effects that are rather difficult to detect by looking directly at the spectral reflectances.  
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2. SPECTRAL REFLECTANCE AND TRANSMITTANCE OF HALFTONES COLORS 

Before analyzing the relevance of the spectral Yule-Nielsen model for a given type of print, we propose to recall in this 

section the whole prediction method, including the ink spreading assessment proposed by Hersch and Crété [8]. The 

model is presented for reflectance of CMY halftones but it similarly applies for transmittance and for any ink colors.  

2.1 Halftone colors 

Halftoning is a color reproduction technique based on a finite set of coloring substances, the inks, which are deposited 

according to binary grids of small patterns (inks dots). The halftone surface is a mosaic of colored areas corresponding to 

the partial overlap of the ink dots. The areas with no ink, those with a single ink layer, and those with two or three 

superposed ink layers are each one considered as distinct colorants (also called Neugebauer primaries). In CMY 

printing, based on cyan, magenta and yellow inks, one obtains eight colorants corresponding to the areas with no ink, 

cyan alone, magenta alone, yellow alone, red (magenta and yellow), green (cyan and yellow), blue (cyan and magenta) 

and black (cyan, magenta and yellow).  

 
Figure 1. Detail of a halftone color with cyan, magenta and yellow inks, showing the ink dots and the mosaic of 8 colorants.   

In classical clustered-dot or error diffusion prints, the fractional area occupied by each colorant can be deduced from the 

surface coverages of the primary inks according to Demichel’s equations [12]. Denoting as c, m, and y the surface 

coverages of the cyan, magenta and yellow inks, the surface coverages of the eight colorants are: 
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2.2 The Yule-Nielsen model 

The first color prediction model for halftone prints, proposed by Neugebauer [13], assumes that the color of the halftone 

is a linear combination of the colors of the colorants contained in it. The spectral version of this model can be written:  

 ( ) ( )8

1
λ λi ii

R a R==∑  (2) 

where R(λ) denotes the spectral reflectance of the printed halftone, ( )λiR  the spectral reflectances of the colorants i 
printed each one on a large area to be measured, and ai the respective surface coverages of the colorants in the halftone.  

However, this linear equation (2) does not predict correctly the color of the halftone due to the scattering of light within 

the paper bulk which induces a color halo around the ink dots. This phenomenon, known as the “Yule-Nielsen effect”, is 

even amplified by the multiple reflections between the paper bulk and the print-air interface [1]. In order to account for 

this effect, Vigiano [3] proposed to apply the Yule-Nielsen transform [9] on the spectral Neugebauer equation: 

 ( ) ( )8 1/

1
λ λ

n
n

i ii
R a R= =  ∑  (3) 
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where n is real number, generally higher than 1 (when n = 1, the spectral Yule-Nielsen equation (3) is equivalent to the 

Neugebauer equation), to be fitted. It is generally related to the strength of scattering in the printed support [10], on the 

halftone screen frequency and on the ink-paper interaction [11]. 

2.3 Ink spreading assessment 

At printing time, the inks may spread on the surface in different amounts according to the presence or not of other inks 

on the surface [9]. As a consequence, the effective surface coverages of the inks, thereby those of the colorants in the 
halftone, are not known. A solution to obtain them is to establish experimentally the correspondence between nominal 

and effective surface coverages through so-called ink spreading functions. Let us present the method to compute them.  

 
Figure 2. Halftones used for the ink spreading assessment.  

The set of 36 halftones shown in Figure 2 are printed. They correspond to the combinations of one ink u at nominal 

surface coverage a = 0.25, 0.5 or 0.75, and one solid colorant v obtained by printing each other ink at a surface coverage 
0 or 1. Each of these halftones contains two colorants corresponding to the areas where ink u is superposed to colorant v 

[effective surface coverage /u va′ , spectral reflectance ( )& λu vR ] and to the areas where colorant v is alone [effective 

surface coverage /1 u va′− , spectral reflectance ( )λvR ]. According to the Yule-Nielsen equation (3), their reflectance 

R(λ) is written: 

 ( ) ( ) ( ) ( )1/ 1/
/ / &λ 1 λ λ

n
n n

u v v u v u vR a R a R ′ ′= − +   (4) 

The effective surface coverage /u va′  is fitted by minimizing the sum of square differences between the measured spectral 

reflectance of the halftone, M(λ), and the spectral reflectance predicted by Eq. (4):  

 ( ) ( ) ( ) ( ){ }2730nm
1/ 1/

/ &
0 1 λ 380nm

arg minλ 1 λ λ
n

n n
u v v u v

x

a M x R xR
≤ ≤ =

 ′ = − − + ∑  (5) 

Repeating this procedure for the 36 halftones yields 12 lists of 3 effective surface coverages /u va′  associated with the 

nominal surface coverages {0.25, 0.5, 0.75}. It is assumed that the effective surface coverage is 0, respectively 1, when 

the nominal surface coverage is 0 (no ink), respectively 1 (full coverage). By linear interpolation, one obtains continuous 

curves ( )/u va f a′ = , where a and a′  denote the nominal, respectively the effective surface coverages of the halftoned 

ink (see examples in Figure 3).   

With the fitted surface coverages, the spectral reflectances predicted by Eq. (4) are as close as possible to the measured 

spectral reflectances but not equal to them. In order to assess the difference between predicted and measured spectra, we 

use a visual metric,  the CIELAB ΔE94 color distance, calculated by converting the two spectra first into CIE1931-XYZ 
tristimulus values by selecting the D65 illuminant, and then into CIELAB color coordinates using as white reference the 

spectral reflectance of the unprinted paper illuminated with the D65 illuminant [14].  

The optimal n value can be determined by trying successively different values, e.g. n = 1 to 10 in steps of 0.1, and keep 

the n value for which the average ΔE94 value computed over the 36 halftones is minimal. Figure 4 shows two plots of the 

average ΔE94 value as a function of the n value for CMY colors printed in inkjet with the Canon PixmaPro 9500 Mark II 



SPIE Electronic Imaging – Color Imaging XIX: Displaying, Processing, Hardcopy, and Applications, 

2-6 February 2014, 9015-27. 

 
 

 

4 

 

printer (a) at 150 lpi on Canon PP201 260 g/m2 glossy coated paper (spectral measurements based on the 45°:0° 

geometry using the X-rite i1 spectrophotometer) and (b) at 100 lpi on common 80 g/m2 office paper (spectral 

measurements based on the diffuse:8° geometry using the X-rite Color i7 spectrophotometer). A minimum is clearly 

displayed in the case of the coated paper at n = 3.5, whereas the curve asymptotically decreases in the case of the office 

paper, which indicated that the optimal n tends to infinity (in practice, we can set n to 20 or 100). 

 
Figure 3. Example of ink spreading functions giving the effective surface coverage a’ of each ink superposed with each 

colorant made of the other two inks at the surface coverages 1 or 0, as functions of the nominal surface coverage a. 

 
Figure 4. Variation as a function of the n value of the average ΔE94 computed from the predicted and measured spectral 

reflectances of the 36 single-ink halftones displayed in Figure 2, in the case of (a) inkjet CMY colors printed at 150 lpi on 

glossy coated paper and (b) in the case of CMY colors printed at 100 lpi on common office paper. 

2.4 Prediction 

Once the ink spreading functions have been obtained, the spectral reflectance of any halftone can be predicted. Let us 

consider a halftone where the cyan, magenta and yellow ink are printed at the nominal surface coverages c0, m0, and y0. 

These surface coverages are converted into effective ink surface coverages c, m and y by a weighted average of the ink 

spreading functions in order to account for the superposition-dependent ink spreading [8]. The weights are expressed by 

the surface coverages of the respective colorants on which the ink halftone is superposed. For example, the weight of the 

ink spreading function cf  (cyan halftone over white colorant) is ( ) ( )1 1m y− − . In the case of three halftoned inks, 

effective surface coverages are obtained by performing a few iterations with the following equations:  



SPIE Electronic Imaging – Color Imaging XIX: Displaying, Processing, Hardcopy, and Applications, 

2-6 February 2014, 9015-27. 

 
 

 

5 

 

 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
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  (6) 

For the first iteration, 0=c c , 0=m m  and 0=y y  are taken as initial values on the right side of the equations. The 

obtained values of c, m and y are then inserted again into the right side of the equations, which gives new values of c, m, 

y and so on, until the values of c, m, y stabilize. They are then plugged into Eq. (1) in order to obtain the effective surface 
coverages of the eight colorants, which are finally used in Eq. (3) to predict the spectral reflectance of the halftone.  

2.5 Spectral transmittance of halftone colors 

It has been recently shown that the spectral Yule-Nielsen transform applies to the spectral transmittance of halftone 

colors, either printed on paper [15] or on transparency films [16], in a similar way as for reflectances: 

 ( ) ( )8 1/

1
λ λ= =  ∑ n

n
k kk

T a T  (7) 

where T(λ) denotes the spectral transmittance of the halftone, ai the surface coverage in the halftone of each colorant i 
whose spectral reflectances ( )λiT  is measured using a spectrophotometer in transmittance mode, e.g. the X-Rite Color 

i7 instrument in total transmittance mode (diffuse:0° geometry).  

Note that for a same halftone sample, the reflectance and transmittance equations may involve different n values because 

scattering phenomena are different in reflection and transmission. The ink spreading functions may also be different and 

it is recommended to compute them from reflectance measurements for reflectance predictions, and from transmittance 

measurements for transmittance predictions.     

3. GRAPHICAL ANALYSIS OF THE YULE-NIELSEN TRANSFORM 

Although the Yule-Nielsen equation in known to be empirical and its physical justification has not been completely 

clarified despite several attempts [17, 18, 19], one generally observes good agreement between predicted and measured 

spectra for a wide range of printing techniques. However, it is rather difficult to interpret precisely the deviations that are 
sometimes observed between them. We thus propose a graphical method permitting the comparison in a more intelligible 

way in the case of single-ink halftones.  

3.1 Yule-Nielsen function and Fulltone-to-halftone reflectance diagram 

Let us denote as 0R , aR  and 1R  the spectral reflectances of patches where the ink has the respective surface coverages 

of 0, a and 1. The Yule-Nielsen equation for a single-ink halftone, already given in Eq. (4), is written: 

 ( ) ( ) ( ) ( )1/ 1/
0 1λ 1 λ λ

n
n n

aR a R a R ′ ′= − +   (8) 

where a′  denotes the effective surface coverage of the ink corresponding to the nominal surface coverage a. Using the 

notations 0/ay R R=  and 1 0/x R R= , Eq. (8) can also be written, for each wavelength: 

 1/1
n

ny a a x ′ ′= − +   (9) 

We will call “Yule-Nielsen function” the function 1/(1 )n nx a a x′ ′→ − + . By plotting it for given values of n and a, one 

obtains a curve showing graphically the relationship between fulltone and halftone reflectances normalized by the 

unprinted support reflectance (Figure 5). When the ink is nonabsorbent at a given wavelength, we have 1 0aR R R= = , 

therefore 1x y= = . The Yule-Nielsen function thus satisfies ( )1 1f =  and the curve passes through the point (1, 1) in 

the diagram. When the ink is fully absorbing, we have 1 0aR R= = , therefore 0x =  and 1/(1 ) ny a′= − . 

In the special case where n = 1, the Yule-Nielsen equation becomes the Neugebauer equation (2) and the Yule-Nielsen 

function is a straight line that intercepts the ordinate axis in 1y a′= − . It is tangent to the Yule-Nielsen function in x = 1, 

i.e. the relationship between halftone and fulltone reflectance is almost linear when the fulltone has nearly the same 

reflectance as the unprinted support, therefore when the ink is almost not absorbing.  
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Figure 5. Plots of the Yule-Nielsen function defined by Eq. (9) for various n-values and three different surface coverages a. 

This relationship can be verified experimentally from the measurements of ( )0 λR , ( )λaR  and ( )1 λR , which provides 

as many points as values contained in the measured spectra. We obtain a “fulltone-to-halftone diagram” as the ones 

showed in Figures 6, 7 and 8. The spectral reflectances needed to plot these diagrams are systematically measured for the 

calibration of the ink spreading functions.  

Eq. (9) can also be written 

 1/ 1/1n ny a a x′ ′= − + , (10) 

which means that the Yule-Nielsen model assumes a linear relationship between 
1/

0( )
n

aR R  and 
1/

1 0( )
n

R R . This can 

also be experimentally verified in a “transformed halftone-to-fulltone diagram” (see Figures 6 and 7).  

3.2 Physical meaning of the Yule-Nielsen function 

The ratio 1 0/x R R=  can be interpreted as the effective transmittance of the ink layer for the average light path of light in 

the fulltone print. In a halftone, we may consider the layer as composed of absorbing areas with effective transmittance x 

and non-absorbing areas with effective transmittance 1. In absence of scattering, the effective transmittance of the 

halftone layer would be 1y a a x′ ′= − + , which is the Neugebauer function. But since the layer is generally scattering, we 

can consider that after transmission through a sublayer of relative thickness 1/n, therefore of transmittance 
1/1 ,nt a ax= − +  light is mixed before entering the next sublayer. Since the light crosses n sublayers of relative thickness 

1/n, the transmittance of the whole layer is nt . This yields the Yule-Nielsen function defined by Eq. (9).  

Although this interpretation is not realistic if one imagines light trajectories in the printing material, it has at least a 

physical meaning in term of statistical light transfers. A light scattering model would be necessary to establish the 

equivalence between this simple model and a more rigorous description of the propagation of light in the scattering 

halftone. But the experience shows that this equivalence must exist when the Yule-Nielsen model is capable of accurate 

prediction of colored halftones. Note that this interpretation of the Yule-Nielsen transform has been recently used to 

define a hybrid additive-subtractive color mixing system [20].  

3.3 Illustration of the graphical method with halftones printed in inkjet 

Figures 6 illustrates the graphical method through the example of a halftone printed with either cyan, magenta or yellow 

ink at nominal surface coverage 0.5 by using a periodical clustered dot halftoning at 150 lpi, and printed on Canon 

PP201 260 g/m2 glossy paper (same paper as for the experiment presented in Figure 4) with the Canon Pixma Pro9500 

inkjet printer. The spectral reflectances of the unprinted paper, ( )0 λR , of the halftones, ( )λaR , and of the fulltones, ( )1 λR , were measured from 380 nm to 730 nm in steps of 10 nm (36 wavebands) with the X-rite i1 spectrophotometer 

based on the 45°:0° geometry. These spectra are plotted in the top row of the figure. In dashed line are plotted the 

spectral reflectances of the halftones predicted by the spectral Yule-Nielsen model with the optimal n = 3.5 fitted in the 

calibration step (see. Section 2.3) and the effective surface coverage a′  obtained from equation (5) and specified on top 

of each column. The fulltone-to-halftone diagrams, in the middle row, show the 36 points ( 1 0R R ; 0aR R ) computed 

from the measured spectral reflectances, as well as the Yule-Nielsen function given by Eq. (9) with n = 3.5 (solid line) 

and the Neugebauer function given by Eq. (9) with n = 1 (dashed line) for the specified effective surface coverage a′ . At 

the bottom of the figure are shown the transformed fulltone-to-halftone diagrams. 
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We see from the fulltone-to-halftone diagrams that the Yule-Nielsen function matches well the experimental points, 

which indicates that the Yule-Nielsen transform correctly models the nonlinear relationship between the reflectances of 

the halftone, the fulltone, and the unprinted paper. This is confirmed by the low ΔE94 values computed from the 

measured and predicted spectra: 0.20 units for the cyan halftone, 0.55 units for the magenta halftone and 0.09 for the 

yellow halftone. This is also confirmed by the fact that the points ( );x y′ ′ , with 1/
0( / ) n

ay R R′ =  and 1/
0( / ) n

ay R R′ = , 

are well aligned and match the function 1y a a x′ ′ ′ ′= − +  for the fitted values of n and a′ . 

 
Figure 6. Top row: Measured spectral reflectances of cyan (left column), magenta (central column), and yellow (right 

column) halftones printed at the surface coverages 0.5 (reflectances R0.5) and 1 (reflectances R1) on glossy coated paper 

(reflectance R0). Plots in dashed line represent the spectral reflectances of the halftones predicted by the spectral Yule-

Nielsen model for the values of a′  specified on top of each column. The CIELAB ΔE94 values assess the deviation between 

predictions and measurements. Central row: Fulltone-to-halftone diagrams showing the points ( 1 0R R ; 0aR R ) deduced 

from the measured spectra in the different wavebands, as well as the Yule-Nielsen function given by Eq. (9) with n = 3.5 

(solid line) and the Neugebauer function, for the specified value of a′ . Bottom row: Transformed fulltone-to-halftone 

diagrams showing the experimental points ( 1/
1 0( ) nR R ; 1/

0( ) n
aR R ) for n = 3.5. 
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In order to verify the prediction accuracy of the model over a larger set of colors, we printed 125 halftones with the same 

printer, same inks, same paper and same halftoning technique as the colors used for Figure 6 and measured them using 

the same spectrophotometer. These 125 colors correspond to all the combinations of cyan, magenta and yellow inks 

printed at the nominal surface coverages 0, 0.25, 0.5, 0.75 and 1. The average ΔE94 value over these 125 colors is 0.51 

units, and the 95%-quantile of the 125 ΔE94 values is 1.12 units. We can therefore conclude that the Yule-Nielsen model 

is well performing for this type of print. 

3.4 Limitations of the Yule-Nielsen function 

Let us now study halftones printed with the same printer, the same inks and the same halftoning technique on a non-

fluorescent, non-calendered and noticeably porous 80 g/m2 paper called Biotop. Figure 7 presents similar graphs as those 

presented in Figure 6, corresponding to the cyan ink halftones at 0.25, 0.5 and 0.75 nominal surface coverages. The 

Yule-Nielsen functions where calculated with an optimal n value of 100.  

 
Figure 7. Similar graphs as in Figure 6 for cyan ink halftones printed at 0.25, 0.5 and 0.75 nominal surface coverages on 

Biotop non-calendered paper. The Yule-Nielsen functions were calculated with n = 100.     
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This example shows that good agreement between prediction and measurement cannot be achieved for all types of prints: 

Despite the optimized n and a’ values, the Yule-Nielsen functions do not match the experimental points satisfyingly, and 

the points ( );x y′ ′ , with 1/
1 0( ) nx R R′ =  and 1/

0( ) n
ay R R′ = , are not aligned. Consequently, the prediction accuracy of 

the spectral Yule-Nielsen model is poorer: the ΔE94 values for the halftones printed at 0.25 and 0.5 surface coverage are 

beyond the value of the just noticeable color difference threshold (ΔE94 = 1). On a set of 64 patches designed for 

verification (all combinations of the cyan, magenta and yellow inks printed at the nominal surface coverages 0.13, 0.38, 

0.63 and 0.88), we obtained an average ΔE94 value of 1.23 units, and a 95%-quantile of 2.36 units.  

 
Figure 8. Spectral reflectances and fulltone-to-halftone diagrams for cyan ink halftones printed at 0.5 nominal surface 

coverage on the PP201 glossy coated paper (left and center) and on tracing paper (right). The spectral measurements are 

based on the diffuse:8° geometry with specular component included (left and right) and excluded (center). 

Figure 8 shows three other examples of cyan ink halftone printed at nominal surface coverage 0.5. On the left and the 

center of the figure, the studied sample is the same as in the left column of Figure 6 but instead of measuring its spectral 

reflectance with the X-rite i1 spectrophotometer based on the 45°:0° geometry, we used the X-rite Color i7 

spectrophotometer based on the diffuse:8° geometry in either specular reflection included mode (left column) or specular 

reflection excluded mode (central column). The difference that we observe between the two measurement modes is due 

to the fact that the cyan ink displays a reddish sheen in the specular direction which is more pronounced in the fulltone 

than in halftones. This sheen is responsible for the deviation between measured and predicted spectra beyond 570 nm in 

the specular reflection included mode. In the fulltone-to-halftone diagram, the left-most experimental points in the graph 
follow “u”-shaped line and are thus located on either side of the Yule-Nielsen function, which means that y have 

different values for a same value of x. No function can reproduce such an incurved line since y can have only one value 

for one x value. However, the global prediction accuracy over the 125 halftone colors described in the previous section is 

still acceptable because the colored sheen is visible in a limited number of halftones, i.e. those where the cyan ink has a 

high surface coverage and is not superposed with other inks. The average ΔE94 value obtained with the optimal n = 5.5 

was 0.91 units, therefore below the just noticeable color difference, and the 95%-quantile 1.95 units. The prediction 

accuracy is nevertheless poorer than in the specular reflection excluded mode where the reddish sheen is not observed: 

for the same set of 125 halftone colors, the average ΔE94 value obtained with the optimal n = 5.6 was 0.62 units and the 

95%-quantile 1.19 units, therefore comparable with the prediction accuracy achieved with measurements based on the 

45°:0° geometry. 
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The graphs on the right of Figure 8 show the case of the same cyan ink printed at 120 lpi on Canson 90 g/m2 tracing 

paper. Since the tracing paper is semi-transparent, the reflectance is much lower in comparison to the other papers (see 

the ordinate scale of the plotted reflectances). For this sample, the experimental points are dispersed on either side of the 

Yule-Nielsen function. The prediction accuracy achieved on a set of 40 CMY halftones is very poor: we obtained an 

average ΔE94 value of 2.99 units and a 95%-quantile of 4.58 units.  

4. ATTEMPTS TO IMPROVE THE YULE-NIELSEN MODEL  

Rewriting the Yule-Nielsen equation (3) as 

 ( ) ( )81

1
λ λi ii

R f a f R−
= =    ∑ , (11) 

with the function 1/: nf x x→ , and the reverse function 1 1/: nf y y− →  can be a source of inspiration to find other 

functions f in order to improve the spectral Yule-Nielsen model when it fails to provide accurate prediction accuracy. 

The proposition by Lewandowski et al. [19] to select a negative n value in the Yule-Nielsen model, while n is rather 

supposed higher than 1, can be considered as a first example of extended Yule-Nielsen function.  

The new functions fi should be defined and continuous on [0, 1] and satisfy the condition ( )1 1if = . The reflectance aR  

of a single-ink halftone of surface coverage a′  is written: 

 ( ) ( ) ( )( )1
1 11

ia i iR f a f R a f R− ′ ′= − + , (12) 

where 0R  and 1R  denote the reflectances of the printing support without, respectively with ink. It can also be written 

 
( )( ) ( )( )1

0 0

1
i a i

i i

f R f R
a a

f R f R
′ ′= − +  (13) 

but not  

 ( ) ( )0 1 01i a if R R a a f R R′ ′= − +  (14) 

except for the functions of the form α:f x x→  where α is a real number (i.e. those on which is based the classical Yule-

Nielsen model). The fulltone-to-halftone diagram, based on the values  1 0R R  and 0aR R , is therefore not helpful to 
optimize the new function, but we can check graphically in the transformed fulltone-to-halftone diagram whether, for the 

selected function, the points ( ) ( ) ( ) ( )( )0 1 0;i a i i if R f R f R f R  are aligned.  

The searching of alternative functions is empirical and may be tedious. A first idea to generate new functions is to make 

simple transforms on the classical function itself,  by introducing for example a shift: 

  ( )1/ 1
1 1: ;      :

n nf x x s f y y s−→ − → +  (15) 

where s is a real number that somehow represents surface reflection, not subject to optical dot gain. Note that since this 

function does not satisfy the condition ( )1 1f = , the s value should be rather small.   

The classical function f can also be modified in the following way:  

  ( )( ) ( )
( )

2
1/

2 1
2 2

4 1
: 1 ;      :

2 1

n
n

q q q y
f x qx q x f y

q

−
 − + −  → − − → −  (16) 

and function f1 and f2 can be combined: 

  ( ) ( )( ) ( )( )
21/

2 1
3 3

4 1
: 1 ;      :

2 1

nn q q q y
f x qx q x s f y s

q

− − + −→ − − − → +−  (17) 

Another transform of the function 1f  is 
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  ( ) ( ) ( )1/ 1
4 4: ln 1 / ln ;      : 1

nn xf x x s b b f y b b s− → − − + → + − +   (18) 

where “ln” denotes the natural logarithm function. More complicated functions can be found, for example 

  ( )( ) ( )( )1
5 5

1
: arcsh ln 1 ;      : exp sinhω / 1

ω
f x n x s f y y n s−→ + − → − +  (19) 

where “arcsh” denotes the inverse of the hyperbolic sine function, and ( )ω arcsh ln 2n= . 

These new functions f1 to f5 were tested on the 64 halftones printed on Biotop paper already presented in Section 3.2  and 

Figure 7. For the model calibration and the predictions, similar procedure is followed as the one detailed in Section 2 by 

simply replacing the classical function f with the considered function fi. The prediction accuracy yielded by each function 

for the 64 halftones is presented in Table 1, as well as the values of the tunable parameters which were fitted in order to 

obtain the lowest average ΔE94 value. The five functions yield very similar accuracy, which is slightly better than with 

the classical function f although the average ΔE94 value remains beyond the just noticeable color difference (ΔE94 = 1). 

The improvement, modest but appreciable, is partly explained by the introduction of additional tunable parameters, but 

also by the fact that the experimental points are better aligned in the transformed fulltone-to-halftone diagram, as shown 
in Figure 9 through the example of the cyan halftone printed at the surface coverage 0.5 on the Biotop paper (same 

sample as the one studied in the central column of Figure 7).  

 
Table 1. Performance of the spectral Yule-Nielsen model based on the classical function f and on transformed functions fi on 

64 halftones covering the printer’s gamut printed on Biotop non-calendered paper.  

Function Parameters Average ΔE94 95-quantile ΔE94 

1/: nf x x→  n = 100 1.23 2.36 

( )1/

1 :
n

f x x s→ −  n = 20; s = 0.09 1.12 2.1 0 

2 1/
2 : ( (1 ) ) nf x qx q x→ − −  n = 100; q = 0.12 1.11 2.12 

( ) 2 1/
3 : ( 1 ( ) ) nf x qx q x s→ − − −  n = 50; s = 0.06; q = -0.05 1.12 2.09 

( )1/
4 : ln ( ) 1 / lnnf x x s b b → − − +   n = 2; b = 1.7; s = 0.12 1.11 2.16 

( )( )5 : arcsh ln 1 /ωf x n x s→ + −  n = 100; s = 0.09 1.14 2.24 

 
Figure 9. Transformed fulltone-to-halftone diagrams representing the points ( )1 0 0.5 0( ) ( ); ( ) ( )i i i if R f R f R f R  issued from 

the measured spectral reflectances of the Biotop paper with no ink (reflectance R0), with full coverage ink (reflectances R1) 

and with halftoned ink at 0.5 nominal surface coverage (reflectances R0.5), for the classical function f and the functions f1 and 

f2 computed with the parameters presented in Table 1. The lines of equation: 1y a a x′ ′ ′ ′= − + , where a′  is the effective 

surface coverage of the halftone fitted for each function, are plotted in dashed line. 
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The three diagrams in Figure 9 have been generated by the classical function f and the functions f1 and f2 (those obtained 

with the functions f3 to f5, quasi-identical to these latters, are not reproduced). The effective surface coverages a′  
specified on top of the graphs were fitted for each function. In this example, functions f1 and f2 yield the same a′ -value, 

lower than the one fitted with f.  This indicates that f1 and f2 model stronger optical dot gain than f. We also see that the 

experimental points are closer to the straight line of equation: 1y a a x′ ′ ′ ′= − +  with the new functions than for the 

classical one. Is seems that the improvement of accuracy is due to the fact that the line passes through the points 

corresponding to the highest absorbance of the ink (left-most points in the diagram), which is due to the fact that the 
ΔE94 value is more sensible to spectral deviations in wavelengths domains where the spectrum is low.  

5. CONCLUSIONS 

Despite its physical base is not completely established yet, the spectral Yule-Nielsen model improved by Hersch and 

Crété’s ink spreading assessment method provides a high prediction accuracy for most types of halftone prints. However, 

it is less performing for certain types of printed surfaces, especially when the printing support is lowly reflective like 

tracing paper, or when the surface of the print has a colored sheen in the specular direction. The graphic method 

proposed in this paper enables verifying the relevance of the Yule-Nielsen transform for the considered printing setup, by 

plotting for single-ink halftones the Yule-Nielsen function ( ) 1/(1 )n ny x a a x′ ′= − +  with the optimal n and a′  values 

computed in the calibration step and comparing it with the points 1 0 0( / ; / )aR R R R  computed in the different wavebands 
from the measured spectral reflectances of the paper, ( )0 λR , of the halftone, ( )λaR , and of the fulltone of the 

corresponding ink, ( )1 λR . As an alternative, one can check whether the points 1/ 1/
1 0 0(( ) ;( ) )n n

aR R R R  are aligned and 

compare them to the function 1/ 1/( ) 1n ny x a a x′ ′= − + .  

It may happen that the 1 0 0( ; )aR R R R  points do not draw a well defined curve in the fulltone-to-halftone diagram, i.e., 

that at wavelength where the unprinted paper and the fulltone have respectively same reflectance the halftone has 

different reflectances, due for example to optical phenomena such as fluorescence, too strong absorption or color sheen 

at the surface. Except these optical phenomena are explicitly modeled, the spectral Yule-Nielsen model is incapable of 

predicting these differences of reflectance and the prediction accuracy in this case is generally poorer.  

In the case where the spectral Yule-Nielsen model is judged to be not accurate enough but the 1 0 0( ; )aR R R R  points 

draw a well defined line, one can try to find another function than the 1/nx  function in order to improve the prediction 

accuracy. A few ones have been proposed in this paper, but other ones can be invented. The improvement of prediction 

accuracy may be modest, as in the examples presented here, but still appreciable.  
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