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The color rendering of superposed coloring components is often an issue either to predict or to simulate the ap-
pearance of colored surfaces. In graphical software, for example, transparence options are available to display
different layouts on top of each other. With two colored layers, tuning the transparency of the top layer enables
transitioning continuously from the color of this top layer to the color of the bottom layer. However, these options
based very often only on additive color mixing offer limited transitions between two base colors. It would be
advantageous to introduce more advanced options, providing, for example, realistic renderings of superposed
paint layers. This is the aim of the present study, where simple models are proposed to create intermediate con-
figurations between additive and subtractive color mixings. These models rely on the spectral power distribution
of a finite set of primaries with given proportions. They may be extended to RGB color reflective or transmissive
systems if the red, green, and blue wavebands do not overlap each other. An additional parameter is introduced to
tune the proportions of additive and subtractive mixings, each type of mixing being based on its set of primaries.
Various simulations of color mixings are presented, illustrating the possibilities offered by this model in addition
to those permitted by the purely additive and subtractive mixings. © 2013 Optical Society of America

OCIS codes: (300.6550) Spectroscopy, visible; (330.1690) Color; (330.1730) Colorimetry.
http://dx.doi.org/10.1364/JOSAA.31.000058

1. INTRODUCTION
What is the result of the mixing between different colors? The
answer of course depends on the relative proportions of the
different primaries, but also on the type of color mixing. In
additive mixing, color is obtained by mixing lights with differ-
ent spectral power distributions either by projection of col-
ored light beams or by juxtaposition of small colored areas
as in displays. The colors are synthesized by mixing at least
three primaries, generally not more: red, green, and blue. In
subtractive mixing, colors are obtained by superposing col-
ored layers behaving as spectral filters for white light, like
the inks in half-tone printing. Three primaries are commonly
used: cyan, magenta, and yellow. The distinction between
additive and subtractive color mixing was first exposed by
Helmholtz [1] in 1860 in order to clarify the previous confusion
between light and colorant mixture. In many color ordering
systems [2] and in the habits of painters even today, the
primaries are often red, yellow, and blue. There is a large
dispersion in the precise definition of these primaries depend-
ing on the available pigments. In practice, e.g., for painting, the
mixing laws are complex to simulate. Nevertheless, the result-
ing color in general stays between those predicted by the ideal
additive and by the ideal subtractive mixing. In half-tone
printing, Yule and Nielsen [3] defined such an intermediate
empirical mixing law. In this paper, we propose other easily
understandable color mixing laws governed by intuitive
parameters: the component proportions and a mixing param-
eter indicating whether the color synthesis is additive or

subtractive. The ideal additive and subtractive mixing are in-
cluded in these new mixing laws as limit cases. The mixing
laws deal with spectral data with a minimum of three spectral
bands. The models can also be satisfyingly extended to RGB
color systems in the case in which the wavebands defining the
red, green, and blue channels do not overlap each other.

2. DEFINITION OF COLORS
The color P of a surface comes from the interpretation by the
human visual system of the light signal reflected or transmit-
ted by the surface, especially its spectral distribution denoted
Pλ. The numberN of wavebands depends on the measurement
system. At least three wavebands in the visible range are
needed to define colors, but N may be larger, or much larger
in the cases of multi and hyper-spectral systems. By normal-
izing the measured spectrum by a reference spectrum consid-
ered as the maximum signal (direct incident light for
transmittance measurements, and light scattered by a white
standard for reflectance measurements), the spectrum satis-
fies the property

0 ≤ Pλ ≤ 1 ∀ λ: (1)

The color P can be considered as a vector in an N -
dimensional space (with N ≥ 3), and Pλ are its coordinates.
From the spectral values, the color can be defined more con-
ventionally by using the standardization of the CIE [4,5]. The
CIEXYZ tristimulus values are obtained by multiplying the
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spectral value Pλ, the standardized illuminant radiance spec-
trum Sλ, and each of the matching color functions x̄λ, ȳλ,
and z̄λ, and then summing the resulting spectrum over the
visible wavelength domain:

8<
:
X � k

P
λ PλSλx̄λ

Y � k
P

λ PλSλȳλ
Z � k

P
λ PλSλz̄λ

; �2�

where the factor k is a normalization factor giving Y � 100
for the reference whose spectral values are Pλ � 1 for every
waveband. For object colors, the CIELAB color space is
classically used. The coordinates—lightness L�, green/red
coordinate a�, and blue/yellow coordinate b�—can be derived
from the CIEXYZ tristimulus values by nonlinear rela-
tions [4,5].

3. COLOR MIXING RULES
Let us consider Nc primaries Pi with i ∈ f1;…; Ncg. Nc is com-
monly 2 (binary mixing) or 3 (ternary mixing). But Nc can be
larger to precisely model color reproduction systems; for ex-
ample, for RGB displays, the black background can be num-
bered among the primaries (Nc � 4), or in a CMY trichromy,
the bare paper, or the paper with one, two, or three ink layers,
are all considered as primaries (Nc � 8). Several color mixing
configurations can be defined from the spectra Pi;λ. The
following rules are an attempt to formalize some of these
configurations.

Let us denote as P the color obtained by mixing the Nc

primaries Pi with respective proportions ci satisfying the
conditions

0 ≤ ci ≤ 1 (3)

and

XN
i�1

ci � 1: (4)

• Rule 1: The spectral values Pλ attached to P satisfy the
property (1).

• Rule 2: The proportions ci should have the same influ-
ence on Pλ for every waveband λ in the visible spectrum.

• Rule 3: The mixing operation is commutative: P is inde-
pendent of the ordering of the components in the mixing.

• Rule 4: By considering the mixing between two colors
with respective proportions c and 1 − c, the relation Pλ�c� is
continuous and monotonous with c in every waveband λ.

Rule 4 induces the following logical property: the color re-
sulting from the mixing of color P1 with itself is again color P1

for every proportion c.
It is important to note that counterexamples can be found

where these rules are not satisfied, e.g., color mixing with
photoluminescence effects where light emission at one
wavelength greatly depends on the absorption at a smaller
wavelength.

A. Purely Additive and Subtractive Mixing Laws
The color mixing laws may be illustrated by considering a
composite filter, or “color cell,” of unit area and unit thickness

decomposed into different subareas and/or different sub-
layers as shown in Fig. 1. The following assumptions are made
regarding the optical properties of subareas and sublayers:

— They do not scatter light and therefore satisfy Beer–
Lambert–Bouguer law (i.e., the transmittance of superposed
components is the product of the component’s individual
transmittances).
— The multiple reflections of light between superposed

components are not taken into account.
— Lateral propagation of light between neighboring subar-

eas can be neglected.

These strong assumptions allow defining some ideal
mixing laws respecting the previously stated rules.

Let us denote as ai the fractional areas of the subareas, and
as ti the fractional thickness of the sublayers.

In purely additive mixing, the color cell is composed of
Nc juxtaposed filters of unit thickness that thus represent
the primaries Pi [Fig. 1(a) for Nc � 3]. The fractional areas
of these subareas, ai, satisfying

XNc

i�1

ai � 1; (5)

are the proportions ci of the mixing. The additive mixing is a
linear combination of the primary spectral values:

Pλ �
XNc

i�1

ciPi;λ (6)

with ci � ai.

Fig. 1. Color cells describing the different mixing laws.
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In purely subtractive mixing [see Fig. 1(b) for Nc � 3], the
color cell is defined as the superposition of Nc sublayers of
unit area with respective fractional thicknesses ti, satisfying

XNc

i�1

ti � 1: (7)

These fractional thicknesses are the proportions ci of the
mixing. The purely subtractive mixing consists in a weighted
geometric mean of the color components:

Pλ �
YNc

i�1

Pci
i;λ (8)

with ci � ti.
Both the additive and the subtractive mixing laws verify the

mixing rules, except the continuity (Rule 4) in the case of
the subtractive mixing when one spectral value Pj;λ of at least
one primary is zero. In this case, Pλ � 0 for every 0 < cj ≤ 1
and Pλ �

Q
i≠jP

ci
i;λ for cj � 0. This discontinuity may yield an

aberrant color for the mixing. That is the reason why we re-
strict the mixing rules to strictly positive values. Condition (1)
thus becomes

0 < Pλ ≤ 1 ∀ λ: (9)

In practice, zero values are replaced with the minimal meas-
urable value.

B. Kubelka–Munk Paint Mixing Model
Purely additive and subtractive color mixing are ideal cases.
The color rendering of painting mixings is more complex to
predict. The Kubelka–Munk model [6] is a widely used ap-
proach to simulate the reflectance spectra of paintings as a
function of the absorption coefficient K and the backscatter-
ing coefficient S of the paint. For an opaque layer, the reflec-
tance R is directly related to the ratio K∕S:

K
S
� �1 − R�2

2R
: (10)

When Nc different paints are mixed, one generally assumes
the additivity of the absorption and backscattering coeffi-
cients Ki and Si of the paints [7,8], i.e.,

K
S
�
PNc

i ciKiPNc
i ciSi

; (11)

where ci represent the concentrations of the respective
components.

The reflectance of an infinite layer of this paint can then be
calculated by inverting the relationship (10), but bothKi and Si

for every componentmust be known. Theseoptical parameters
are rather difficult to determine because at least two spectral
measurements are required, e.g., the reflectance of the sample
layer on a black and on awhite substrate. A database of absorp-
tion and scattering coefficients of pigments can thenbe created
in the visible range [9] or in a larger range 350–2500 nm [10,11].
This technique is efficient only if exactly the same pigments
with the same binding as in the database are used. Unfortu-
nately, the Ki and Si values are largely dependent on the
morphology and on the environment of the pigments, which
are generally not known with precision. Therefore, it is not

possible to predict painting color mixing correctly by using
only the spectral data Pi;λ, considered in this case as the spec-
tral reflectance of the component i in an opaque form.

C. Kubelka’s Layering Model
An alternative model for “intensively light-scattering materi-
als” was proposed by Kubelka in 1954 [12]. It relies on the
composition of layers characterized by their spectral reflec-
tance Ri;λ and transmittance Ti;λ. By taking into account
the multiple reflections between the layers, the reflectance
of the specimen viewed at the side of layer 1 is

Rλ � R1;λ �
T2
1;λR2;λ

1 − R1;λR2;λ
; (12)

and the transmittance (viewed at either side) is

T λ �
T1;λT2;λ

1 − R1;λR2;λ
: (13)

However, this model does not satisfy the commutativity law
(Rule 3 stated above): the color in reflection mode depends on
the ordering of the layers. If the individual reflectances of
the layers are sufficiently small to be ignored, we have a
superposition of nonscattering layers and, as expected,
Eq. (13) becomes equivalent to the multiplicative color mix-
ing, and, by introducing the fractional thicknesses ti, to the
purely subtractive mixing law [Eq. (8)].

To overcome the limitation imposed by the purely additive
or purely subtractive laws, more empirical mixing laws
described by a color cell are presented hereinafter with the
restricting assumption of no light scattering within the colored
components.

D. Half-tone Printing Color Mixing
Purely additive or subtractive mixing laws are also incapable
of predicting half-tone colors produced by printing. According
to the Murray–Davies model [13], the half-tone color is a linear
combination of the spectral reflectances of the different inked
areas as in purely additive mixing [Eq. (6)]. The model is gen-
eralized to the case of three inks by the Neugebauer model
[14], where the primaries are the paper background, the paper
areas covered by each ink, and the paper areas covered by
two or three inks. Since this model takes explicitly into ac-
count neither the lateral propagation of light within the paper
bulk nor the internal reflections at the paper–air interface, its
predictions are not accurate. To overcome this drawback,
Yule and Nielsen [3] introduced a corrective equation where
the individual primary reflectances are raised to the power
1∕n and the sum is raised to the power n, with n a parameter
to be fitted:

Pλ �
 XNc

i�1

ciP
1∕n
i;λ

!
n

; (14)

where Nc is the number of colorants including those obtained
by the superposition of inks and including the bare back-
ground (Nc � 2k colorants for k inks printing), ci is the frac-
tional area coverage of the corresponding colorant, and Pi;λ

represents the spectral values attached to this colorant
(e.g., its spectral reflectance).
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In the original model, three spectral bands were consid-
ered. The spectral version of this equation based on thinner
wavebands, also known as the Yule–Nielsen modified spectral
Neugebauer model, was later proposed by Viggiano [15].

It is worth noting that the additive mixing law [Eq. (6)] (i.e.,
the classical Neugebauer model) is a special case of Eq. (14)
with n � 1. Moreover it can be shown [16] that the subtractive
mixing law [Eq. (8)] can be defined as the limit case of Eq. (14)
when n tends to�∞. In other words, the empirical parameter
n enables intermediate mixing laws from the additive mixing
for n � 1 to the subtractive mixing for n → �∞. By setting
τ � 1∕n, Eq. (14) becomes

Pλ �
 XNc

i�1

ciPτ
i;λ

!
1∕τ

: (15)

The color cell representing the Yule–Nielsen model is
shown in Fig. 1(c): it is the superposition of n identical sub-
layers of thickness τ, composed of Nc subareas of fractional
area ai. The mixing proportions are ci � ai, and the new
parameter τ � 1∕n indicates if the mixing is subtractive
(τ ≈ 0) or additive (τ ≈ 1). Note that after each sublayer,
the lights attenuated by the different subareas are mixed
before reaching the next sublayer.

This model is a first example of color cell containing both
sublayers and subareas, a concept that is extended in the next
section.

4. NEW COLOR MIXING LAWS
As an alternative to the Yule–Nielsen model, we suggest other
intermediate mixing laws between purely additive and purely
subtractive mixings by defining color cells as presented in
Figs. 1(d) and 1(e) for Nc � 3. The color cells are the junction
of two cells, one subdivided into subareas with fractional
areas ai (additive mixing) and one subdivided into sublayers
with fractional thickness ti (subtractive mixing). The relative
proportions of these two cells are parameterized by a mixing
parameter τ varying between 0 for the ideal subtractive mixing
[Eq. (8)] and 1 for the ideal additive mixing [Eq. (6)]. For both
cells, the proportions ci of each primary are respected. This
principle yields two configurations, which we call additive–
subtractive mixing and subtractive–additive mixing.

A. Additive–Subtractive Mixing
The color cell contains Nc subareas with unit thickness
(additive mixing) and one additional subarea made of Nc

sublayers (subtractive mixing). From Fig. 1(d), the mixing
parameter τ is defined as

τ �
XNc

i�1

ai; (16)

while

XNc

i�1

ti � 1: (17)

The proportions ci attached to the different primaries can also
be calculated from the fractional areas ai and fractional thick-
nesses ti using the following formula:

ci � ai � �1 − τ�ti: (18)

In order to ensure the same proportion of each component in
both the additive and the subtractive parts, we set

�
ai � τci
ti � ci

: �19�

The additive–subtractive law can be expressed either in terms
of the color cell parameters, i.e., the fractional areas ai and
thicknesses ti,

Pλ �
XNc

i�1

aiPi;λ �
�
1 −

XNc

i�1

ai

�YNc

i�1

Pti
i;λ; (20)

or in terms of the intuitive parameters, i.e., the proportions of
primaries ci and the mixing parameter τ:

Pλ � τ
XNc

i�1

ciPi;λ � �1 − τ�
YNc

i�1

Pci
i;λ: (21)

B. Subtractive–Additive Mixing
The color cell is divided into Nc sublayers with unit area
(subtractive mixing) and one additional sublayer of thickness
τ made of Nc subareas (additive mixing). We see from
Fig. 1(e) that the mixing parameter τ is defined as

τ � 1 −
XNc

i�1

ti; (22)

while

XNc

i�1

ai � 1: (23)

The proportions ci of primaries can be also calculated from
the fractional areas ai and the fractional thicknesses ti:

ci � ti � τai: (24)

We set �
ai � ci
ti � �1 − τ�ci : �25�

As for the additive–subtractive mixing, the subtractive–
additive law can be expressed either in terms of the color cell
parameters, i.e., the fractional areas ai and thicknesses ti,

Pλ �

0
B@XNc

i�1

aiP

�
1−
P

Nc
i�1

ti

�
i;λ

1
CA:YNc

i�1

Pti
i;λ; (26)

or in terms of the intuitive parameters, i.e., the proportions of
primaries ci and the mixing parameter τ:

Pλ �
�XNc

i�1

ciPτ
i;λ

�
:
YNc

i�1

Pci�1−τ�
i;λ : (27)

C. Examples of Spectral and Colorimetric Variations
Figure 2 shows the spectra resulting in mixing between
blue and yellow by additive mixing [Fig. 2(a) and Eq. (6)],
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subtractive mixing [Fig. 2(b) and Eq. (8)], additive–subtractive
mixing [Fig. 2(c) and Eq. (21) with τ � 0.5], and subtractive–
additive mixing [Fig. 2(d) and Eq. (27) with τ � 0.5].

All figures clearly show the monotonous variations with the
concentration. As the blue and yellow spectra have the same
value at 505 nm, this value is constant and independent of
the proportions of primaries for this wavelength.

Figure 3 shows the corresponding colorimetric variations
between yellow and blue but also between blue and red
and between red and yellow in the CIELab space. The calcu-
lations are performed from the simulated spectra and by using
the standard illuminant D65 and the standard observer de-
fined by the CIE (1931,2°). The subtractive mixing always
offers darker colors than the additive mixing [Fig. 3(a)]. In
the chromatic plane [Fig. 3(b)], the differences may be impor-
tant (yellow and blue, or red and blue mixing) or weak (yellow
and red mixing). The colorimetric variations for the mixing
laws defined in Eqs. (21) and (27) are intermediates between
ideal additive and subtractive mixing. For the same mixing
parameter τ � 0.5, the additive–subtractive law is rather close
to the additive law while the subtractive–additive law is rather
close to the subtractive law.

D. Comparison between Mixing Laws
The additive–subtractive mixing law defined by Eq. (21), the
subtractive–additive mixing law defined by Eq. (27), and
the Yule–Nielsenmodified spectral Neugebauermixing law de-
fined by Eq. (15) are three different spectral and colorimetric
ways to progressively go from the ideal subtractive mixing to
the ideal additive mixing. In order to compare these laws, we
consider binarymixings of equal proportion (c � 0.5) between
the primaries blue and yellow whose spectral variations are
presented in Fig. 2. Color gradients are computed according
to each mixing law by varying τ from 0 to 1. For comparison,
the mixing parameter τ is 1∕n in the case of the Yule–Nielsen
model. The color deviation from the additive–subtractive or the
subtractive–additive mixing law to the Yule–Nielsen modified

spectral Neugebauer mixing law is expressed in terms of
CIELAB 1976 color distance ΔE and plotted as a function of
τ in Fig. 4. The three mixings are obviously equivalent when
τ � 0 and τ � 1, and therefore ΔE � 0. The color differences
between the Yule–Nielsen and the additive–subtractive mixing
are weak and would not be perceptible by a human observer
(ΔE < 1). Let us note the very particular case for a binary color
mixing with c � 0.5 and τ � 0.5 where both mixing laws give
the same results (ΔE � 0). The differences between the
Yule–Nielsen modified spectral Neugebauer and the
subtractive–additive mixing laws are more significant, reach-
ing even larger values when τ � 0.5 (ΔE � 8.9 units).

5. EXTENSION TO RGB COLOR MIXING
In computing devices, the classical 24-bit colors are stored
as three integers between 0 and 255. In most software, only

Fig. 2. Spectra resulting in binary color mixing (Nc � 2) between
blue and yellow. (a) Additive mixing, (b) subtractive mixing, (c)
additive–subtractive mixing (with τ � 0.5), and (d) subtractive–
additive mixing (with τ � 0.5). The proportion varies from 0 to 1 by
steps of 0.1.

Fig. 3. CIELab coordinates resulting from different binary color mix-
ings between yellow, blue, and red. (a) Variation of the lightness L� in
terms of the proportion and (b) variation in the (a�, b�) plane. The
proportion varies from 0 to 1 by steps of 0.1.
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additive color mixing is allowed. As the spectral relation (6) is
linear, a similar linear relation is established with CIEXYZ tri-
stimulus values [Eq. (2)] and with all other tristimulus values
linearly connected to CIEXYZ space, e.g., an RGB space.
Therefore, the additive mixing between two RGB colors
can be written as

X �
XNc

i�1

ciXi with X � R;G or B: (28)

Unfortunately, such a direct relation in an RGB space does
not exist when the spectral relation is not linear, which is the
case for all other color mixing laws [Eqs. (8), (14), (21), and
(27)]. Nevertheless, these mixing laws can be used by consid-
ering the RGB not as a color space but as three distinct spec-
tral bands. In other words, the RGB values are used as spectral
coordinates Pλ for three different wavelengths λ.

Figure 5 gives a flowchart explaining the color mixing cal-
culation in the case of Nc � 3 and the equations to be used
with RGB values. To ensure the property given by Eq. (9)
and especially to avoid zero values, the reduced coordinates
r, g, b are calculated as follows:

x � X � 1
256

; (29)

where x denotes r, g, or b.
The color mixing laws are then applied with these reduced

coordinates. The final R, G, and B values of the obtained color
are calculated from the reduced coordinates by inverting
Eq. (29) and taking the floor value of X � R, G, or B.

Figure 6 shows the colors obtained with RGB values in the
case of additive–subtractive binary mixing [Eq. (21) with
Nc � 2] between yellow, blue, and red primaries. The mixing
parameter τ obviously provides an additional degree of free-
dom to define the color mixing.

In color synthesis, three primaries are generally used and
therefore the color set can be represented within a triangle.
This representation was first proposed by Mayer in the mid-
eighteenth century as the base of its double tetrahedron color
solid [17]. A simplified color representation of the Mayer

triangle, shown in Fig. 7(a), was given by Lichtenberg in a com-
mentary to the Mayer essay [17] using gamboge, cinnabar, and
Prussian blue as primary colorants. Lambert, in collaboration
with the painter Benjamin Calau [18], also chose the triangle as
the base of its Farbenpyramide and gamboge, cinnabar, and
Prussian blue for the triangle vertex. Inspired byMayer’swork,
Young [19] illustrates a color mixture diagram in the form of an
equilateral triangle based on red, green, and violet as principal
colors that he suggested to be directly detected by particles in
the retina. Maxwell includes this triangular representation to
quantify additive color mixing from red, green, and blue
primaries by using either a color top with different painted
sections [20] or a light box mixing spectral lights [21]. In
modern colorimetry, the color gamut given by additive mixing
is located within a triangle in the CIExy chromaticity diagram
with red, green, and blue as the most common primaries. But
this triangle shape is deformed in the caseof subtractivemixing
due to the nonlinear mixing law. Figures 7(b)–7(d) show the
colors obtained with RGB values in the case of additive–
subtractive ternary mixing [Eq. (21) with Nc � 3] between
yellow, blue, and red primaries, represented as Lichtenberg
[Fig. 7(a)] under the form of a Mayer triangle. The mixing
parameter is τ � 1 (purely additive mixing) in Fig. 7(b),
τ � 0.5 in Fig. 7(c), and τ � 0 (purely subtractive mixing) in
Fig. 7(c). In the same way, such models could be used to
generate color charts for artistic or design applications.

It is worth noting that computing color mixing from the
spectral distribution of the primaries and from their RGB
color values is not equivalent except in the case of the purely
additive mixing. This may be simply shown by mixing a col-
ored light with white light: varying the proportion of each light
modifies the lightness and chroma, but the hue should remain
constant. However, if processed from the RGB values of the
two lights, the color mixing may induce hue shifts. This is illus-
trated in Fig. 8, where a blue purple (R � 80, G � 0, B � 170)
is mixed with white (R � 255, G � 255, B � 255). Except for
the purely additive mixing, the hue shifts to pinkish tint when
the white proportion increases. Only purely additive mixing
(τ � 1) or computation from the spectral values avoid this
undesirable hue shift.

Fig. 4. Variation as a function of the mixing parameter τ of the
color difference ΔE between the Yule–Nielsen modified spectral
Neugebauer mixing laws and the additive–subtractive (gray line) or
subtractive–additive (black line) mixing law, for a binary color mixing
with c � 0.5 between yellow and blue primaries.

Fig. 5. Flowchart for the color mixing calculation from RGB values
with three primaries.
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6. APPLICATION TO TRANSPARENCY
The transparency illusion, e.g., in an image, is generated under
several conditions first studied by Metelli [22]. Among them,

the colorimetric changes between the surfaces represented

with and without transparency must be coherently interpreted

as transparency by the brain [23]. Therefore, the color

Fig. 6. Binary color mixing in RGB between yellow, blue, and red by using the additive–subtractive mixing law [Eq. (21) with Nc � 2]. The pro-
portion c varies from 0 to 1 by steps of 0.1, and the mixing parameter τ varies from 0 to 1 by steps of 0.25. The RGB values are written in each box.

(a) (b)

(c) (d)

Fig. 7. Color mixing triangle. (a) Representation of Mayer triangle by Lichtenberg from [16]. (b)–(d) Ternary color mixing in RGB between yellow,
blue, and red by using the additive–subtractive mixing law [Eq. (21) with Nc � 3] for τ � 0, 0.5, and 1, respectively. The RGB values are written
in each box.
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transparency can be studied as a binary color mixing between
a foreground color and a background color. The transparency
rate would be equivalent to the proportion c of the back-
ground color. An opacity rate can also be defined as 1 − c.
The kind of transparency can be chosen by tuning the param-
eter τ from the subtractive transparency (τ � 0 to simulate
colored optical filters) to the additive transparency (τ � 1
to simulate partially pierced surfaces).

Figure 9 shows the result of a yellow transparent color on a
black, a blue, and awhite background for additive, subtractive,
and additive–subtractive (with τ � 0.5) laws following the
RGB calculations presented in Fig. 5. It clearly illustrates
the differences between the mixing/transparency laws.
Compared to the additive law, the subtractive law gives a very
dark color on the black background, a green color on the blue
background, and a saturated yellow on the white background.
It is the expected color behavior of an absorbing but nonscat-
tering yellow filter. Intermediary cases (e.g., τ � 0.5 in Fig. 9)
allow simulating a filter with some scattering effects. It can
particularly be seen on the black background where the
yellow color can be made out. This last result shows that
even though the individual components of the models are
assumed to be nonscattering in order to satisfy the color
mixing rules, scattering effects can be simulated.

7. CONCLUSION
In this paper, we present easily understood color mixing laws
governed by intuitive parameters: the relative proportions
of each component and the mixing law parameter. These
laws are alternatives of the Yule–Nielsen modified spectral
Neugebauer model, specifically used for half-tone printing.
This study can be a first step to propose more advanced laws,
by taking into account multiple scattering between scattering
centers, interface effects, etc. We restrict the study by adopt-
ing some color mixing rules, but theses rules can also be ex-
tended in order to insert interference effects, fluorescent
effects, or goniochromatism.

The mixing laws require acquiring the spectral reflectance
and/or transmittance of the different colors. Therefore, the
study is well adapted to hyperspectral imaging, where the
complete spectrum is collected for each pixel of the image
instead of only the three classical RGB values. From a hyper-
spectral image, color mixing can be applied on the spectral
values, and CIE tristimulus values can then be rigorously cal-
culated. However, the mixing laws can also be applied directly
to RGB values with in most cases very convenient results,
yielding interesting alternatives to the most usual additive
mixing law. The mixing parameter allows modifying progres-
sively color mixing from the ideal subtractive to the ideal ad-
ditive mixing. It can become a very useful tool for software
dealing with colors (word, image processing, presentation,
drawing software, etc.)

REFERENCES
1. H. von Helmholtz, Handbuch der Physiologischen Optik (Voss,

1860), Band II, Sektion 20.
2. R. G. Kuehni and A. Schwarz, Color Ordered: A Survey of Color

Systems fromAntiquity to thePresent (OxfordUniversity, 2008).
3. J. Yule and W. Nielsen, “The penetration of light into paper and

its effect on halftone reproduction,” Proc. TAGA 3, 65–76 (1951).
4. G. Wyszecki and W. S. Stiles, Color Science: Concepts and

Methods, Quantitative Data and Formulae, 2nd ed. (Wiley
Interscience, 1982).

5. CIE, “Colorimetry,” 3rd ed., Technical Report CIE 15 (CIE,
2004).

6. P. Kubelka and F. Munk, “Ein Beitrag zur Optik der Farban-
striche,” Zeitschrift für technische Physik 12, 593–601 (1931).

7. D. Duncan, “The colour of pigment mixtures,” Journal of Oil
Colour Chemistry Association 32, 296–321 (1949).

8. F. Grum and C. J. Bartleson, Optical Radiation Measurement

(Academic, 1980), Vol. 2.

Fig. 8. Binary color mixing computed from the RGB values of blue,
purple, and white by using the additive–subtractive mixing law
[Eq. (21) with Nc � 2]. The proportion c varies from 0 to 1 by steps
of 0.1, and the mixing parameter τ varies from 0 to 1 by steps of 0.25.
The RGB values are indicated in each color patch.

R = 0
G = 0
B = 0

255
255
255

20
60

150

120
100
10

67
56
6

14
13
3

130
130
85

100
119
70

70
109
65

247
227
137

247
226
104

247
225

72

Fig. 9. Color transparency in RGB color system. Foreground color:
yellow (R � 240, G � 200, B � 20) with a transparency rate c � 0.5.
Additive–subtractive mixing [Eq. (26)] for different values of τ.
Background colors: black, blue, and white.

L. Simonot and M. Hébert Vol. 31, No. 1 / January 2014 / J. Opt. Soc. Am. A 65



9. G. Latour, M. Elias, and J. M. Frigerio, “Determination of the ab-
sorption and scattering coefficients of pigments: application to
the identification of the components of pigment mixtures,” Appl.
Spectrosc. 63, 604–610 (2009).

10. R. Levinson, P. Berdahl, and H. Akbari, “Solar spectral optical
properties of pigments—Part I: model for deriving scattering
and absorption coefficients from transmittance and reflectance
measurements,” Sol. EnergyMater. Sol. Cells 89, 319–349 (2005).

11. R. Levinson, P. Berdahl, and H. Akbari, “Solar spectral optical
properties of pigments—Part II: survey of common colorants,”
Sol. Energy Mater. Sol. Cells 89, 351–389 (2005).

12. P. Kubelka, “New contributions to the optics of intensively light
scattering material. Part II: non-homogeneous layers,” J. Opt.
Soc. Am. 44, 330–335 (1954).

13. A. Murray, “Monochrome reproduction in photoengraving,”
J. Franklin Inst. 221, 721–744 (1936).

14. H. E. J. Neugebauer, “Die Theoretischen grundlagen Des
Mehrfarbendruckes,” Zeitschrift für wissenschaftliche Photo-
graphie, Photophysik und Photochemie 36, 36–73 (1937).

15. J. A. S. Viggiano, “The color of halftone tints,” Proc. TAGA 37,
647–661 (1985).

16. A. Lewandowski, M. Ludl, G. Byrne, and G. Dorffner, “Applying
the Yule-Nielsen equation with negative n,” J. Opt. Soc. Am. A
23, 1827–1834 (2006).

17. T. Mayer, De affinitate colorum commentatio, in Opera

inedita Tobiae Mayeri, G. C. Lichtenberg, ed. (Göttingen,
1775).

18. J.H.Lambert,BeschreibungeinermitdemCalaunischenWachse

ausgemalten Farbenpyramide, Haude and Spener, eds. (Haude
and Spener, 1772).

19. T. Young, A Course of Lectures on Natural Philosophy and the

Mechanical Arts, J. Johnson, ed. (Johnson, 1807).
20. J. C. Maxwell, “Experiments on colour, as perceived by the eye,

with remarks on colour-blindness,” Trans. R. Soc. Edinburgh 21,
275–297 (1855).

21. J. C. Maxwell, “On the theory of compound colours, and the
relations of the colours of the spectrum,” Philos. Trans. R.
Soc. London 150, 57–84 (1860).

22. F. Metelli, “The perception of transparency,” Sci. Am. 230, 90–98
(1974).

23. M. D’Zmura, P. Colantoni, K. Knoblauch, and B. Laget, “Color
transparency,” Perception 26, 471–492 (1997).

66 J. Opt. Soc. Am. A / Vol. 31, No. 1 / January 2014 L. Simonot and M. Hébert


