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OUTLIERS EMPHASIS ON CLUSTER ANALYSIS

The use of squared Euclidean distance and fuzzy
clustering to detect outliers in a dataset

Gianluca Rosso'

ABSTRACT

Outlier is the term that indicates in statistics an anomalous
observation, aberrant, clearly distant from others collected
observations. The outliers are the subject to animated discussions in
various contexts with regard to be or not to be considered in the
average evaluations. Outliers can become a precious source of
information, on condition that be able to accurately identify the
presence in the reference datasets. The need to identify the presence
of clustered outliers in a dataset not previously treated could argue
for a fuzzy clustering, emphasized by using the quadratic Euclidean
distance as similarity measure. For interesting and useful results, it
should be inclined a possibilistic clustering approach, where the term
“possibilistic” means, always in mathematical rigor, a component of
interpretation of values that point out anomalous cases. The crisp
method does not allow it, the fuzzy method introduce it, the
possibilistic one use it.

This is a very simple paper with divulgative purposes, addressed

especially to students, but not only.

KEYWORDS: cluster analysis, crisp clustering, fuzzy clustering,

squared Euclidean distance, possibilistic clustering, outliers.

! Gianluca Rosso is Graduate Statistician (GradStat) at RSS The Royal Statistical
Society in London, and Correspondent Researcher (Full Associate) at SIS Italian
Statistical Society in Rome (gianluca.rosso@sis-statistica.org).



1. INTRODUCTION.

Outlieris the term that indicates in statistics an anomalous
observation, aberrant, clearly distant from others collected
observations.

The descriptive statistics from datasets containing outliers, may
provide highly misleading keys to understanding phenomenons.
Understand its origin is not always easy, but it is definitely
necessary. But it is even more important to know what to do, how to
treat them and how to identify them uniquely.

The outliers are the subject to animated discussions in various
contexts with regard to be or not to be considered in the average
evaluations. For example in the business sector, in which it is not
uncommon that the budget achievement is carried out by isolated,
and perhaps not repeatable, large-scale contracts. Or in the insurance
sector, and particularly in the claim sector in which may exist
amounts so-called catastrophic, rare to happen but causing highly
distorted statistics. Now think at the context of healthness and
epidemiology: a group of cancer patients contains one or two people
who respond to treatment in a markedly different and positive way:
they could raise the average errors of assessment in inducing doses of
therapy, to the detriment of other patients while belonging to the
group but that respond to treatment in a more modest way.

In the last two years the study of outliers was directed with great
determination to fraud cases searching, especially financial, and to
internet intrusion, once and for all acquiring authoritativeness in the
field of risk analysis. The study of these cases is able to highlight
abnormal behavior characteristics that are not always random, but
often hide fraudulent and volunteers behavior. Many internal
investigations for companies, but also of the police or tax authorities,
are based on the search for important quantitative abnormalities in
the enormous mass of available data.

From the examples above is possibile to understand how outliers can
become a precious source of information, on condition that be able to
accurately identify the presence in the reference datasets. The same
outliers become a touchstone in extreme situations for quality

control: if the point of breaking of a ceramic tile of the Shuttle had



become a simple value among many, or worse, had been put outside
from the database to avoid distortions, almost certainly no Shuttle
would never return to earth.

In cluster analysis, especially in the presence of numerically relevant
datasets, it can be difficult to identify outlier, especially if you have
not done a careful prior examination of the dataset.

The same choise of the clustering method should be carefully
considered. It is not always required to use the most hard method
(crisp clustering) for the group analysis, or rather in some cases may
not detect some particularities of the dataset. In many cases, the
fuzzy clustering can be an effective and perhaps better
alternative. But, as we shall see later, the need to identify the
presence of clustered outliers in a dataset not previously treated could
argue for a fuzzy clustering, emphasized by using the quadratic
Euclidean distance as similarity measure. For interesting and useful
results, it should be inclined a possibilistic clustering approach,
where the term “possibilistic”” means, always in mathematical rigor, a
component of interpretation of values that point out anomalous cases.
The crisp method does not allow it, the fuzzy method introduce it, the
possibilistic one use it.

The statistical methods related to possibilistic clustering are
introduced many times ago (in 1997 by N. Pal, K. Pal, J. Keller, J.
Bezdek), and have a difficulty level that is not much suitable for
practical use. From the Possibilistic Theory will be maintained basic
assumption regarding cancellation of the membership -cluster
constraints; therefore here will be proposed a theoretical case and a

simple method to get a reliable result by using a simple spreadsheet.

1. CRISP CLUSTERING.

We use a tipical study dataset in traditional clustering, which is a

symmetric dataset.
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In crisp clustering, data will be organized into groups with maximum
internal homogeneity and maximum external heterogeneity. The
membership is done by calculating and minimizing the distance from
an average point, called centroid. To get the final result probably is
needed a new displacement of the centroid (reiteration) for several
times, and recalculation of the Euclidean distances of points, until the
recalculation does not supply more changes in the cluster and thus
does indicate that it has reached the position of balance status, and

conditions of the crisp method are verified, ie

U €{0,1}, 1<i<c¢, 1<k<N (2.1a)
Y pp=1 1<k<N (2.1b)
0<YN_imx <N, 1<i<c (2.1¢)

In crisp clustering data is clearly attributed (rightly or wrongly) to a
cluster. Imagine that you want to attribute the data in our possession

within two clusters.



Fig. 2

The centroids are located respectively in the overlapping elements of
Z3 and Z8.

The table of allocation would be as follows.

=[1111100000
0000011111

tab.1

The case becomes complicated when we insert an additional data that
arises in exactly symmetrical and equidistant position from the two
clusters calculated.

This is clearly an extreme case, probably not much related to reality,
but this explain the difficulty of decision that has to take the
analyst. Following the rules described in (2.1x) the element Z11 must

be inserted into one of the two clusters.
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Fig. 4

=[11111100000
00000011111

tab.2

Two alternatives are possible. The first is to decide to create three

clusters

00000100000
00000011111

11111000000]
U=

tab.3

2. FUZZY CLUSTERING.

The other alternative is to consider a fuzzy clustering, in which the
allocation to clusters is not unique, but is represented by the amount
of the membership of elements to all clusters calculated. In fuzzy
clustering the membership value of each element is not only 0 or 1,

but any value that lies between these extremes. The conditions are:

Ur €[01], 1<i<c, 1<k<N (3.1a)
Y up=1 1<k<N (3.1b)
0<YN .mx <N, 1<i<c (3.1¢)



With these conditions the amount of allocation of individual elements
to a specific cluster, rather than the other, calculated in the cartesian

coordinates of the centroids shown in Fig. 5, appears to be

_[o,78 0,78 092 0,78 0,80 0,50 0,20 0,22 0,08 0,22 0,22

U= 0,22 0,22 0,08 0,22 0,20 0,50 0,80 0,78 0,92 0,78 0,78

tab.4

-10 -5

Fig. 5

clusterl {-3,33;0}
cluster2 {3,33;0}

The grades of membership are calculated by reference to the

Euclidean distances from the centroid, as determined by the formula

PR
d(i,i) = /(x; = %)% + (v — y;)? (3.2)
elements clusterl centroid | cluster2 centroid crisp clustering fuzzy clustering
xl(x) | xi2(y) | «'i(x) | xiz(y) | xi1ix) | xiz2(y) d | o fd fd'
z1 -6,00 0,00 -3,33 0,00 3,33 0,00 2,670 9,330 0,73 0,22
72 -4.00 2,00 -3,33 0,00 3,33 0,00 2,109 7,598 0,78 0,22
i3 -4,00 0,00 -3,33 0,00 3,33 0,00 0,670 7,330 0,92 0,08
4 -4,00 -2,00 -3,33 0,00 3,33 0,00 2,109 7,598 0,78 0,22
5 -2,00 0,00 -3,33 0,00 3,33 0,00 1,330 5,330 0,80 0,20
z11 0,00 0,00 -3,33 0,00 3,33 0,00 3,330 3,330 0,50 0,50
6 2,00 0,00 -3,33 0,00 3,33 0,00 5,330 1,330 0,20 0,80
7 4,00 2,00 -3,33 0,00 3,33 0,00 7,598 2,109 0,22 0,78
z8 4,00 0,00 -3,33 0,00 3,33 0,00 7,330 0,670 0,08 0,92
9 4,00 -2,00 -3,33 0.00 3,33 0.00 7,598 2,109 0,22 0,78
z10 6,00 0,00 -3,33 0,00 3,33 0,00 9,330 2,670 0,22 0,78
Tab.5



The Z11 element has a factor of 0.5 degree of membership for each
cluster. Through fuzzy clustering is no longer required, in extreme
cases, to decide in which clusters insert the symmetrical element,
because the same element is symmetrical and is exactly half
(geometrically speaking) between the two centroids, and the table
shows it in an absolutely way. The same table also shows, for
example, that the element z3 belongs to cluster 1 significantly more
than the elements z1, z2 and z4. At this point it may seem easy to say
that these considerations are also largely determined by visual
approach to the chart (not much about the correct positioning of the
centroids), but try to imagine a much larger and asymmetrical
dataset, ie with a much less regular distribution: if there is no
evidence of graphic centroid (very probable) the reading of a table
like the one described above would be the only source of information

for analysis.

3. OUTLIERS PRESENCE.

Let us see the presence of an outlier. For simplicity of exposition we

also consider this element symmetrical.
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The position of centroids change, of course

clusterl {—2,85714; 1}
cluster2 {2,85714; 1}



and with it also changes the weights of the memeberships of the
elements to clusters, but not the Z11 element which remains
equidistant from the two centroids. And the same happens for Z12

which is also symmetrical by construction.

vl 0,50 0,50 ]
- 0,50 0,50

tab.6
Here the tables of fuzzy memberships:

_[o,73 0,82 0,82 0,70 0,79 0,50 0,50 0,21 0,30 0,18 0,18 0,27

v 0,27 0,18 0,18 0,30 0,21 0,50 0,50 0,79 0,70 0,82 0,82 0,73
tab.7
elements clusterl centroid | cluster2 centroid crisp clustering fuzzy clustering
xid(x) [ xi2fy) | xii(x) | xi2(y) | xii(x) [ xi2(y) od | o fd fd'
zl -6,00 0,00 -2,86 100 2,86 o0 3,298 8,913 0,73 0,27
72 -4,00 2,00 -2,86 100 2,86 1,00 1,519 6,930 0,82 0,18
I3 -4,00 0,00 -2,86 100 2,86 100 1,519 6,930 0.82 0,18
4 -4,00 -2,00 -2,86 1,00 2,86 1,00 3,210 7485 0.70 0,30
z5 -2,00 0,00 -2,86 100 2,86 100 a2l 4,959 0,79 0,21
711 0,00 0,00 -2,86 100 2,86 100 3,027 3,027 0,50 0,50
iz 0,00 7,00 -2,86 Lo0 2,86 100 6,646 6,646 0,50 0,50
6 2,00 0,00 -2,86 1,00 2,86 1,00 4,559 1,317 0,21 0.79
7 4,00 2,00 -2,86 100 2,86 100 6,930 1,519 0,18 0.82
8 4,00 0,00 -2,86 1,00 2,86 1,00 6,930 1,519 0,18 0,82
29 4,00 -2,00 -2,86 100 2,86 100 7,485 3,210 0,30 0,70
z10 6,00 0,00 -2,86 100 2,86 100 8,913 3,298 0,27 0,73
Tab.8

What said now is technically and mathematically correct. Having the
need to clustering dataset into subsets, point of interest is just the
centroid, or geometric center, the average distances. And as said in
the beginning, the identification of one or more outliers is particulary
significative.

The table does not perceive the fact that Z12 is an outlier (with

respect to the Z11 that has the same membership values).

4. POSSIBILISTIC CLUSTERING.

A more general form of fuzzy partition is the possibilistic partition.

9



You get that reducing the constraint (3.1b), while not eliminate it,
and then keeping to the memebership value of the item to a subset at
least greater than zero.

The conditions thus become:

u €[01], 1<i<c, 1<k<N (5.1a)
3, 1y > 0,Vk (5.1b)
0<YN <N, 1<i<c (5.1¢c)

The result does not necessarily provide membership value to clusters
whose sum is equal to 1, but could be lower if the item is less typical
than others. All values that have a sum of the attribution <1 values
can be considered as atypical: not strictly outliers in the context of
the global dataset, as possible outliers against clusters obtained after
reiterations.

The literature in this regard has proposed since the late nineties a
series of algorithms for fuzzy clustering (FCM), possibilistic
clustering (PCM), the combination of two (FPCM), and others
methods built in according to the specific need to study (Modified
Possibilistic Fuzzy c-means MFPCM, Suppressed fuzzy c-means
Modified MS-FCM, Relational Fuzzy c-means RFCM, Non-
Euclidean Relational Fuzzy c-means NERFCM).

In several of these cases the Euclidean distance that has been used in
the examples above described is no longer used. Other algorithms for
calculating the distance of the elements are often preferred: squared
Euclidean distance, city-block (Manhattan) distance, Chebychev
distance, power distance, Percent disagreement, Mahalanobis
distance. This last has long been considered one of the measures
capable in outliers identification, even though it suffered further
studies and modifications to make it suitable for various practical
cases.

Since the detailed study of all these criteria partition is not the
purpose of this document, we will only provide arguments on how to

distinguish a possible outlier. The reader will have opportunity to

10



read documents listed in the bibliography, in case he needs detailed
statistical arguments.

A good system for the identification of an outlier from a fuzzy
system is to use one of the measures listed above: the squared

Euclidean distance.

d2(i, i) = (xi —x)" + (i = v2)° (5.2)

In this way the weight of the elements becomes progressively greater,
and greater distances are emphasized.

The table below shows the results of processing.

elements clusterl centroid | cluster2 centroid crisp clustering fuzzy clustering

wit(x) | xizfy) | x1x) [ w2y} | xiiix) [ xi2iy] od [ o fd | fd
zl -6 0 -2,80 1,00 2,80 1,00 10,878 79,449 0,38 0,12
z2 -4 2 -2,80 1,00 2,80 1,00 2,300 48,020 0,95 0,05
z3 -4 0 -2,80 1,00 2,80 1,00 2,300 48,020 0,95 0,05
4 -4 =& -2,86 1,00 2,86 1,00 10,306 56,020 0,84 0,16
5 -2 0 -2,86 1,00 2,86 1,00 I35 24,592 0,93 0,07
z11 0 0 -2,86 1,00 2,86 1,00 9,163 9,163 0,50 0,50
z12 0 7 -2,86 1,00 2,86 1,00 44,163 44,163 0,50 0,50
6 2 0 -2,86 1,00 2,86 1,00 24,592 1,735 0,07 0,93
7 4 2 -2,86 1,00 2,86 1,00 48,020 2,306 0,05 0,95
z8 4 0 -2,86 1,00 2,86 1,00 48,020 2,306 0,05 0,95
9 4 -2 -2,86 1,00 2,86 1,00 56,020 10,306 0,16 0,84
z10 6 0 -2,86 1,00 2,86 1,00 79,449 10,878 0,12 0,88

Tab. 9

You can read the squared Euclidean distances within the columns cd
and cd’. In columns fd and fd' the values of fuzzy attributions
changes significantly after an updating processing. It is even more
clearly possible to distinguish the two clusters: the first formed by the
elements z1 ... z5 and the other formed by the elements z6 ... z10.

Remain very far the two elements Z11 and Z12, which in this case
havs equal attribution levels. But for this type of elements, and only
for this, note that the quadratic distance is 9.1 for Z11 and 44.1 for

7.12: the distance of this second element is nearly five times higher.

11



UZZy clusierin, possibilistic fuzzy clust.ing
f lust

fd fd' dmin  clustd max fd fd'
0,88 0,12 10,878 0,88 0,12
0,95 0,05 6 0,95 0,05
0,95 0,05 2,306 0,95 0,05
0,84 0,16 10,306 0,84 0,16
0,93 0,07 1,735 0,93 0,07
0,50 0,50 9,163 1 0.5 0,50 0,50
0,50 0,50 44,163 0,207486 0,103743 0,10 0,10
0,07 0,93 1,735 10,878 0,07 0,93
0,05 0,95 0,05 0,95
0,05 0,95 0,05 0,95
0,16 0,84 0,16 0,84
0,12 0,88 0,12 0,88
Tab. 10

At this point, highlighting the distances of the groups using the fuzzy
degrees of attribution.

Then find the maximum distance

clust_dp,q, = MAX[dpin] (5.3)

An ambiguous element, such as Z11, if it has a distance not
exceeding

Weup = @5 + 1,5IQR (54

(where Q3 is the third quartile series distances of the cluster, and IQR

is the interquartile range)

IQR =Q5—Q, (5.5)

should not be considered an outlier. Since in our case Z12 is an
outlier, the membership degree to clusters while remaining equal,
from a point of view possibilistic should highlight the fact that its
location makes it less typical than Z11. This can be achieved whereas
the distance increases the degree and the memebrship degree should
decrease.

Taking as reference the element Z11 distance, although in an atypical

position (equal membership values) is not an outlier, and setting the

12



distance in the denominator of an atypical relationship between the

two distances, it’s possible to recalculates the membership value.

fd = (“”—”) /2 (5.6)

datipic
The values of the tab. 7 become so

_[]o0,73 0,82 0,82 0,70 0,79 0,50 0,10 0,21 0,30 0,18 0,18 0,27

U= 0,27 0,18 0,18 0,30 0,21 0,50 0,10 0,79 0,70 0,82 0,82 0,73

tab.8

and are subject to the conditions (5.1x): the membership value is not
1 or O as the crisp partition, but it is between 1 and O as the fuzzy
partition, and in particular sum of memberships even greater than 0
must be no longer equal to 1 if the item is not typical compared to
clusters. In this case a sum of the attribution of 0.20 denotes a highly

atypical element.
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