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Abstract

In this paper, we compare the properties of the main criteria pro-
posed for selecting the number of factors in dynamic factor model in a
small sample. Both static and dynamic factor numbers’ selection rules
are studied. Simulations show that the GR ratio proposed by Ahn and
Horenstein (2013) and the criterion proposed by Onatski (2010) outper-
form the others. Furthermore, the two criteria can select accurately the
number of static factors in a dynamic factors design. Also, the criteria
proposed by Hallin and Liska (2007) and Breitung and Pigorsch (2009)
correctly select the number of dynamic factors in most cases. However,
empirical applications show most criteria select only one factor in presence
of one strong factor.
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1 Introduction

The improvements in computer technology, and collection and storage of data,
and development of powerful mathematical and statistical software is allowing
researchers and professionals in economics and finance to benefit from increas-
ingly rich and increasingly disaggregated data. It is in this context that factor
models of large dimensional dataset have been proposed and achieved popu-
larity. The factor models of large datasets are widely applied because they
constitute a good compromise between exploiting large amounts of information
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and parsimonious parameter estimation. For review of recent factor model de-
velopments, see Reichlin (2003), Breitung and Eickmeier (2006), Eickmeier and
Ziegler (2008), Boivin and Ng (2005), Bai and Ng (2008), Guo (2010), Stock
and Watson (2010) and Barhoumi et al. (2013).

In macroeconomics, factor models are used for nowcasting (Altissimo et al.,
2006), forecasting (Stock and Watson, 1998), construction of indexes, structural
analysis (see e.g. Stock and Watson, 2005; Bernanke and al.;2005), and mon-
etary policy (see e.g. Bernake and Boivin, 2003). In finance, they are used to
study arbitrage pricing theory (APT) (see, e.g. Chamberlain and Rothschild,
1983), performance evaluation (Chaps 5 and 6 in Campell et al., 1997), factors
in interest term structures (see e.g. Koopman and Van der Wel, 2013), asset
management strategies such as "momentum trading" (see e.g. Tong, 2000),
and credit default correlation (see e.g. Cipollini and Missaglia, 2007; Guo and
Bruneau, 2010). In practice, the approach of Stock and Watson (1989) for con-
structing economic indicators is regularly used by NBER economists and the
Federal Reserve Bank of Chicago. In Europe, economic and financial institu-
tions use a coincident indicator of economic cycles in the euro zone (EuroCOIN,
Forni et al., 2000), published monthly by the London-Based Centre for Eco-
nomic Policy Research and Banca d’Ttalia for economic activity analysis and
forecasting.

A critical step in the estimation of factor models is selecting the number of
latent, factors. In classical factor models, one of the most widely used meth-
ods is the Kaiser-Guttman criterion (Guttman, 1954; Kaiser, 1960), in which
only factors with eigenvalues greater than 1 are retained. The underlying idea
is that “a factor must account for at least as much variance as an individual
variable” (Nunnally and Bernstein, 1994). Another is the Scree test, a graphical
tool proposed by Cattell (1966). However, these informal methods are subject
to criticisms of vulnerability, subjectivity, and lack of statistical theory (Wislon
and Cooper, 2008). Moreover, in presence of cross-sectional and temporal de-
pendence of errors, typical features of macroeconomic and financial data, these
methods cannot cleanly reveal the true number of factors (Ahn and Horen-
stein, 2013). In some economic theories, the number of factors and the factors
themselves are imposed rather than being specified by the data, a well-known
example is the CAPM. Under the assumption of cross-sectional and temporal de-
pendence of errors, Connor and Korajcyk (1993), Chamberlain and Rothschild
(1983), Cragg and Donald (1997), Lewbel (1991) and Donald (1997) propose
criteria for selecting the number of factors. However, all of these criteria require
one dimension (N or T) of dataset fixed.

For factor models with both N and T approaching infinity, early work on the
issue of selection of number of factors includes Stock and Watson (1998), Forni
and Reichlin (1998) and Forni et al. (2000). However, the pioneering formal
statistical procedure is the information criteria developed by Bai and Ng (2002).
Since then, a few researchers have proposed alternative consistent estimators.
These estimators can be classified into four types. The first is information crite-
ria, e.g., Bai and Ng (2002), Amengual and Watson (2007), Stock and Watson



(2005) and Alessi et al. (2010). The second is based on the theory of random
matrices and linked specifically to the proprieties of the largest eigenvalues of
the matrix. Representative works are Hallin and Liska (2007, 2010). The third
type is based on the rank of a matrix, such as Bai and Ng (2007). The fourth
employs canonical correlation analysis. The representative papers are Jacobs
and Otter (2008) and Breitung and Pigorsch (2009). However, these estima-
tors are related to each other. For instance, Onatski (2007) shows the relation
between the information criteria estimators and the eigenvalue estimators by
pointing out that the information type estimator equals the number of eigenval-
ues greater than a threshold value specified by a penalty function. The criteria
proposed by Onatski (2007) and Ahn and Horenstein (2009) exactly exploit this
relation.

All these selection criteria deliver a consistent estimator of the number of
factors; however, estimated results in finite samples often diverge. Furthermore,
although the assumptions are more or less restrictive for different selection rules,
most authors argue that their approach can be extended to the more general
case. The purpose of this paper is to compare the properties of the main criteria
proposed in a small sample and thus help the choice of criteria using different
data. To the best of our knowledge, there is no existing complete comparison
of criteria, apart from the article by Barhoumi et al. (2013). Compared to
Barhoumi et al. (2013), which focuses on forecasting performance, our work
focuses on performance of criteria under different assumptions.

The paper is organized as follows. Section 2 summarizes the existing factor
models. Section 3 presents the different types of estimators. Section 4 reports
Monte Carlo experiments. Section 5 provides two empirical applications, using
respectively macroeconomic data and stock return data. Section 6 presents the
conclusions.

2 Factor Models

Usually, the factor model is written in a general form as follows:

Xt = AFt+et (1)
x; are N-dimensional observable variables. When x; admit a factorial rep-

resentation, they can be decomposed into a small number of factors and N
idiosyncratic errors. F; is an r—dimensional vector of common factors, where
r denotes the number of factors, » < N. A is an N x r dimensional matrix
containing the factor loadings. We use x; to denote the common component,
xt = AF;. e; is N x 1 dimensional idiosyncratic errors. A, F; and e; are
unobservable.

Specifically, the representation (1) is a static factor model and F; are termed
static factors because the relationship between factors and factor loadings is



static. Nonetheless, even in a static model, factors F; can be "dynamic" in the
sense that they can evolve following a dynamic process such as,

®(L)F, = B(L)v (2)

The idiosyncratic errors might also be autocorrelated:

where v; and (;; are ii.d. white noise with E||vt||4+6 < M < oo and

E|¢|*™ < M < oo for some 6 > 0. ®(L), B(L), ¥(L) and D;(L) are lagged
polynomials with roots which all lie outside the unit circle.

The dynamic factor model can be written as follows,

Xt = )‘;(L)ft + € (4)

f; are ¢-dimensional dynamic factors, where ¢ is the number of dynamic fac-
tors. Aj(L) are lagged polynomials with roots outside the unit circle. Factors
and idiosyncratic errors follow dynamic processes similar to those in equations
(2) and (3). In (1) and (4), both dependence and heteroskedasticity of id-
iosyncratic errors and dependence between factors and errors are allowed. The
assumptions proposed by various researchers differ mainly in relation to the
tradeoff between moment constraints and dependence properties of the factors
and idiosyncratic errors. We do not report the detailed technical assumptions
here'; we provide a brief summary in Table 1 to show the differences. We would
point out for simplicity, stationarity is assumed, although it is not necessary for

some criteria?.

I'We refer the reader to Bai and Ng (2002) Forni et al. (2000) and others for the assump-
tions.

2For non stationary data, Bai and Ng (2004) suggest that the number of factors can be
estimated with differenced data.



Table 1: Comparisons of Assumptions of Different Specification Criteria

(2011)

Authors Assumptlons Factor type
approximate factor model; nontrivial contribution of factors;
Bai and Ng (2002) limited time-series and cross-section dependence, ik
e heteroscedasticity in both time and cross-section dimensions in R
e,; weak dependence between F, and e;
Alessi et al. {2008) same as Bai and Ng (2002) static
peneralized dynamic factor: rich patterns of time-series and cross-
section dependence in eit, while Gaussianity is assumed; static and
Onatski (2009) X B : _
cumulative factors effects grow slower than linearly in n (k-th dynamic
largest eigenvalue of §” {wo} diverges faster than n?
approximate factor models: rich patterns of time-series and cross-
section dependence in eit, while Gaussianity is assumed;
Onatski (2010) R aep D N L T static
cumulative effects of “least influential factors” diverges to infinity
as n—>»ca {no divergence rate is required)
y approximate factor models: rich patterns of time-series and cross- :
Ahn and Horenstein (2013) - 3 static
section dependence in e,
Bai and Ng (2007), Stock and
Watson (2005), Amengual and A axe ’ :
g similar to Bai and Ng (2002 dynamic
Watson (2007), Breitung and 4 ) v
Pigorsch (2013)
time-series and cross-section dependence; common dynamic
Hallin and Liska (2007) eigenvalues diverge a.e; first idiosyncratic dynamic eigenvalue dynamic
uniformly bounded;
Otter, Jacobs and den Reijer
. 4 no specific factor model dynamic

When A;(L) are lagged polynomials of limited orders, we call (4) restricted
dynamic factor model, which is in contrast to generalized dynamic factor model
with A;(L) of infinite orders. Bai and Ng (2007) show that the restricted dy-
namic model and the approximated static model can be deduced by mathemat-
ical identities. However, notice that only the contemporaneous effects of the
factors on the variables are considered in the static model, while lagged depen-
dencies are also allowed in the dynamic model. In addition, they imply different
estimation methods. Asymptotic principal components analysis (APCA) could
be applied to the sample covariance matrix for estimating factors of static fac-
tor models (see Stock and Watson (2002) and others.) However, one could use
dynamic principal components analysis (DPCA) in the frequency domain for dy-
namic factor models (Brillinger, 1981; Forni et al., 2000, 2004). Alternatively,
Doz et al. (2006) propose a quasi maximum likelihood approach. Kapetanios




and Marcellino (2004) also proposed a parametric method for estimating large
approximate factor models. For reviews and comparisons of these estimation
methods, see Stock and Watson (2010), Boivin and Ng (2005), Marcellino et al.
(2005) and D’Agostino and Giannone (2006).

3 Criteria of selection of number of factors

In this section, we discuss various criteria. They are classified in four groups:
information criteria type, criteria based on properties of eigenvalues or singu-
lar value, criteria exploiting the rank of matrix, and criteria using canonical
correlation analysis.

3.1 Information criteria type

As is well-known, the general rule for information criteria is selecting the number
of factors which minimizes the variance explained by the idiosyncratic compo-
nent. A penalty function is introduced in order to avoid overparameterization.
The choice of penalty function is often related to the rate of convergence of
the estimators. Standard criteria AIC and BIC are good examples. However,
these criteria are not applicable in large factor models because the factors are
unobservable and do not take account of the double dimensions (T and n).

3.1.1 Estimation of static factors

Bai and Ng (2002) Bai and Ng (2002) modify AIC and BIC by taking

account of both dimensions n and T of the dataset and suggest criteria PC), to
specify the number of static factors r:

PC(k) =V (k) + kp(n,T) (5)

where V (k) = (nT)~! i i(Xit - /\Af/FAtk)z, )\Af and F;k are the APCA es-
timators of the factor loadi:nlgts= imd factors, the superscript k signifies k static
factors are used.

The selected number of factors should minimize PC(k), i.e.,

k= arg minp< <, max PC(k), where rmax is a predetermined bounded inte-
ger.

As for AIC et BIC, V (k) should be small if k¥ > r. To avoid under-
estimation and overestimation, the penalty function must satisfy the condi-
tions (i) p(n,T) — 0 and (ii) Cnr - p(n,T) — oo when n,T — oo, where
Chn,r = min [\/ﬁ, \/T} (See Theorem 2 of Bai and Ng (2002)). The intuition

behind these conditions is that the penalty function p(n,T) converges to zero



but less quickly than the convergence rate of estimator of factors, which is proven
to be C;% by Bai and Ng (2002). Therefore, the penalty function approaches
zero but it “dominates the difference in the sum of squared residuals between
the true and the overparameterized model” (Bai and Ng (2002)). Another class
of criteria allowing a consistent estimator of r is proposed by Bai and Ng (2002),
and is the logarithmic version of PC(k). For each classe of criteria, Bai and Ng
(2002) propose three specific formulations . Since ICp; and PCp; are shown to
be more robust than the others by the Monte Carlo Simulation in Bai and Ng
(2002)2, we consider only these two criteria in this paper,

PCENO2(k) =V (k, FF) + ko? < ”:TT> In ( RZTT> (6)
TCENO2 (k) = In(V (k, FF)) + k (”JTT) In (Jf:r) (7)

n T
where 52 is a consistent estimate of (nT)~!>. 3 E(e;y)?. Bai and Ng
i=1i=1

(2002) suggest that 52 can be replaced by V (rmaz, me) in reality. However,
this implies that PC depend directly on the choice of rmax (Alessi et al., 2008;
Forni et al., 2007).

The criteria of Bai and Ng (2002) have attracted two criticisms. One is
that the estimators need to pre-specify a maximum possible number of fac-
tors, rmax (Ahn and Horenstein, 2013). Although Schwert (1989) suggests
using 8int [(T/100)1/4] as a rule to set rmax for time series analysis, no guide
is available for panel analysis. Bai and Ng (2002) suggest an arbitrary choice,
8int [(ci’T/IOO)l/‘l], for large dimensional factor models without proofs. An-
other problem is that the threshold can be arbitrarily scaled. Namely, if p(n,T)
leads to consistent estimation of r, so does ap(n,T), where o € R*. As pointed
out by Hallin and Liska (2007) and Alessi et al. (2008), although multiplying
the penalty function by an arbitrary constant has no influence on the asymp-
totic performance of the criteria, the result can be affected in a finite sample.
Finally, in the applications in D’Agostino and Giannone (2013), Ahn and Horen-
stein (2013), Forni et al (2009) and Alessi et al. (2008), Bai and Ng (2002)’s
criteria lead to underestimation and/or overestimation of number of factors in
practice.

3Basically, the difference between ICp1, PCp1 and the other criteria resides in use of the
term ";LT or use of the convergence rate Cp, 7. Note the convergence rate fails to take
account of both dimensions. For example, we obtain the same C,, 7 for n = 50,7 = 50 and
n = 200,T = 50, while the estimation error is smaller in the latter case. According to Bai
and Ng (2002), the term "+TT provides a small correction to the convergence rate and the
authors’ simulations show that it has a desirable upwards penalty adjustment effect.




Alessi et al. (2010) One of the criticisms of Bai and Ng’s (2002) criteria,

related to the degree of freedom in penalty function, is exploited by Alessi et
al. (2010), who propose a refinement of the criteria in Bai and Ng (2002). The
idea was inspired by Hallin and Liska (2007), who proposed selection criteria for
dynamic factors (c.f section 3.3). Instead of using one specific penalty function,
Alessi et al. (2010) evaluate a whole family of penalty functions. In particular,
they propose the following information criteria based on ICy; (k) of Bai and Ng
(2002)*:

ICABC (k) = In(V (k, F¥)) + ok <”$T> In <n’fT> (8)

The arbitrary positive real number « is called a tuning parameter, and tunes
the penalizing power of the function. The estimated number of factors is k, =
arg ming<x<k max ICABC(k), which depends on the choice of a. The calibration
of « is carried out in the following steps: First, the author set un upper bound
for the constant «, o € [0, amaz]. Next, J subsamples of size (n;,T};) are
considered, with j =0,...,J,0<nm <...<ny=nand0<T) <...<Ty =
T. For each j, the number of the factors, denoted by I%anj, is computed. If
there exists an interval [a, @] of a which has a stable behavior, i.e., the number
of factors I%gfnj is constant across subsamples of different sizes, this means that
the choice of o has not been affected by the size of the sample. This number

kgjn] is then the estimated number of factors.
Following the notation in Hallin and Liska (2007), the stability is measured
by the empirical variance of kgfnj:

1
So ==
J -

J
j=

J
~ 1 ~
kz{nj - j Z kz;{nj (9)
1 =1

This procedure is termed tuning-stability checkup procedure in Ahn and
Horenstein (2013). The estimator has the same asymptotic properties as the
original criteria, while it conveys a more robust estimation of the number of
factors than it would were the penalty fixed.

3.1.2 Estimation of dynamic factors

Stock and Watson (2005) and Amengual and Watson (2007) To

estimate the number of dynamic factors in a restricted dynamic model, Stock
and Watson (2005) propose a modification of Bai and Ng’s (2002) estimator.
The proof of the consistency properties of the estimator is given by Amengual
and Watson (2007). The modification is straightforward. Precisely, they assume

4Another criterion proposed by Alessi et al. (2010) is based on ICp2(k) of Bai and Ng
(2002), for the reason given in footnote 3, it is not reported here.



that F; is a VAR(p) process, i.e. (2) becomes ®(L)F, = v, with &(L) =
I—-A;L—---—A,L?, and the innovations can be represented as v, = G7;,where
G is r x ¢ dimensional full column rank matrix and 7 is i.i.d. shocks. It follows
that the number of common shocks is identical to the number of dynamic factors
q. To estimate ¢, a two-step procedure is proposed. In the first step, the static
factors are estimated from z; using the APCA estimator and the number of
static factors is determined by applying Bai and Ng’s (2002) information criteria.
In the second step, the number of dynamic factors is estimated by applying
again Bai and Ng’s (2002) information criteria to the sample covariance matrix
of estimated innovations, which is obtained as the residual of a regression of x;
on lags of x; and Ft.

3.2 Application of theory of random matrix and eigen-
value properties

The second type of selection rules is based on some results developed according
to the theory of random matrix and especially the eigenvalues’ properties. The
basic idea is that if the variables admit an r factor structure, the r largest eigen-
values in the sample covariance matrix should explode, while the rest should
tend to 0. Thus, the number of eigenvalues diverging as N, T' diverge is equal
to the number of factors. The first exploration of properties of eigenvalues goes
back to the Scree test introduced by Cattell (1966) in psychology. Cattell (1966)
states that if one plots the decreasing eigenvalues in the sample covariance ma-
trix of the data against their respective order numbers, the plot shows a sharp
break when the true number of factors ends, which is the so-called “scree” cor-
responding to the beginning of idiosyncratic effects. However, the Scree test
remains a visual inspection. Another heuristic eye-inspection rule based on the
relative size of the eigenvalues is proposed by Forni et al. (2000) in frequency
domain. More formal tests were developed by Onatski (2009, 2010).

3.2.1 Estimation of static factors

Onatski (2009a) Onatski (2009) develops a sequential procedure by applying
the asymptotic distribution of the eigenvalues, namely, a few scaled and centered
largest, eigenvalues of the covariance matrix of a particular Hermitian random
matrix, which asymptotically distribute as a Tracy-Widom of type 2 (TWj,
Tracy and Widom (1994)) as T grows noticeably faster than n ®. Moreover,
Omatski (2009) constructs a statistic by taking the ratio of the difference in
adjacent eigenvalues, which gets rid of both the centering and scaling parameters
of the eigenvalues. The selection rule in Onatski (2009) is developed for a
generalized dynamic factor model, while it is also applicable for approximate
factors. In the case of approximate factors, the selection procedure consists of:

5The assumption that T grows faster than n is obviously not realistic in the macroeconomic
application. While the Monte Carlo simulations in Onatski (2009) show the test developed
works well even when n is much larger than T.



1. Divide the sample to two subsamples of equal length, multiplying the
second half by imaginary unit ¢, X; = X +in+% compute the discrete Fourier
271'Sj

T

2. Compute i-th largest eigenvalue of the smoothed periodogram estimate

% Zf/? Xij{G, i, and construct the statistic.

transformation X; = ZtT:l X, - e ™it of the data at frequencies w; =

RO09 — ma$k0<i<kiM (10)
Hit1 — Hid2

.. . e Ni—Ni
Under the null, statistic R%%Y converges in the distribution to mawy, <i<x, ﬁ,
7 K3

where )\; are random variables with joint multivariate TW, distribution”. Un-
der the alternative, RY% explodes since uy explodes while p; 41 and p;,o are
bounded. A table of critical values of test statistic is given in Onatski (2009).
The null is rejected if and only if R is larger than or equal to the critical value.

Onatski (2010) Another selection procedure is developed by Onatski (2010),
based on the structure of the idiosyncratic component in the data. He imposes a
structure on the idiosyncratic components in the data: e = AcB, where A and B
are two unrestricted deterministic matrices, and ¢ is an N x T matrix with i.i.d.
gaussian entries®. Thus, both the cross-sectional and temporal correlation of
the idiosyncratic components are allowed. Besides, comparing the assumptions
about proportional growth to n of the cumulative effect of factors of Bai and
Ng (2002, 2007), Onatski (2010) assumes only the cumulative effect of the “least
influential factors” diverges to infinity in probability as n — co. This assumption
allows the existence of some “weak” factors whose explanatory power does not
proportionally increase with N. However, instead of a closed form expression
of the upper bound on the idiosyncratic eigenvalues, Onatski (2010) derives
an implicit function for the upper bound. As proved by Zhang (2006), when
the idiosyncratic components are non-trivially correlated both cross-sectionally
and temporally, the eigenvalue distribution of ee’/T'(n) converges a.s. to non
random cdf F*4B (a sample size of n andT'(n) is assumed with n/T(n) — k > 0
as n — o0) (Zhang 2006, Theorem 1.2.1). However, F*4B is a complicated
function without explicit form. Onatski (2010) shows that any finite number of
the largest of the bounded eigenvalues in the sample covariance matrix cluster
around a single point, u(F*45) where u(-) denotes the upper bound of the
support of the distribution F*# 5. Thus, for any k > r, the difference between
the two adjacent eigenvalues py—pi+1 converges to zero, while g, —p,+1 diverges
to infinity. Onatski (2010) defines a family of estimators:

5In the case of the estimation in frequency domain, the “prime” denotes the conjugate-
complex transpose of the matrix.

7); is the i-th largest eigenvalue of a complex Wishart WS (m, S (wo) of dimension n and
degrees of freedom m, S¢ (wo) is the spectral density matrices of e¢(n) at frequency wo.

8For non-Gaussian ¢, either A or B is required to be diagonal the other remaining unre-
stricted.
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#O10(8) = max {k < rmaz™ : pgx — pigr > 6} (11)
where ¢ is a positive number.

The procedure to estimate the number of the factors is:

1. Compute the eigenvalue in the sample covariance matrix for the normal-
ized data.

2. Set j = rmax +1, run OLS regression of p;,- -, 144 on the constant and
(j —1)%/3, ..., (j + 3)*/3and denote the slope coefficient . 5=2 | B |

3. If Ay — A1 < 6 for all k < rmaz, #(0) = 0; otherwise, a factor structure
exists, compute 7(0) = max {k < rl ..k — fg+1 > 0}

4. Set j = 7(0) + 1, repeat the step 2 and 3 until convergence.

Ahn and Horenstein (2013a)  Similar to Onatski (2010), assumptions
about cross-section and serial correlations on idiosyncratic component are im-
posed in Ahn and Horenstein (2013): e = RlT/QsGiL/? where Rp and G, are
positive semi-definite matrices, and ¢ is an T X n matrix with i.i.d. entries.
Thus, both cross-sectional and temporal correlation of the idiosyncratic compo-
nents are allowed. Furthermore, the smallest eigenvalue of Ry is bounded below
by a positive number. That is to say, none of e;; and their linear functions can
be perfectly predicted by their past values. The smallest eigenvalue of G,, is
allowed to be zero, as long as an asymptotically no negligible number of eigen-
value of G,, are bounded below by a positive number. These assumptions are
suitable for macroeconomic and financial data, where the variables are highly
(perhaps perfectly) correlated, thus the smallest of eigenvalue of Gy, could be
Zero.

The statistic proposed by Ahn and Horenstein (2013), “Eigenvalue Ratio”

(ER) estimator, is obtained simply by maximizing the ratio of the two adjacent
eigenvalues arranged in descending order:

ERAH(k)Eﬁ’l—k, k=1,2,...,kmaz

k+1
The idea is the ratio of the r — th and r + 1 — th eigenvalues of (X X'/Tn)
diverges to infinity, while all other ratios are asymptotically bounded. The
estimators of r is the solution to the problem of maximization of ER(k): k =
mazi<kp<rmazER(k).

3.2.2 Estimation of dynamic factors

Onatski (2009b)  The estimation procedure for static factor number of

9The OLS regression is justified by the fact that F*“5 can be approximated by 1—a((u—
x)T)3/2 for some positive a in the neighborhood of u, (u — z)T stands for the positive part
of u-x. The choice of five regressors is suggested by the Monte Carlo simulations results in
Onatski (2010). See Onatski (2010) for more details of the calibration of 4.
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Onatski (2009), R = maxk0<i<kiﬁ (cf section 3.1.2) is also applica-
ble to the number of dynamic factors. In this case, p; in the step 2 of this
procedure is the i-th largest eigenvalue of the smoothed periodogram estimate
ﬁ Z;n:l X'jX]’- of the spectral density of the data at frequency wgy. The rest

of the procedure is identical.

3.3 Information criteria based on properties of eigenvalues

Before introducing Hallin and Liska (2007), a brief discussion about the re-
lation between the information criteria and eigenvalue is needed. In the in-
formation criteria, the PCA estimator can be considered as a solution to the
problem of minimization of V' (k). While regression of X;; on the first k principal
components is based on the eigenvalue. Thus, the information criteria estima-
tor and eigenvalue estimator are tightly related. As pointed out by Onatski
(2010), V(k) and 6% in (6) are respectively equal to (nT)~! Z?:,Hl p; and
(nT)~t > i—rmazt1 Mj» which means the information criteria are also based on
the empirical distribution of eigenvalues.

Hallin and Liska (2007) Hallin and Liska (2007) develop information crite-
ria in frequency domain to estimate the number of dynamic factors. The basic
idea is similar to Bai and Ng (2002). Due to the complexity of the spectral tech-
nique, rather than using the expected mean of squared residuals as in (5), Hallin
and Liska (2007) employ the average contribution of the bounded eigenvalue of
the spectral density matrix. With the assumption that the divergence rate of
the smallest diverging eigenvalue is n, the information criterion is of following
form:

1 < 4
HL = — i « n
ICHE (k) = n;ﬂ /7 Fum(e)d9+ kp(n) (12)

where 11,,;(0) is the i-th eigenvalue , > (6). As in Alessi et al. (2008), «,
which is an arbitrary positive real number, is the tuning parameter.

For a finite sample, lag window estimation method is suggested by Hallin
and Liska (2007) and the information criteria are:

n Mt
1 1
ICT (k) = o Z M1 Z tii (01) + akp(n, T) (13)
i=kr1 T =Dy
1 & 1 Mt
ICQT;;{{L(]C):ZOQ I Z M+ 1 Z fini (1) | + akp(n, T) (14)
i=k+1 l=—Mr
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with 0, := ﬁﬁl/z for | = —Mrp,...,Mp, My > 0 a truncation param-

eter, 0 < k < gmax. gmaz is a predetermined upper bound. puZ;(6;) are
the eigenvalues of the lag window estimator of sample spectral density ma-
trix. The penalty function satisfies two conditions (i) p(n,7") — 0 and (ii)

min {n,M%,MT_l/QTl/ﬂ -p(T,n) — oo when n,T — oo (see proposition 2 of

Hallin and Liska (2007)). Three forms of penalty are proposed in Hallin and
Liska (2007):

p1(n, T) = (M2 + MT_l/QTl/2 +n"Ylog (min [n, WES MT_1/2T1/2D (15)

pa(n,T) = (mm {n, M’%,MT_I/QTl/QDil/2 (16)

ps3(n,T) = (min [n,M%, MT_I/QTl/QD_1 log (min {n, M%7MT_1/2T1/2D
(17)

The calibration of « is the same as described for the criteria of Alessi et al.
(2008) (cf section 3.1.1.IT).

Ahn and Horenstein (2013b)  Ahn and Horenstein (2013) proposed an-
other related statistics: “Growth Ratio” (GR) estimator, which is the ratio of

growth rates of residual variances as one fewer principal component is used in
the time series regressions:

oy - In[V(k=1)/V (k)]
GRY (K = vV ik T 1] (18)

where V(k)=>_"", | fintj, and k = argmazi<kx<rmazGR(k)

3.4 Singular value

Otter, Jacobs and den Reijer (2011)  Otter et al. (2011) propose an al-

ternative criterion based on singular values instead of frequency domain eigen-
values. Furthermore, different from other studies, no explicit factor model is
assumed. Instead, they are interested in the simple fact that if a factor struc-
ture is appropriate. In particular, applying the singular value decomposition
to n x T stationary normalized random matrix X (with covariance matrix
Yo tr>o,) = VnT), one has X = USC’, with S = diag(o1,02,--,0m) ,

g1 > 092" > Oy
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k

E(IXI) = tr(x'x) = > o?

Jj=1

X has the factor structure if there exists a 7 < min(n,T) such that for j < r,
0% = O(VnT) and for j > r, 07 = o(v/nT).

Then, for the estimated covariance matrix,

E(

2
The singular values of \/% is thus %, which can be denoted by s;.
X

Furthermore, the scaled data matrix o7 can be decomposed as

2 k 2
— r(—v U—c S
> r( vnT g nT

X
\/ﬁ = U15101 + UQSQCQ =F+¢
with S1 = diag(s1,52,---,5.), So = diag(sr41, Sr42,"*, Smin(n, 1))

While the Euclidean norm of x; can be decomposed as

E(’);Q)_E(’ZTQ>+E<’2TQ> Zs + Z 2=1

j=r+1
andE< oF L 85 = ks? +Z 8 (k) , with §,(k) = s; —sg > 0,

Jl) = =2
j=1,2,...,k—1. Thus, E <||Ft\| ) has a lower bound J(k) = ks?, which can
be viewed as a tradeoff between k and o7 /nT. Denote the difference of J(k) by
DJ(k) 9. Since for j <r, DJ(k) will be positive, and for j > r, DJ(k) will be
zero as n, T — oo. Otter et al. (2013) suggest to use DJ(k) to determine the
number of factors, i.e.,k = argmin(DJ(k)).

3.5 The rank of the matrix

Based on the rank of the spectral density matrix, Bai and Ng (2007) propose an
alternative criteria for selecting the number of dynamic factors. The factors are
assumed to evolve as a VAR as in Stock and Watson (2005). Then, the r static
factors can be dynamically related, and the spectrum of the static factors has

10D J(k) =

2 1 o
Tior1) T 77 k41

AJ(R) _ (K+1) J(k) _
E

L= = J(K +1) — J(k), which could be written as -2 (02 —
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reduced rank, which is actually the number of dynamic factors (or “primitive
shocks” according to authors). In other words, the rank of the covariance matrix
of vy, 3, = E(vvy), is equal to the number of dynamic factors.

Specifically, Bai and Ng (2005) define two statistics:

52 1/2
Dop= =" 19
& (Ej_lﬁ?> (19)
and "
> jor1 B
Dy, = | &L 20
o <Zj:1 E (20)

where 31 > By > --- > 3, are the ordered eigenvalues of iu With a matrix
of rank ¢ < r, the r — ¢ smallest eigenvalues are zero. Thus, D, = Dy = 0 if
k>q.

The estimation of the number of the dynamic factors is carried in several
steps. First, the principal component estimators of the static factors, Ft, are
obtained. Next the re&duals u are obtained from estimation of a VAR in Ft and
construct Eu =1 Zt 1 Uyt Then, Da  and Db . are calculated from E Bai
and Ng (2007) suggest two selection rules (Proposmon 2 of Bai and Ng (2007)):

Kq = {k : lA)aJC < g/min {nl/Q*‘;,Tl/Q"s” (21)

= {k : lA)b,k < g/min [nl/Z*‘s,Tl/%‘s}} (22)

for some 0 < g < oo and 0 < ¢ < 1/2, and q, = min{k € Ko}, @ =
min{k € kp}.

In other words, ¢ is the smallest k£ such as ﬁa k and 5bk are asymptoti-
cally zero. Since we know HZ — H*Y, H"|| = O,(1/6,r)"". By continuity
of eigenvalue, we have Da,k Dy = O (5n }) and Dbk — Dy =0 (6n1T)
For k > ¢, since Dy = Dy, = 0, then Da,k = Op(6;7T). Thus, when n,
T — oo, ﬁmk < M/min [nl/%e,Tl/Q*E] with probability tending to 1 , which
implies ¢ € K, for large N, T. Whereas ¢ — 1 ¢ &, since Dy > g > 0
if £ < g, then ﬁa’k > M/min [nl/Q_E,Tl/Q_G] with probability tending to 1.
M /min [n'/2=¢ T1/2=] is the tolerated error induced by the estimation. Based
on Monte Carlo simulations, Bai and Ng (2007) suggest € = 0.1 and the choice

of M depends on whether the estimation is based on covariance matrix or cor-
relation matrix of VAR residuals.

11See Bai and Ng (2002) theorem 1 and Bai and Ng (2007) proposition 1 and lemma 2
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3.6 Canonical correlation analysis

Breitung and Pigorsch (2013) Instead of using PCA, Breitung and Pig-

orsch (2013) develop a selection procedure based on canonical correlation anal-
ysis (CCA). Compared to PCA, CCA is invariant to any rotation of the factor
space. In particular, the procedure is based on,

| ll;goo — 50157185, |=0 (23)

A T A Al A T A A/ A T A~ N
where Spo = Zt=s+1 FyEy, Sor = Zt=s+1 FGi_1.51 = Zt=s+1 Gi-1Gi
’

and Gy = |F/_,,..., }3’{74 , s is the lag order.

[, the generalized eigenvalues resulting from (13), represent the canonical
correlations between the current and past values of the r static factors, re-
spectively denoted by F, and G;_;. We use * to distinguish them from the
eigenvalues of PCA estimators. The generalized eigenvalues are equivalent to
the R? measure of a regression of the associated linear combination of F; on
G¢-1 (Anderson 1984). Hence, they are scale invariant and 0 < [L;‘ < 1. The
motivation for using fi} is that if some lags of the factors enter the static rep-
resentation Fj, these lags are perfectly predictable from linear combinations of
G¢_1. Thus, the corresponding canonical correlations (eigenvalues) converge
to unity as the sample size tends to infinity, whereas the remaining eigenval-
ues converge to values smaller than 1. Furthermore, the convergence rate is
given by Breitung and Pigorsch (2013, Theorem 1), i.e., for j = 1,---,r — k,
(1—4p) = OP(CH_%) while p (1 — 5 > M) — 1 for some constant M > 0 if
j>r—k. It follows for j =1,---,r —k, CZ;‘S (1 — [L;) converges to zero with
0 < & < 2, while C27° (1 —fi}) tends to infinity if j > r — k. The statistic
constructed by Breitung and Pigorsch (2013) is:

r—k*

§0) = Cap” X (=) (24)

As in BN 02, the convergence rate is replaced by 5;1% = % to take account
of the two sampling dimensions.

The number of dynamic factors is determined by choosing the smallest num-
ber k in the sequence k* = r,r — 1,---,1, where £(k*) is smaller than some
fixed threshold 7: ¢ = min{k* : {(k*) < 7}. Finally, based on the Monte Carlo
simulations, Breitung and Pigorsch (2013) suggest 6 = 0.5 and 7 = 4.5 for a
fraction of explained variance of [0.4,0.9].
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4 Simulation

In this section, we provide a detailed Monte Carlo study to evaluate the per-
formance of each selection procedure in finite samples. First, we assess the
performance of PC and IC in Bai and Ng (2002) (hereafter BN02a, BN0O2b re-
spectively), Alessi et al. (2010, ABC), Onatski (2009, 2010, Ona09 and Onal0,
respectively), the ER and GR ratio of Ahn and Horenstein (2013, AH ER and
AH GR respectively) to determine the number of static factors. Then, we as-
sess the performance of Bai nd Ng (2002) (hereafter BNO7a, BNO7b), Stock and
Watson (2005, SW), Onatski (2009, Ona09), Hallin and Liska (2007, HL), Bre-
itung and Pigorsch (2013, BP) and Otter et al. (2013, OJR) to determine the
number of dynamic factors. All computations are performed with MATLAB
R2013.12

4.1 Static factors

To investigate the properties of different criteria to determine the number of
static factors, two part simulations are conducted. In the first part (DGP 1-5),
we are interested in the effects of the error covariance structure. In the second
part (DGPs 6-8), we investigate the effect of the presence of weak and strong
factors. The strongly correlated idiosyncratic errors and presence of strong
factors are both meaningful in macroeconomic and financial applications. The
simulation experiment design is adopted from Bai and Ng (2002) and Ahn and
Horenstein (2013).

The base model is

I
Tit = Z Ni iy + \/gei,t
i=1

with e; ¢ =pei 1+ v + Z;-;o,j:_J Boi_je, vig ~ N(0,1).

Fj: and \;; are N(0,1) variables, r is set to be 3. Considering that the
number of variables ($N$) sufficient for Monter Carlo simulations are shown
to be about 40 (Boivin and Ng, 2006; Inklaar et al., 2005), we began with 40
variables up to 300. For each n, the number of observation is set at 40 to 300,
i.e., n = 40, 50, 100, 150, 200, 300; T = 40, 50, 100, 150, 200, 300. The choice of
n and T is quite plausible since it reflects the most frequent size of the empirical
datasets used in dynamic factor model.

4.1.1 Simulation: Part 1

DGP1: Homeskedastic idiosyncratic component, and idiosyncratic component,
have the same variance as the common component:

12We are grateful to Otter, Jacobs, den Reijer, Breitung and Pigorsh for providing their
code. The codes of Bai and Ng (2002, 2007), Alessi et al. (2010), Hallin and Liska (2007),
Onatski (2009, 2010), Ahn and Horenstein (2013) can be found on their personal homepages.
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ei,t"\-’N(O,l),e:’r’p:B:J:O-

DGP2: Heteroskedastic idiosyncratic component:
1 .

€y if todd . 1 9 ..

. — 2, . h - < 1.d. ~ = = = (.

€it ezl,t v e?,t ifteven with e} ,,ef; i.i.d N(0,1),p=p=J=0

DGP3: Only serial correlation is allowed for the idiosyncratic component:

B =0, e =peii—1+ V.

Instead of assuming p = 0.7 as in Bai and Ng (2002), we follow Onatski
(2009), i.e., p are i.i.d U [—0.8,0.8], which fits the range of the first order auto-
correlation of the idiosyncratic error of the data in Stock and Watson (2002).

DGP4: Only cross-section correlation is allowed for the idiosyncratic com-
ponent: p = 0, then,

€in Vit + 3140 oy BUi—j0, B = 0.5, J = max(10, N/20)

DGP5: Both serial and cross-section correlation are allowed for the idiosyn-
cratic component:

€in —peii—1 + Vit + 1sg ey BUi—je. p ~ U[-0.8,08], B = 0.2, J =
max(10, N/20)

To investigate the effect of the level of cross-section correlation, we run two
versions of DGP5 with different magnitudes of correlation, one of 8 = 0.2 and
the other of 5 = 0.5.

4.1.2 Simulation: Part 2

DGP6: common component has smaller variance than the idiosyncratic compo-
nent:

eii~ N(0,1),0 = [2,4,6,8,10]r

By allowing 0 to be a sequence of numbers, we investigate the effects of the
varying explanatory power of factors. To isolate the effect of the explanatory
power of factors, three versions of DGP6 are conducted. One without serial and
cross-section correlation, and the other two introducing serial and cross-section
correlations for the idiosyncratic component, however, with different magnitudes
of correlation, one with # = 0.2 and the other with 8 =0.5 , i.e.,

DGP6a: e;;~ N(0,1),0 =r,. p==J=0

DGP6b: ;¢ —pei i1 + Vit + Y1 sg s BUi—jus p~ U[~0.8,0.8], B = 0.2,
J = max(10, N/20)
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DGP6c: iy —peis—1 + Vit + Yoy BUijas p ~ U[~0.8,0.8], B = 0.5,
J = max(10, N/20).

DGP7: Homescedastic idiosyncratic component, and the idiosyncratic com-
ponent has smaller variance than the common component variance (presence of
one weak factor).

Fi4,Foy ~ N(0,1), F5; ~ N(0,0%3), 055 = [0.45,0.4,0.35,0.3,0.25,0.2,0.15,0.1]

DGPS8: One factor has dominantly strong explanatory power (presence of a
dominantly strong factor)

=1, Fi ¢ ~N(0,0%), Fot, F5; ~ N(0,1), 0%, takes the value of all pair
numbers between 2 and 20.

Three versions similar to as DGPs 6a-6¢ are conducted for DGP7 and DGP8&
respectively.

Finally, each series is standardized to have a mean of 0 and unit variance.
For all DGPs, rmax is set to be twice the real number of factors, i.e., 6. The
values of the tuning parameters are chosen the following: for the criteria of ABC
and HL, the parameter a in (10) and (14) is set up to 5 with step size of 0.01;
for the criterion of BP, we follow their suggestion to set § = 0.5 and 7 = 4.5
(see (26)).

The results for the average selected number of factors over 500 replications
for DGP1-5 are summarized in tables 2-7. The MSE of the factor number estima-
tors are reported in parentheses below. The results for criteria BN0O2a, BN02b,
ABC, Ona09, Onal0, AH_ER and AH_GR are displayed in the columns.

Monte Carlo simulations show that all methods perform well for DGP1.
For DGP 2, most of the criteria give accurate estimates in the presence of
heteroskedasticity in the idiosyncratic errors. Ona09 underestimate the number
of factor only if N and T are both small (40,50). Furthermore, notice that MSEs
are quite small in general, which suggests the estimator is consistent. Similar
results are found for DGP 3. Almost all criteria remain robust to the presence
of heteroskedasticity and serial correlation.

However, when cross-section correlation is allowed for the idiosyncratic com-
ponent (DGP 4), the results are less accurate. The criteria BN02a and BN02b
tend to overestimate the number of static factors and select the predetermined
maximum number of factors. The increased sample size does not improve the
results. ABC shows a slight improvement over Bai and Ng (2002), especially
at size N=200. However, we should point out that ABC is much more time-
consuming than the other method. Next, Onatski (2009, 2010) tend to under-
estimate the number of factors. Finally, AH ER and AH GR dominate the
other criteria. ER overestimates the number of factors for small samples and
gives an estimator very close to the real number when N and T increase.

13We also follow the choice of Bai and Ng (2002) and set rmax to be Sint [(c?\, T/lOO)l/ﬂ ,
the results are similar and are not reported.
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Both serial and cross-section correlation are allowed for the idiosyncratic
component in DGP 5. When cross-correlation is strong, 5 = 0.5, the results are
similar to DGP4. However, if we allow only for low cross-section correlation, § =
0.2, the performance of Ona09 and OnalO improve as n and T increase. The
number of factors selected is close to the real number for large n ( n> 100 for
Ona09 and n> 50 for Onal(0). Again, AH ER and AH GR outperform the
other criteria.

For DGP 6-8, only the results for equaling n and T are reported here for
simplicity'. The results for DGP 6 (common component has smaller variance
than the idiosyncratic component) are displayed in figures 1-4. DGP 6a (absence
of serial and cross-section correlation) are shown on the left, DGP 6b (presence
of serial and cross-section correlation, § = 0.2) are shown in the middle, and
DGP 6¢ (8 = 0.5) is shown on the right. We can see that, in the absence of
cross-section correlation, pure weak factors have little negative influence on the
estimation. Most criteria yield satisfactory results, even for very small samples
such as n=T=40. Next, introducing small cross-section correlation worsens the
results (DGP6b). BN02a and BN0O2b always overestimate the number of factors,
whereas Ona09 and Onal0O tend to produce underestimation. As the degree of
cross-section correlation increases, the estimation results deteriorate further.
However, AH ER and AH GR continue to suggest a number of factors quite
close to the real numbers.

The results for DGP T7a-c (presence of one weak factor) are similarly dis-
played in figures 5-8. In the absence of serial and cross-section correlation (left
column), the number of factors selected by ABC and Onal0 are closest to the
real number most of time, while the ER and GR ratios tend to neglect the weak
factor as the sample size increases. When serial and cross-section correlations
are allowed, the results worsen (middle and right column). BN02a and BN02b
always overestimate the number of factors all of the time. ABC outperforms
BNO02a and BN02b but produces less reliable results with an increase in the sam-
ple size. The other criteria neglect the weak factor as the sample increases. We
would point out that increasing the sample size does not necessarily improve the
results since the degree of cross-section correlation also increases according the
experiment design (e; ; =pe; 11+ +Zj¢07j27‘] Bui—j i, J = max(10,1n/20)).

The results for DGP 8a-c (presence of a dominant strong factor) are dis-
played in figure 9-12. In the absence of serial and cross-section correlation (left
column), the numbers selected by BN02a, BN02b, ABC and Onal0 are almost
always accurate. In contrast, the GR ratio gives precise estimations only if the
dominant factor is not very “strong”. Finally, ER tends to give only two factors
as the sample increases. When small serial and cross-section correlations are
allowed (middle column), only OnalQ continues to indicate a fairly accurate
number. When large serial and cross-section correlations are allowed (right col-
umn), the results worsen. BN02a, BN02b and ABC overestimate the number of

14The results of all the combinations of n=40, 50, 100, 150, 200, 300; T=40, 50, 100, 150,
200, 300 for each different value of 6 are available on request
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factors and the remaining criteria tend to suggest only one factor as the sample
size increases.

To summarize, in the case of i.i.d., heteroskedasticity or pure serial cor-
relation in the idiosyncratic component, all the criteria perform well. Most
criteria are more sensitive to cross-section correlation. ABC, Onal0, AH_ER
and Ah_GR outperform the others in the presence of serial and mild cross-
section correlation. In particular, AH GR does well even in presence of strong
cross-correlation. However, it tends to underestimate the number of factors
in the presence of one weak or one dominant factor. In the presence of both
cross-correlation (moderate) and a dominant factor, Onal0 seems to be more
reliable.

4.2 Dynamic factors

In relation to the criteria for selecting the number of dynamic factors, we gener-
ate samples with the same DGPs as Bai and Ng (2007), with slight modification.
The base model is

X =Aofi + Aifici + Asfia + e

Ap,Ay and A, are drawn from the standard normally distributed random
variables. The number of dynamic factors is assumed to be two in all DGPs.
The number of static factor models is hence r = ¢(s + 1) = 6. Following DGPs
are considered:

DGP9: f; is a Moving Average MA(1) process: f; = vy + Ouvi_q, with
© = diag(0.2,0.9) and v~ N(0, 1),

DGP10: f; is an Autoregressive AR(1) process: f; = I'yfi—1 + vy, with
I' = diag(0.2,0.9) and v;~ N(0,1).

In contrast of Bai and Ng (2007), where e; are i.i.d. standard normal, both
serial and cross-section correlation are allowed for idiosyncratic component in
DGP9 and DGP10, which follows the process suggested by Onatski (2009):

€t —peit—1 + Ui, with p ~ U [-0.8,0.8], 8 = 0.215,

We also consider the presence of one dominantly strong factor in both cases,
ie. fip~ N(0,0%), far ~ N(0,1), 07, takes the value of all pair numbers
between 2 and 20. Let MA with one dominant factor be DGP11 and AR with
one dominant factor be DGP12.

For the procedures where gmax is required, gmax is set to be r, the number
of static factors. The first step is thus estimation of the number of static factors.
In light of the results obtained in the previous section, we rely on the results in
Onal0, AH ER and AH GR primarily. The results for number of static factors

15The results with 8 = 0.5 and s—1 are similar and are not repoted.
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selected by the previous criteria for DGP9 (MA) are given in table 8¢, BN(02a
and BNO2b overestimate the number of static factors. Notice the number of
static factors estimated approaches the real number as the N or/and T increase
since the cross-section correlation does not increase with sample size. And
Ona09 underestimates the number of static factors. However, ABC, Onal0,
AH ER and AH GR criteria give estimation close to the real number of static
factors. Therefore, we set r to be the real number of static factor, i.e., 6.

The results for the average selected number of factors over 500 replications
for DGP 9 are given in table 8. BN07a and BNO7b invariably point to one dy-
namic factor, while Ona09, JOR, SWa and SWb always overestimate the number
of factors. HL and BP accurately estimate the number of factors. However, as
in ABC, HL is much more time consuming. Another problem related to ABC
and HL is the authors suggest choosing the value of the second flat interval as
the number of factors. However, they are not precise about the length of the
flat interval. Therefore, very short flat intervals can lead to unstable results.

The results for DGP 10 (AR) are given in table 9. For the static factors,
BN02a and BNO2b overestimate the number for small T (T=50). As sample
size increases, BN02a and BN02b underestimate the number of factors. The
underestimation of Ona09 is more severe. Next, AH ER and AH GR criteria
give less accurate estimations than in DGP9. They underestimate the number of
factors for small samples and the problem of AH ER is more severe. However,
ABC and Onal0 continue to give an accurate estimation. For the number of
dynamic factors, the results are similar to DGP9, BN07a and BNO7b continue
to underestimate the number of factors and SWa and SWb continue to over-
estimate the number of factors. In fact, SWa and SWb always take the value
of gmaz. Next, Ona(9 slightly underestimates the number of factors. It is not
surprising that the number of static factors and dynamic factors suggested by
Ona09 are close since the approach is similar. However, our experiments shows
that the criteria developed by Onatski (2009) is more suitable for selecting the
number of dynamic factors. Concerning JOR, it overestimates the number of
factors. Nonetheless, as sample size increases, the estimation approaches the
real number. Finally, HL chooses two (most of time) or three factors and BP
accurately selects number of factors.

For DGP 11 (MA with one dominant factor, figures 13-16), the results are
similar to DGP9 (MA). Despite the presence of one dominant strong factor,
Onal0, AH ER and AH GR still correctly select the number of static factors.
The estimation of ABC is less accurate than in DGP9 and still close to the
real number. BP continues to choose the correct number of dynamic factors.
In contrast, if we allow one dominant factor in AR (DGP12, figures 17-20), no
criteria can accurately estimate point out the real number of static factors. To
estimate the number of dynamic factors, if we set gqmax to be the real number
of factors, Ona09 and JOR give an accurate estimation and outperforms the
others, while BP overestimates the number of dynamic factors. If we set gmax

16Similar results are found for DGP 10 and DGP11. The results are not reported here.
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to be 2, as suggested by Onal0, then AH ER and AH_GR, BP chooses 1 for
small samples and 2 as the sample gets large, which is not surprising'”.

To conclude, when the dynamic factors follow an MA process, ABC, Onal0,
AH ER and AH GR will accurately estimate the number of static factors.
However, the performance of AH ER and AH _GR deteriorate if the dynamic
factors follow an AR process. The situation becomes worse if there is one
dominant strong factor present, and no criteria can give the correct specification.
In the specification for the number of dynamic factors, BP gives an accurate
estimation in both the AR and MA cases. However, if there is one dominantly
strong factor in AR, it fails. Another problem is that BP is quite sensitive to
gmax.

5 Empirical application

Finally, we evaluate the performance of the criteria in empirical studies. We
estimate the number of factors in the stock markets in the US, France, the UK
and Japan. Our data consist of monthly stock returns of the member companies
of the S&P 500 (the US), SBF 250 (France), FTSE 250 (the UK) and Nikkei
225 (Japan). The sample period is 01/1992-12/2011. There are 240 months
in the sample, which covers the most important worldwide economic events
since 1990s: internet boom (mid- and late- 1990) and the collapse of dot-com
bubble (1999-2001); Asia financial crisis (1997-1999); real estate bubble (mid-
2000); the financial crisis started in 2007 and the following worldwide economic
downturn. Among the stock components, we choose only those stocks which
returns are available for the entire observation periods. Then, we have 268
(US), 94 (France), 103 (the UK) and 179 (Japan) companies respectively for each
market. For the purpose of studying the performance of different criteria in small
sample, we divide the entire sample into four blocks with 60 months (5 years) in
each subperiods: 1992-1996, 1997-2001, 2002-2006, 2007-2011. The data source
are from Bloomberg!®. All the series are transformed to be stationary and
normalized to have means of zero and variances of one.

Both the number of factors for the entire period and the sub-periods are
estimated. The estimation results are summarized in Tables 10 and 11. The
maximum number of static factors and dynamic factors are set to be ten. For
the number of static factors for the entire period (column 4 of Tables 10 and 11),
BNO02a provides estimations of five factors for the UK, six factors for Japan and
the US market, and three factors for France market. The results provided by
BNO02b are quite similar. The estimation results of ABC are generally less than
BNO02a and BN0O2b. The results are in line with the simulation results, which
showed that BN02a and BN0O2b tend to overestimate the number of factors and
ABC improves the results. The other criteria suggest mostly one static factor for

7In fact, we also set gmaz to be 3, 4 and 5, the results were similar, except BP is more
sensitive to the number of static factors chosen. Similar results are found for DGP9-11.
18We are grateful to Jean-Etienne Carlotti for providing the data.
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all the markets, except that Onal0 estimates three factors for Japan market,
two factors for France market. Considering our simulation results, there is a
strong evidence of the presence of one strong static factor.

For the number of dynamic factors, two versions of the maximum number of
dynamic factors are set. One version is setting the maximum number of dynamic
factors to be ten. The other one is choosing the maximum number of dynamic
factors as the number of static factors suggested by Onal0, which is shown to be
more reliable in presence of one dominant factor in the simulation experiment.
The results of the first version are given in the Tables 10 and 11. SWa, SWb
and BP estimate ten dynamic factors. The other criteria estimate one dynamic
factor for all the markets. There is strong support, for one market factor. The
results are similar when we set the maximum number of dynamic factors as
suggested by Onal0, except that SWa, SWb and BP always give the maximum
number of factors. The overestimation results of SWa and SWb are in line
with the simulation results. While BP shows good performance in simulation
experiments, it seems that BP is sensitive to the choice of the maximum number
of factors.

The estimation results of the number of factors over different sub-periods are
given in the columns 5-8 of Tables 10 and 11. First, BN07a, BNO7b and HLq
continue to estimate one dynamic factor. On the other hand, SWa, SWb and
BPq always estimate the maximal number of factors. Second, the other criteria
are unstable over the time, with a very volatile estimated number of factors for
some criteria. This is especially the case of JOR, which gives a large number of
factors over some sub-periods. The non robust behavior of these criteria over
time may be due to structural breaks over time since our observation periods
cover important economic events. Breitung and Eickman (2011)!? show that
structural breaks can inflate the number of factors estimated. However, they
point out the information criteria tend to suggest a larger number of factors for
the entire period than for the sub-periods, which is not always the case here.

6 Conclusion

This paper compared the small sample performance of selection rules for factors
numbers in large datasets. We find that the GR ratio proposed by Ahn and
Horenstein (2013) is robust to the presence of serial and (strong) cross-section
correlation. However, it tends to underestimate the number of factors in the
presence of one weak or one dominant factor. In the case of both presence of
cross-correlation (moderate) and a dominant factor, the criterion proposed by
Onatski (2010) seems more reliable. Furthermore, the two criteria can select
accurately the number of static factors in a dynamic factors design. Also, al-
though the criterion proposed by Breitung and Pigorsch (2009) correctly select
the number of dynamic factors in most simulation cases, it seems sensible to

190ther studies about structural breaks in dynamic factor models include Bates et al.
(2013), Stock and Watson (2009) et etc.
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the choice of the maximum number of factors in the empirical study. We hope
these results help in the choice of the number determining criteria with different
types of data, for future research.
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Appendix

Table 2: DGP1: Estimtion of number of factors
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Table 3: DGP2: Estimtion of number of factors
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Table 4: DGP3: Estimtion of number of factors
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Table 5: DGP4: Estimtion of number of factors
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Table 6: DGP5 a: Estimtion of number of factors
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Table 7: DGP5 b: Estimtion of number of factors
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Table & DGP10: Estimtion of number of factors

Static Factors

Dynamic Factors

N T | BNra BNrb ABCr Ona09r OnalOr AHERr AHGRr| BNO7a BNO7b Ona09 HLgq BPq JORg SWa SWh
50 50 9.01 7.05 6.26 1.81 6 2.1 3.45 1 1 153 2.66 2.08 3.56 6 6
(13.28) (7.41) (0.66) (21.17) (0.22) (19.42) (12.6)| (1) (1)  (0.46) (2.58) (0.08) (7.26) (16)  (16)
50 100 6.3 5.12 6.26 1.47 6 1.99 4.22 1 1 1.52 2.7 2.18 2.83 6 6
(9.16) (9.79) (0.5) (22.58) (0)  (20) (8.87)| (1) (1)  (0.48) (2.62) (0.18) (5.81) (16)  (16)
50 150 4.77 4.1 6.36 1.17 6.01 235 4.57 1 1 1.54 2.04 2.29 23 6 6
(9.95) (10.63) (0.68) (24.02) (0.01) (18.25) (7.12)| (1) (1)  (0.45) (0.08) (0.29) (4.41) (16)  (16)
50 200 4.04 3.63 6.22 1.21 6.01 22 4.8 1 1 1.56 2.04 2.38 237 6 6
(10.51) (10.86) (0.3) (24.12) (0.01) (19) (6) (1) (1)  (0.44) (0.08) (0.38) (4.66) (16)  (16)
50 300 3.03 2.84 6.24 1.12 6 217 5.45 1 1 1.51 2.02 2.49 2 6 6
(12.09) (12.6) (0.32) (24.28) (0) (19.12) (2.75)| (1) (1)  (0.48) (0.06) (0.49) (3.7) (16) (16)
100 50 7.21 6.16 6.24 154 5.99 235 4.05 1, 1 1.59 3.02 2 3.82 6 6
(13.02) (11.81) (0.76) (22.28) (0.01) (18.21) (9.64) | (1) (1)  (0.4) (39) (0) (8.61) (16) (16)
100 100 4.97 3.98 6.16 1.15 6.01 2.85 5.07 1 1 1.56 2.02 2.01 3.03 6 6
(13.78) (12.97) (0.32) (24.29) (0.01) (15.75) (4.62) | (1) (1) (0.43) (0.02) (0.01) (6.71) (16)  (16)
100 150 4.02 34 6.26 1:13 6 3.32 5.77 1 1 1.54 2 2.02 2.6 6 6
(13.41) (12.97) (0.54) (24.33) (0) (13.37) (1.12)| (1) (1)  (0.45) (0.08) (0.02) (5.52) (16)  (16)
100 200 331 29 6.1 1.08 6 3.72 5.77 1 1 1.53 2 2.03 2.14 6 6
(13.38) (13.52) (0.1) (24.53) (0) (11.37) (1.12)| (1) (1)  (0.46) (0.04) (0.03) (4.26) (16)  (16)
100 300 2.75 2.54 6.14 1.02 6 4.12 6 1 1 1.59 2.04 2.08 1.98 6 6
(13.59) (13.87) (0.22) (24.87) (0)  (9.37)  (0) (1) (1) (0.4) (0.04) (0.08) (3.82) (16) (16)
150 50 6.8 6.23 6.12 1.61 6.02 2.72 4.22 1 1 1.6 3.84 2 3.77 6 6
(15.88) (14.71) (0.16) (22.03) (0.08) (16.38) (8.88)| (1) (1)  (0.39) (7.36) (0) (8.62) (16)  (16)
150 100 4.94 431 6.1 122 6.01 3.2, 5.4 1. 1 1.58 21 2 3.12 6 6
(15.69) (14.59) (0.22) (23.83) (0.02) (14) (3) (1) (1) (0.41) (0.34) (0) (7)  (16)  (16)
150 150 3.95 33 6.06 1.03 6 3.62 5.72 1 1 1.54 2 2 2.84 6 6
(15.13) (14.36) (0.06) (24.83) (0) (11.87) (1.37)| (1) (1) (0.45) (0) (0) (6.26) (16) (16)
150 200 3.61 3.04 6.08 1 6 4.4 5.92 1 1 1.56 1.98 2 2.44 6 6
(14.07) (13.76) (0.08)  (25) (0) 8 (037)| (1) (1) (0.44) (0.02) (0) (5.17) (16)  (16)
150 300 2.83 2.54 6.06 1 6 5.1. 6 1 1 1.55 2.02 2 2.08 6 6
(14.36) (14.38) (0.06) (24.95) (0) (45) (0) (1) (1)  (0.44) (0.02) (0) (417) (16) (16)
200 50 6.17 5.79 6.32 1.39 5.99 2.65 4.45 1 1 1.51 2.96 2 3.84 6 6
(15.86) (14.86) (1.12) (23.13) (0.01) (16.75) (7.75)| (1) (1) (0.48) (3.84) (0) (8.84) (16) (16)
200 100 5.02 4.52 6.04 1.03 6 3.52 5.32 1 1 1.55 2.08 2 3.09 6 6
(16.85) (15.8) (0.04) (24.73) (0) (12.37) (3.37)| (1) (1) (0.44) (0.36) (0) (6.88) (16)  (16)
200 150 4.08 3.61 6.04 1.03 6.02 4.22 5.82 1 1 1.57 2.08 2 2.44 6 6
(16.61) (15.18) (0.08) (24.78) (0.08) (8.87) (0.87)| (1) (1)  (0.43) (0.08) (0) (5.14) (16)  (16)
200 200 3.54 2.96 6.08 1.05 6 4.47 5.97 1 1 1.57 2 2 222 6 6
(15.18) (14.4) (0.08) (24.7) (0) (7.62) (0.12)| (1) (1) (0.42) (0) (0) (455 (16) (16)
200 300 2.82 2.5 6.02 1.03 6 5.27 6 1 1 1.58 2 2 2.04 6 6
(14.81) (14.64) (0.02) (24.78) (0) (3.62) (0) (1) (1)  (0.42) (0) (0) (4.02) (16) (16)
300 50 6.4 6.16 6.32 1.34 5.98 2.77 4.42 1 1 1.59 3.12 2 3.78 6 6
(17.86) (17.02) (1) (23.28) (0.02) (16.13) (7.87)| (1) (1)  (0.4) (4.48) (0) (8.63) (16)  (16)
300 100 4.79 4.47 6.16 11 6 3.57 5.52 1 1 1.56 2.02 2 3.07 6 6
(17) (16.28) (0.6) (24.45) (0) (12.12) (2.37)| (1) (1)  (0.43) (0.1) (0) (6.9) (16)  (16)
300 150 3.95 3.59 6 1.08 6 4.72 5.82 1 1 1.54 2.04 2 2.54 6 6
(16.27) (16.09) (0) (24.53) (0) (6.37) (0.87)| (1) (1)  (0.45) (0.04) (0) (5.46) (16) (16)
300 200 4.19 3.8 6 1 6 5 5.97 1 1 1.57 1.98 2 2413 6 6
(17.47) (16.42) (0) (24.95) (0) (5)  (012)| (1) (1)  (0.42) (0.02) (0) (4.32) (16) (16)
300 300 3.15 2.65 6 1.03 6 5.65 6 1 1 1.57 2 2 2 6 6
(15.49) (14.77) (0) (24.78) (0) (1.75) (0) (1) (1) (0.43) (0) (0) (3.96) (16) (16)




Table 9: DGP9: Estimtion of number of factors

Static Factors

Dynamic Factors

N T BNra BNrb ABCr Ona09r OnalOr AHERr AHGRr|BNO7a BNO7b Ona09 HLq BPg JORq SWa SWb
50 50 994 857 612 439 601 575 592 1 1 392 19 202 558 6 6
(18.48) (11.07) (0.2) (9.48) (0,16) (0.89) (0.17)| (1) (1) (8.86) (0.06) (0.02) (13.51) (16) (16)
50 100 827 766 622 471 601 597 6 1 1 451 198 201 577 6 6
(10.14) (6.9) (0.22) (5.83) (0,01) (0.09) (0) (1) (1)  (10.6) (0.02) (0.01) (14.68) (16) (16)
50 150 723 693 6.08 482 601 599 6 1 1 4.52 2 2.02 583 6 6
(4.78) (3.32) (0.08) (5 (0,01) (0) (0) (1) (1) (10.62) (0) (0.02) (14.93) (16) (16)
50 200 7 6.75 6.1 4.9 6.01  5.99 6 1 1 4.5 2 2.03 587 6 6
(3.45) (2.35) (0.1) (5.03) (0,01) (0) (0) (1) (1) (10.48) (0) (0.03) (15.17) (16) (16)
50 300 6.45 6.34 6.2 496 6.01 6 6 1 1 4.39 2 2.05 5.86 6 6
(1.22) (0.81) (0.24) (4.5 (0,01) (0) (0) (1) (1) (10.11) (0) (0.05) (15.1) (16)  (16)
100 50 8.8 8.28 6.2 451 601 592 596 1 1 4.08  2.08 2 5.75 6 6
(13.82) (10.87) (0.48) (7.33) (0,03) (0.28) (0.15)| (1) (1)  (9.47) (0.32) (0) (14.49) (16) (16)
100 100 754 7.03 6.02 479 601 6 6 1 1 449  1.98 2 5.92 6 6
(7.51) (4.63) (0.02) (4.5) (0,01) (0) (0) (1) (1) (10.49) (0.02) (0) (15.49) (16) (16)
100 150 723 6.85 6.02 4.88 6 6 6 1 1 4.6 2 2 5.94 6 6
(5.81) (3.53) (0.02) (4.36) (0) (0) (0) (1) (1) (10.96) (0) (0) (15.63) (16) (16)
100 200 6.71 6.48 6.04 5.07 6.01 6 6 1 1 4.66 2 2, 5.97 6 6
(2.98) (1.72) (0.04) (4.95) (0,01) (0) (0) (1) (1) (11.18) (0) (0) (15.85) (16) (16)
100 300 6.29 6.18 6 4.99 6 6 6 bl 1 4.51 2 2 5.98 6 6
(0.85) (0.44) (0) (4.48) (0) (0) (0) (1) (1)  (10.67) (0) (0)  (15.86) (16) (16)
150 50 867 838 624 449 601 594 599 I 1 4.32 2 2 5.84 6 6
(14.01) (12.32) (0.84) (6.64) (0,06) (0.17) (0) (1) (1) (10.08) (0) (0) (14.99) (16)  (16)
150 100 7.68 7.31 6 4.65 6.01 6 6 1 1 4.49 1.98 2 5.96 6 6
(8.54) (6.42) (0) (452) (0,01) (0) (0) (1) (1) (10.54) (0.02) (0) (15.77) (16) (16)
150 150 715 6.74 6 472 6.01 6 6 1 1 4.56 2 2 5.98 6 6
(5.77) (3.3) (0) (4.08) (0,01) (0) (0) (1) (1) (10.6) (0) (0) (15.91) (16) (16)
150 200 6.87 653 6.02 4.87 6 6 6 1 1 4.55 2 2 5.98 6 6
(4.08) (2.04) (0.02) (4.89) (0) (0) (0) (1) (1) (10.75) (0) (0) (15.86) (16) (16)
150 300 6.34 6.18 6.02 4.96 6.01 6 6 1 1 4.61 2 2 5.99 6 6
(1.25) (0.55) (0.02) (4.44) (0,01) (0) (0) (1) (1) (11.07) (0) (0) (15.98) (16) (16)
200 50 8.55 832 6.2 457 601 593 599 1 1 4.18 2 2 5.84 6 6
(13.58) (12.2) (0.76) (6.63) (0,05) (0.23) (0) (1) (1) (9.69) (0) (0) (15.01) (16) (16)
200 100 7.84  7.56 6 474 6.01 599 6 1 1 4.61 2 2 5.96 6 6
(9.71) (7.91) (0) (4.64) (0,01) (0) (0) (1) (1) (10.91) (0) (0) (15.74) (16) (16)
200 150 7.02 672 6.02 475 601 6 6 1 1 4.6 2 2, 5.98 6 6
(5.15) (3.51) (0.02) (5.75) (0,01)  (0) (0) (1) (1) (10.97) (0) (0) (15.9) (16) (16)
200 200 6.88 6.5 6 484 6.01 6 6 1 1 4.49 2 2 5.99 6 6
(4.32) (2.1) (0) (5.28) (0,01) (0) (0) (1) (1) (10.53) (0) (0) (15.95) (16) (16)
200 300 6.44  6.21 6 5.03 6 6 6 1 1 4.61 2 2 5.99 6 6
(1.79) (0.62) (0)  (4.65) (0) (0) (0) (1) (1)  (10.98) (0) (0)  (15.98) (16) (16)
300 50 8.68 853 6.1 4.48 6 5.94 597 1 1 4.16 2 2 5.89 6 6
(14.51) (13.61) (0.5) (7.24) (0,01) (0.2) (0.09)| (1) (1) (931) (0) (0) (15.31) (16)  (16)
300 100 7.75 7.54 6 4.67 6.01 6 6 1 1 4.49 2 2 5.97 6 6
(9.43) (8.01) (0) (532) (0,03) (0) (0) (1) (1) (10.52) (0) (0) (15.79) (16) (16)
300 150 715 698 6.02 471 601 6 6 1 1 4.51 2 2 5.99 6 6
(6.15) (5.25) (0.02) (5.64) (0,01) (0) (0) (1) (1) (10.61) (0) (0) (15.94) (16) (16)
300 200 6.84  6.62 6 479  6.01 6 6 1 1 4.57 2 2 5.99 6 6
(437) (3.24) (0) (5.67) (0,01) (0) (0) (1) (1) (10.78) (0) (0) (15.95) (16) (16)
300 300 6.64 6.33 6 482 6.01 6 6 1 1 4.5 2 2 6 6 6
(33) (131 (0) (417) (001) (0) (0) (1) (1) (10.73) (0) (0 (16) (16) (16)
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Table 10: Estimtion of number of factors for the UK and Japan stock markets

entire Sub-period
period 01/92-12/96 01/97-12/01 ©01/02-12/06 01/07-12/11

BMNO2a 5 4 6 5 7

BMO2b 3 5 3 5

Static ABC 2 2 3 1 1
o Onads 1 = 1 1 1
Onalo 1 1 2 3 1

AH_ER 1 1 1 : | 1

AH_GR 1 1 1 1 1

FTSE250 BMNOTa 1 1 1 1 1
BNOTE : 1 1 1 1
SWaqg 10 10 10 10 10
Dynamic swhg 10 10 10 10 10
factors JOR 1 1 1 1 1
Onads 4 9 1

HLg 1 1 1 1 1
BPqg 10 10 10 10 10

BMO2a 6 7 5 5 5

BNO2b 4 6 5 4 5

Static ABC 4 3 | ¥ |
Factors Onals 1 2 1 1 1
Onalo 3 3 3 3 1

AH_ER 1 1 1 1 1

AH_GR 1 - 1 - 1

Mikkei22s BMNO7a 1 1 1 1 1
BMNO7b 1 1 1 1 1
SWag 10 10 10 10 10
Dynamic SWhq 10 10 10 10 10
factors IOR 1 1 59 1 1
Onais 5 1 9 1 1

HLg 1 1 (i) 1 1
BPg 10 10 10 10 10
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Table 11: Estimation of number of factors for France and the US stock market

entire Sub-period
period 01/92-12/96 01/97-12/01 01/02-12/06 01/07-12/11
BNOZa 3 3 3 3 &
BNO2b 3 2 3 3 3
e ABC 2 1 2 1 1
gasis Ona9 1 1 2 1 1
Onall 1 2 2 4 2
AH_ER 1 2 2 4 1
AH_GR 1 2 2 4 i
SBF250 BNOD7a 1 1 1 1 1
BNO7b 1 1 1 1 1
SWagq 10 10 10 10 10
Dynamic Swhq 10 10 10 10 10
factors JOR 1 1 1 1 1
Onang 1 1 3 7 2
HLg 1 o o 1 1
BPq 10 10 10 10 10
BNO2a 6 4 5 & 7
BND2b 5 4 4 5 7
et ABC - 2 - 1 5
— Onal9 1 4 ] 1 1
Onalo 1 3 4 1 3
AH_ER 1 3 1 1 1
AH_GR 1 3 1 1 1
SP500 BNO7a 1 1 1 1 1
BNO7b 1 1 1 1 1
SWag 10 10 10 10 10
Dynamic SWhg 10 10 10 10 10
factors JOR 1 58 59 1 1
Onailg [} 0 1 2 5
HLg 1 0 0 1 1
BPq 10 10 10 10 10
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Figure 3: DGP6c: Estimtion of number of factors
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Figure 8: DGP7d: Estimtion of number of factors
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Figure 9: DGP8a: Estimtion of number of factors
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Figure 10: DGP8b: Estimtion of number of factors
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Figure 11: DGP8c: Estimtion of number of factors
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Figure 13: DGP11a: Estimtion of number of static factors
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Figure 14: DGP11b: Estimtion of number of static factors

DGP11 - Ona09 DGP11 - Onal0

b o
(=] (=]
L3 (=3
i \%‘ﬂ 4
o o
5 2 5 2
57 15 00 37 15 300
= 10 200 = 10 200

theta 1UUN_|_ theta 1UUNT

DGP11 - AHER DGP11 - AHGR

o w
(=3 (=]
o o
E 4 & 4
w o
5 B
£20 £20

15 300 57 15 300
= 0] 200 = 107 200

theta 10[]N‘_|_ theta 1UUN.T

45



Figure 15: DGP11c: Estimtion of number of dynamic factors
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Figure 16: DGP11d: Estimtion of number of dynamic factors
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Figure 17: DGP12a: Estimtion of number of static factors
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Figure 18: DGP12b: Estimtion of number of static factors
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Figure 19: DGP12c: Estimtion of number of dynamic factors
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Figure 20: DGP12d: Estimtion of number of dynamic factors
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