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The potential energy of biased random walks on trees

by

Yueyun Hu and Zhan Shi

Université Paris XIII & Université Paris VI

Summary. Biased random walks on supercritical Galton–Watson trees
are introduced and studied in depth by Lyons [26] and Lyons, Pemantle
and Peres [32]. We investigate the slow regime, in which case the walks
are known to possess an exotic maximal displacement of order (log n)3

in the first n steps. Our main result is another — and in some sense
even more — exotic property of biased walks: the maximal potential
energy of the biased walks is of order (log n)2. More precisely, we prove
that, upon the system’s non-extinction, the ratio between the maximal
potential energy and (log n)2 converges almost surely to 1

2 , when n goes
to infinity.

Keywords. Biased random walk on the Galton–Watson tree, branching
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potential energy.
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1 Introduction

Let T be a supercritical Galton–Watson tree rooted at ∅. Let ω := (ω(x), x ∈ T\{∅})

be a sequence of vectors: for each x ∈ T , ω(x) := (ω(x, y), y ∈ T) is such that ω(x, y) ≥ 0

(∀y ∈ T) and that
∑

y∈T ω(x, y) = 1.

Given ω, we define a random walk (Xn, n ≥ 0) on T, started at Xn = ∅, with

transition probabilities given by

Pω{Xn+1 = y |Xn = x} = ω(x, y).

Partly supported by ANR project MEMEMO2 (2010-BLAN-0125).
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We assume that for each pair of vertices x and y, ω(x, y) > 0 if and only if y ∼ x, i.e., y

is either a child, or the parent, of x; in particular, the walk is nearest-neighbour.

We are going to study a slow regime of the random walk (Xn, n ≥ 0). In order to

observe such a slow regime, the transition probabilities ω(x, y) are random; i.e., given

a realisation of ω, we run a (conditional) Markov chain (Xn). So (Xn) is a randomly

biased walk on the Galton–Watson tree T, and can also be considered as a random walk

in random environment.

We use P to denote the law of the environment ω, and P := P ⊗ Pω the annealed

probability measure.

Randomly biased walks on trees have a large literature. The model is introduced by

Lyons and Pemantle [29], extending the previous model of deterministically biased walks

studied in Lyons [26]-[27]. In Lyons and Pemantle [29], a general recurrence vs. transience

criterion is obtained; for walks on Galton–Watson trees, the question is later also studied

by Menshikov and Petritis [35] and Faraud [20]. Ben Arous and Hammond [11] prove that

in some sense, randomly biased walks on T are more regular than deterministically biased

walks on T, preventing some “cyclic phenomena” from happening. Often motivated by

results and questions in Lyons, Pemantle and Peres [31] and [32], the transient case has

received much research attention recently ([1], [2], [4], [9], [12]). The recurrent case has

also been studied in recent papers of [7], [8], [20], [21], [22] and [23]. For a more general

account of study on biased walks on trees, we refer to the forthcoming book of Lyons and

Peres [33], as well as Saint-Flour lectures notes of [38] and [39].

Although it is not necessary, we add a special vertex,
←
∅, which is the parent of ∅; this

simplifies our representation. The values of the transition probabilities at a finite number

of vertices bringing no change to results of the paper, we can modify the value of ω(∅, •),

the transition probability at ∅, in such a way that (ω(x, y), y ∼ x), for x ∈ T, are an

i.i.d. family of random variables.

A crucial notion in the study of the behaviour of the random walk (Xn) is the poten-

tial on T, which we define by V (
←
∅) := 0, V (∅) := 0 and

(1.1) V (x) := −
∑

y∈ ]]∅, x]]

log
ω(
←
y , y)

ω(
←
y ,
⇐
y )

, x ∈ T\{∅},

where
⇐
y is the parent of

←
y , and ]]∅, x]] := [[∅, x]]\{∅}, with [[∅, x]] denoting the set of

vertices on the unique shortest path connecting ∅ to x.

Since (ω(x, y), y ∼ x), for x ∈ T, are i.i.d., the potential process (V (x), x ∈ T) is a

branching random walk, in the usual sense of Biggins [13], for example.
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Throughout the paper, we assume

(1.2) E
(

∑

x: |x|=1

e−V (x)
)

= 1, E
(

∑

x: |x|=1

V (x)e−V (x)
)

= 0.

We also assume the existence of δ > 0 such that

(1.3) E
(

∑

x: |x|=1

e−(1+δ)V (x)
)

+ E
(

∑

x: |x|=1

eδV (x)
)

+ E
[(

∑

x: |x|=1

1
)1+δ ]

< ∞.

A general result of Lyons and Pemantle [29], applied to our special setting of the

Galton–Watson tree, implies that under (1.2), the random walk (Xn) is almost surely

recurrent. This is proved in [29] under an additional condition on the exchangeability

of (V (x), |x| = 1); the condition is removed in Faraud [20]. See also Menshikov and

Petritis [35] for another proof, using Mandelbrot’s multiplicative cascades, modulo some

additional assumptions. In the language of branching random walks, (1.2) refers to the

“boundary case” in the sense of Biggins and Kyprianou [14]. In the boundary case, the

biased walk (Xn) has a slow movement: under (1.2) and (1.3) and upon the system’s

survival, it is first proved in [23] (under some additional conditions) that max0≤i≤n |Xi| is

of order of (logn)3, and is later improved in [21] in the form of almost sure convergence:

on the system’s non-extinction,

(1.4) lim
n→∞

1

(logn)3
max
0≤i≤n

|Xi| =
8

3π2σ2
, P-a.s.,

where

(1.5) σ2 := E
(

∑

|x|=1

V (x)2e−V (x)
)

∈ (0, ∞).

A key step in the obtention of (1.4) is the following estimate of the excursion height: on

the system’s non-extinction,

(1.6) lim
n→∞

1

n1/3
logPω

{

max
0≤i≤̺∅

|Xi| ≥ n
}

= −
(3π2σ2

8

)1/3

, P-a.s.,

where ̺∅ := inf{i ≥ 1 : Xi = ∅} is the first return time to the root ∅.

In dimension 1 (which corresponds heuristically to the case that every vertex has

one child), a well-known result of Sinai [40] tells that Xn

(logn)2
converges weakly to a non-

degenerate limit; so (1.4) can be considered as a kind of companion of Sinai’s theorem for

the Galton–Watson tree.
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In this paper, we are interested in the maximal potential energy,

max
0≤k≤n

V (Xk) ,

of the random walk (Xi) in the first n steps. In the literature, results on the maximal

energy of random walks in random environment or related models are obtained in the

one-dimensional case by Monthus and Le Doussal [37], and for the Metropolis algorithm

by Aldous [6], and recently by Maillard and Zeitouni [34].

The restriction of the random walk (Xi) to each branch of T being a one-dimensional

random walk in random environment, standard arguments (Sinai [40], Brox [16], Zei-

touni [41]) say that in n steps, the maximal potential energy along a given branch is

bounded by (1+o(1)) logn, for n → ∞. However, the number of branches in a supercritical

Galton–Watson tree being exponential, one might expect to see something exceptional

happening.

Let us present the main result of the paper.

Theorem 1.1 Assume (1.2) and (1.3). We have, on the set of non-extinction,

lim
n→∞

1

(logn)2
max
0≤k≤n

V (Xk) =
1

2
, P-a.s.

The rest of the paper is as follows. Section 3 recalls some known techniques of branch-

ing random walks which are going to be used in the proof of the theorem. The section is

preceded by a brief Section 2, where we outline the main ideas in the proof of Theorem

1.1. It turns out that the proof relies essentially on a quenched tail estimate of excursion

heights of biased walks. This tail estimate, stated in (2.8), is proved in Section 4 by means

of a second moment argument. The second moment argument being rather involving, we

present it by means of two lemmas (Lemmas 4.1 and 4.2), serving as the key step in the

proof of the upper and lower bounds, respectively, in (2.8). Lemma 4.2 is quite technical;

its proof is the heart of the paper. Finally, a few remarks and questions are presented in

Section 5.

Throughout the paper, we write f(r) ∼ g(r), r → ∞, to denote limr→∞
f(r)
g(r)

= 1, and

f(r) = o(1), r → ∞, to denote limr→∞ f(r) = 0. For any pair of vertices x and y in T,

we write x < y (or y > x) to say that y is a descendant of x, and x ≤ y (or y ≥ x) to say

that y is either a descendant of x or is x itself.
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2 Proof of Theorem 1.1: an outline

We assume (1.2) and (1.3), and briefly describe the proof of Theorem 1.1. Let ̺0 := 0

and let

(2.1) ̺n := inf{i > ̺n−1 : Xi =
←
∅}, n ≥ 1.

In words, ̺n denotes the n-th hits to
←
∅ by the walk (Xi). It turns out that ̺n = n1+o(1)

P-a.s. for n → ∞:

Lemma 2.1 Assume (1.2) and (1.3). On the set of non-extinction,

lim
n→∞

log ̺n
logn

= 1 , P-a.s.

The lemma is a consequence of (1.4) and (1.6), by means of an elementary argument as

in [23] or [7]. We present the proof at the end of this section, for the sake of completeness,

and also to justify the passage from hitting times at ∅ to hitting times at
←
∅.

In view of Lemma 2.1, Theorem 1.1 is equivalent to the following estimate: for P-

almost all ω in the set of non-extinction,

(2.2)
1

(logn)2
max

0≤k≤̺n
V (Xk) →

1

2
, Pω-a.s.

At this stage, we recall an elementary result:

Fact 2.2 Let α > 0. Let (ξn)n≥1 be a sequence of i.i.d. real-valued random variables such

that P(ξ1 ≥ u) = exp[−(α + o(1))u], u → ∞. Then

lim
n→∞

1

log n
max
1≤k≤n

ξk =
1

α
, P-a.s.

Let us go back to (2.2). For fixed ω, max0≤k≤̺n V (Xk) is the maximum of n inde-

pendent copies of max0≤k≤̺1 V (Xk); so applying Fact 2.2 to ξ := [max0≤k≤̺1 V (Xk)]
1/2

(on the set of non-extinction) and α := 21/2, we see that the proof of (2.2) is reduced to

verifying the following: for P-almost all ω in the set of non-extinction,

(2.3) Pω

(

max
0≤k≤̺1

V (Xk) ≥ r
)

= exp
(

− (1 + o(1)) (2r)1/2
)

, r → ∞.

For any r > 0, let us consider the following subset of the genealogical tree:

(2.4) Hr := {x ∈ T : V (x) ≥ r, V (
←
x) < r},
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where
←
x denotes as before the parent of x, and for any vertex y ∈ T,

(2.5) V (y) := max
z∈[[∅, y]]

V (z),

which is the maximal value of the potential V (·) along the path [[∅, y]].

By definition, {max0≤k≤̺1 V (Xk) ≥ r} = {THr < T←
∅
}, where

THr := inf{i ≥ 0 : Xi ∈ Hr},(2.6)

T←
∅

:= inf{i ≥ 0 : Xi =
←
∅} = ̺1.(2.7)

In words, THr is the first hitting time of the set Hr by the biased walk (Xi). We mention

that Hr depends only on the environment, whereas THr involves also the behaviour of

the biased walk.

So (2.3) is equivalent to the following: P-almost surely on the set of non-extinction,

(2.8) Pω(THr < T←
∅
) = exp

(

− (1 + o(1)) (2r)1/2
)

, r → ∞.

It is (2.8) we are going to prove, in Section 4.

Let us close this section with the proof of Lemma 2.1.

Proof of Lemma 2.1. For any j ≥ 1, we have

Pω

{

max
0≤i≤̺1

|Xi| ≥ j
}

=

∞
∑

k=1

Pω

{

max
0≤i≤̺1

|Xi| ≥ j,

̺1
∑

i=1

1{Xi=∅} = k
}

.

Observe that

Pω

{

̺1
∑

i=1

1{Xi=∅} = k
}

= [1− ω(∅,
←
∅)]k ω(∅,

←
∅) ,

and that

Pω

{

max
0≤i≤̺1

|Xi| ≥ j
∣

∣

∣

̺1
∑

i=1

1{Xi=∅} = k
}

= 1−
(

1− Pω

{

max
0≤i≤̺∅

|Xi| ≥ j
∣

∣

∣
|X1| = 1

})k

= 1−
(

1−
Pω{max0≤i≤̺∅ |Xi| ≥ j}

1− ω(∅,
←
∅)

)k

,

where ̺∅ := inf{i ≥ 1 : Xi = ∅} is as in the introduction. Thus

Pω

{

max
0≤i≤̺1

|Xi| ≥ j
}

=
∞
∑

k=1

(

Pω{ max
0≤i≤̺∅

|Xi| ≥ j}
)k

ω(∅,
←
∅)

=
Pω{max0≤i≤̺∅ |Xi| ≥ j}

ω(∅,
←
∅) + Pω{max0≤i≤̺∅ |Xi| ≥ j}

≤
Pω{max0≤i≤̺∅ |Xi| ≥ j}

ω(∅,
←
∅)

.
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So for any n ≥ 1,

Pω

{

max
0≤i≤̺n

|Xi| ≥ j
}

= 1−
[

1− Pω

{

max
0≤i≤̺1

|Xi| ≥ j
}]n

≤ 1−
[

1−
Pω{max0≤i≤̺∅ |Xi| ≥ j}

ω(∅,
←
∅)

]n

.

Taking j := ⌈(1 + ε)3 8
3π2σ2 (log n)

3 ⌉ with ε > 0, and using (1.6), we immediately see that

P-a.s. on the set of non-extinction,
∑

ℓ Pω{max0≤i≤̺nℓ
|Xi| ≥ (1 + ε)3 8

3π2σ2 (log nℓ)
3} < ∞

if we take the subsequence nℓ := ⌊ℓ2/ε⌋, ℓ ≥ 1. By the Borel–Cantelli lemma, this yields

that P-almost surely, on the set of non-extinction and for all sufficiently large ℓ,

max
0≤i≤̺nℓ

|Xi| < (1 + ε)3
8

3π2σ2
(log nℓ)

3 ,

which, in turn, implies that for n ∈ [nℓ−1, nℓ],

max
0≤i≤̺n

|Xi| < (1 + ε)3
8

3π2σ2
(lognℓ)

3 ≤ (1 + 2ε)3
8

3π2σ2
(logn)3 .

Therefore, on the set of non-extinction,

lim sup
n→∞

1

(logn)3
max

0≤i≤̺n
|Xi| ≤

8

3π2σ2
, P-a.s.

On the other hand, since ̺n → ∞ P-a.s., it follows from (1.4) that on the set of

non-extinction,

lim inf
n→∞

1

(log ̺n)3
max
0≤i≤̺n

|Xi| ≥
8

3π2σ2
, P-a.s.

Combining the last two displayed formulas yields lim supn→∞
log ̺n
logn

≤ 1 P-a.s. on the set

of non-extinction. This is the desired upper bound in Lemma 2.1. The lower bound is

trivial since ̺n ≥ 2n− 1, ∀n ≥ 1. �

3 Preliminaries: spinal decompositions

We recall a useful consequence of the spinal decomposition for branching random walks.

The idea of the spinal decomposition, of which we find roots in Kahane and Peyrière [24],

has been developed in the literature independently by various groups of researchers in dif-

ferent contexts and forms. We use here the formulation of Lyons, Pemantle and Peres [30]

and Lyons [28], based on a change-of-probabilities technique on the space of trees. We

only give a brief description, referring to [30] and [28] for more details.

7



Throughout this section, we assume E(
∑

|x|=1 e
−V (x)) = 1, which is guaranteed by

(1.2). Let

Wn :=
∑

x: |x|=n

e−V (x), n ≥ 0,

which is an (Fn)-martingale, where Fn denotes the σ-field generated by the branching

random walk (V (x)) in the first n generations. Kolmogorov’s extension theorem ensures

the existence of a probability measure Q on F∞, the σ-field generated by the entire

branching random walk, such that for any n and any A ∈ Fn,

(3.1) Q(A) = E(Wn 1A) .

The distribution of (V (x)) under the new probability Q is called the distribution of a size-

biased branching random walk. It is immediately observed that the size-biased branching

random walk survives with probability one. For future use, we record here a consequence

of Hölder’s inequality: assumption (1.3) implies the existence of a constant c1 > 0 such

that

(3.2) EQ

[(

∑

x: |x|=1

e−V (x)
)c1]

= E
[(

∑

x: |x|=1

e−V (x)
)1+c1]

< ∞ .

We identify a branching random walk (V (x)) with a marked tree. On the enlarged

probability space formed by marked trees with distinguished rays,1 it is possible to con-

struct a probability Q satisfying (3.1), and an infinite ray {w0 = ∅, w1, . . . , wn, . . . } (i.e.,

wn is the parent of wn+1, and |wn| = n, ∀n ≥ 0) such that for any n ≥ 0 and any vertex

x with |x| = n,

(3.3) Q{wn = x |Fn} =
e−V (x)

Wn
.

Let us write from now on

Sn := V (wn), n ≥ 0.

For any vertex x ∈ T\{∅}, we define

(3.4) ∆V (x) := V (x)− V (
←
x) .

1Strictly speaking, the enlarged probability is a product space: the first coordinate concerns the
branching random walk, and the second concerns the distinguished ray (= spine). In order to keep the
notation as simple as possible, we choose to work formally on the same space, while bearing in mind that
the spine (wn) is not measurable with respect to the σ-field generated by the branching random walk.
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Let f : R → [0, ∞) be a Borel function, and write

η
(f)
i :=

∑

y:
←
y=wi−1

f(V (y)) .

[In particular, η
(f)
1 :=

∑

y: |y|=1 f(V (y)).] According to the spinal decomposition (see

Lyons [28]), (Si − Si−1, η
(f)
i ), i ≥ 1, are i.i.d. under Q.

For any vertex x ∈ T, let xi be the ancestor of x in the i-th generation for 0 ≤ i ≤ |x|

(so x0 = ∅, and x|x| = x). Let n ≥ 1, and let g : R2n → [0, ∞) be a Borel function. By

definition of Q, we have

E
[

∑

x: |x|=n

g
(

V (xi),
∑

y:
←
y=xi−1

f(V (y)), 1 ≤ i ≤ n
)]

= EQ

[ 1

Wn

∑

x: |x|=n

g
(

V (xi),
∑

y:
←
y=xi−1

f(V (y)), 1 ≤ i ≤ n
)]

,

which, according to (3.3), is

= EQ

[

∑

x: |x|=n

eV (x) 1{wn=x} g
(

V (xi),
∑

y:
←
y=xi−1

f(V (y)), 1 ≤ i ≤ n
)]

= EQ

[

eV (wn) g
(

V (wi),
∑

y:
←
y=wi−1

f(V (y)), 1 ≤ i ≤ n
)]

.

In our notation, this means

E
[

∑

x: |x|=n

g
(

V (xi),
∑

y:
←
y=xi−1

f(V (y)), 1 ≤ i ≤ n
)]

= EQ

[

eSn g
(

Si, η
(f)
i , 1 ≤ i ≤ n

)]

.(3.5)

A special case of (3.5) is of particular interest: for any n ≥ 1 and any Borel function

g : Rn → R+,

(3.6) E
[

∑

x: |x|=n

g(V (x1), · · · , V (xn))
]

= EQ

[

eSn g(S1, · · · , Sn)
]

.

This is the so-called many-to-one formula, and can also be directly checked by induction

on n without using (3.3). An immediate consequence of (3.6) is that assumption (1.2)

yields EQ(S1) = 0, whereas assumption (1.3) implies

EQ(e
aS1) < ∞, ∀0 ≤ a < δ .
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The existence of some finite exponential moments allows us to use the last displayed

formula on page 1229 of Chang [18]2 to see that there exists a constant c2 > 0 satisfying

(3.7) sup
b>0

EQ

[

exp(c2∆S
H

(S)
b

)
]

< ∞ ,

where

∆Si := Si − Si−1, i ≥ 1,(3.8)

H(S)
r := inf{i ≥ 0 : Si ≥ r}, r ≥ 0 .(3.9)

The formula (3.5) is stated for any given generation n. It turns out that it remains

valid if n is replaced by Hr, with Hr := {x ∈ T : V (x) ≥ r, V (
←
x) < r} as in (2.4).

Indeed, according to Proposition 3 of [5], for any r > 0 and any measurable functions f

and g,

E
[

∑

x∈Hr

g
(

V (xi),
∑

y:
←
y=xi−1

f(V (y)), 1 ≤ i ≤ |x|
)]

= EQ

[

exp(S
H

(S)
r

) g
(

Si, η
(f)
i , 1 ≤ i ≤ H(S)

r

)]

,(3.10)

where η
(f)
i :=

∑

y:
←
y=wi−1

f(V (y)) as before. We recall that (Si − Si−1, η
(f)
i ), i ≥ 1, are

i.i.d. under Q.

In particular, we have the following analogue of the many-to-one formula for Hr:

(3.11) E
[

∑

x∈Hr

g(V (x1), · · · , V (x|x|))
]

= EQ

[

exp(S
H

(S)
r

) g(S1, · · · , SH
(S)
r

)
]

.

4 The proof

Let us say a few words about the presentation of the proof of Theorem 1.1, which

relies on a couple of lemmas, stated as Lemmas 4.1 and 4.2 below. Lemma 4.2, rather

technical, consists of three estimates, namely, (4.10), (4.11) and (4.12). Here is how the

proofs are organized:

• Subsection 4.1: proof of Theorem 1.1, by admitting Lemmas 4.1 and 4.2.

• Subsection 4.2: proof of Lemma 4.1.

• Subsection 4.3: proof of Lemma 4.2, part (4.10).

2More precisely, we apply the formula of Chang [18] to the ladder height of our mean-zero random
walk via the Theorem on page 250 of Doney [19].
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• Subsection 4.4: proof of Lemma 4.2, part (4.11).

• Subsection 4.5: proof of Lemma 4.2, part (4.12).

Throughout the section, we assume (1.2) and (1.3).

For any x ∈ T ∪ {
←
∅}, let

(4.1) Tx := inf{n ≥ 0 : Xn = x}, (inf∅ := ∞)

which stands for the first hitting time of the vertex x by the biased walk. [In the special

case x :=
←
∅, (4.1) is in agreement with (2.7).] For r > 0, recall from (2.6) that

THr := inf{i ≥ 0 : Xi ∈ Hr},

where Hr := {x ∈ T : V (x) ≥ r, V (
←
x) < r} as in (2.4).

Our first preliminary result is as follows.

Lemma 4.1 Assume (1.2) and (1.3). We have3

lim sup
r→∞

1

(2r)1/2
logE[Pω(THr < T←

∅
)] ≤ −1 .

We need a second lemma, which is also the main technical result of the paper. In

order to control the increments of the potential along the children of vertices in the spine,

we introduce, for any vertex x ∈ T, the following quantity

(4.2) Λ(x) :=
∑

y:
←
y=x

e−∆V (y) =
∑

y:
←
y=x

e−[V (y)−V (x)] .

Let r > 0. Let χ ∈ (1
2
, 1). Let

k := ⌊r1−χ⌋ ,(4.3)

hm :=
r

k
m , 0 ≤ m ≤ k ,(4.4)

λm := (2r)1/2 (
k −m+ 1

k
)1/2 , 1 ≤ m ≤ k .(4.5)

For any x ∈ T and any 0 ≤ s ≤ V (x) (for definition of V (x), see (2.5)), let

(4.6) H(x)
s = inf

{

i ≥ 0 : V (xi) ≥ s, V (xj) < s, ∀j ∈ [0, i)
}

.

3Of course, E[Pω(· · · )] is nothing else but E(· · · ).
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In words, H
(x)
s is the generation of the oldest vertex in the path [[∅, x]] such that the value

of the branching random walk V (·) is at least s.

For x ∈ Hr := {x ∈ T : V (x) ≥ r, V (
←
x) < r}, we set4

(4.7) a
(x)
i := λm, if H

(x)
hm−1

≤ i < H
(x)
hm

for m ∈ [1, k] .

Let c1 > 0 be the constant in (3.2). Fix ε > 0, β ≥ 0, 0 < ε1 < c1 ε and θ ∈ (1
2
, χ).5

We consider the following subset of Hr:

H
∗
r :=

{

x ∈ Hr : max
1≤m<k

∆V (x
H

(x)
hm

) ≤ rθ, V (x) ≥ −β, |x| < ⌊eε1 r
1/2

⌋ ,

V (xj)− V (xj) ≤ a
(x)
j , ∀0 ≤ j < |x|, max

0≤j<|x|
Λ(xj) ≤ eεr

1/2
}

,(4.8)

where ∆V (y) := V (y)− V (
←
y ) as in (3.4), Λ(x) :=

∑

y:
←
y=x

e−∆V (y) as in (4.2), and

V (y) := min
z∈[[∅, y]]

V (z) ,

for all y ∈ T. Define Zr = Zr(ε, ε1, β, θ, χ) by

(4.9) Zr :=
∑

x∈H ∗
r

1{Tx<T←
∅

} .

The reason for which we are interested in Zr is the obvious relation {THr < T←
∅
} ⊃ {Zr >

0}.

In the definition of Zr, everything depends only on the random potential V (·), except

for Tx and T←
∅
, both of which depend also on the movement of the biased random walk

(Xi).

We summarize some moment properties of Zr in the next lemma.

Lemma 4.2 Assume (1.2) and (1.3). For any 0 < ε1 < c1 ε, β ≥ 0 and 1
2
< θ < χ < 1,

we have

lim inf
r→∞

1

(2r)1/2
logE[Eω(Zr)] ≥ −1−

ε1
21/2

,(4.10)

lim sup
r→∞

1

(2r)1/2
logE[Eω(Z

2
r )] ≤ −1 + 21/2 (ε+ ε1) ,(4.11)

lim sup
r→∞

1

(2r)1/2
logE[(EωZr)

2] ≤ −2 + 21/2 ε .(4.12)

4As such, a
(x)
i is well defined for all 0 ≤ i < H

(x)
r = |x| (for x ∈ Hr). The value of a

(x)
i for i = H

(x)
r

plays no role. [One can, for example, set a
(x)
i := a

(x)
i−1 for i = H

(S)
r .]

5For Lemma 4.2, we can take any θ ∈ (χ2 , χ), but condition max1≤m≤k ∆V (x
H

(x)
hm−1

) ≤ rθ is also

exploited in Section 4.2 in the proof of Lemma 4.1, where θ needs to be greater than 1
2 . In order to avoid

any possibility of confusion, we take θ ∈ (12 , χ) once for all.
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By admitting Lemmas 4.1 and 4.2 for the time being, we are ready to prove Theorem

1.1.

4.1 Proof of Theorem 1.1

We have seen in Section 2 that the proof of Theorem 1.1 consists of verifying (2.8),

of which we recall the statement: under assumptions (1.2) and (1.3), P-almost surely on

the set of non-extinction,

(2.8) lim
r→∞

1

(2r)1/2
logPω(THr < T←

∅
) = −1 .

Lemma 4.1 is useful in the proof of the upper bound in (2.8), and Lemma 4.2 the lower

bound.

We start with the proof of the upper bound, by means of Lemma 4.1. Let

P∗( · ) := P( · | non-extinction) .

By Lemma 4.1 and the Markov inequality,

P∗{Pω(THr < T←
∅
) > e−(1−ε)(2r)

1/2

} ≤ e−c3 (2r)
1/2

,

for some c3 = c3(ε) > 0 and all sufficiently large r. An application of the Borel–Cantelli

lemma yields that with P∗-probability 1, for all sufficiently large integer numbers r > 0,

Pω(THr < T←
∅
) ≤ e−(1−ε)(2r)

1/2
. Since r → THr is non-decreasing, we can remove the

condition that r be integer. As a consequence,

lim sup
r→∞

1

(2r)1/2
logPω(THr < T←

∅
) ≤ −1 , P∗-a.s.,

which is the desired upper bound in (2.8).

We now turn to the proof of the lower bound. Since E[Pω{Zr > 0}] = (P⊗Pω){Zr >

0}, it follows from the Cauchy–Schwarz inequality that

E[Pω{Zr > 0}] ≥
{E[Eω(Zr)]}

2

E[Eω(Z2
r )]

.

Applying (4.10) and (4.11) of Lemma 4.2 yields that

(4.13) lim inf
r→∞

1

(2r)1/2
logE[Pω{Zr > 0}] ≥ −1− 21/2 (ε+ ε1)− 21/2 ε1 .

13



On the other hand, by the Markov inequality, Pω{Zr > 0} ≤ Eω(Zr), so it follows from

(4.12) of Lemma 4.2 that

(4.14) lim sup
r→∞

1

(2r)1/2
logE[(Pω{Zr > 0})2] ≤ −2 + 21/2 ε .

Recall (a special case of) the Paley–Zygmund inequality: for any non-negative random

variable ξ, we have P{ξ > 1
2
E(ξ)} ≥ 1

4
[E(ξ)]2

E(ξ2)
. We apply it to ξ := Pω{Zr > 0}. In view of

(4.13) and (4.14), we obtain: for any ε2 > 6ε+ 8ε1 and all sufficiently large r,

P{Pω{Zr > 0} > e−(1+ε2)(2r)1/2} ≥ e−ε2 r
1/2

.

Let

(4.15) γr := Pω(THr < T←
∅
).

Since {THr < T←
∅
} ⊃ {Zr > 0}, we have γr ≥ Pω{Zr > 0}. Consequently, for all

sufficiently large r > 0,

(4.16) P{γr > e−(1+ε2)(2r)1/2} ≥ e−ε2 r
1/2

.

As this stage, it is convenient to have the following preliminary estimate. Recall from

(2.5) that V (x) := maxz∈[[∅, x]] V (z).

Claim 4.3 Let c4 > 0 be a constant satisfying (4.21) below. Let 0 < α < 1
2
. Let

µL := E
(

∑

x: |x|=L

1{V (x)≥Lα} 1{V (x)<2Lα} 1{∏L−1
j=0 [1+Λ(xj)]≤ec4L}

)

,

where Λ(x) :=
∑

y:
←
y=x

e−∆V (y) as in (4.2). Then limL→∞ µL = ∞.

Proof of Claim 4.3. By (3.5), we have

µL = EQ

(

eSL 1{SL≥Lα} 1{SL<2Lα} 1{
∏L

j=1(1+ηj)≤ec4L}

)

,

where (Sj−Sj−1, ηj), j ≥ 1, are i.i.d. random vectors under Q, with η1 :=
∑

y: |y|=1 e
−V (y),

and

(4.17) Sj := max
0≤i≤j

Si . j ≥ 0,

14



Hence

µL ≥ eL
α

Q
{

SL ≥ Lα, SL < 2Lα,
L
∏

j=1

(1 + ηj) ≤ ec4L
}

≥ eL
α
[

Q{SL ≥ Lα, SL < 2Lα} −Q
{

L
∏

j=1

(1 + ηj) > ec4L
}]

.(4.18)

We claim that for some constants c5 > 0 and c6 > 0,

lim inf
L→∞

L
3
2
−2α Q{SL ≥ Lα, SL < 2Lα} ≥ c5 ,(4.19)

lim sup
L→∞

1

L
logQ

{

L
∏

j=1

(1 + ηj) > ec4L
}

≤ −c6 .(4.20)

It is clear that Claim 4.3 will follow from (4.19) and (4.20).

To check (4.19), we use Q{SL ≥ Lα, SL < 2Lα} ≥ Q{Lα ≤ SL < 2Lα, SL−1 ≤ SL}.

Since (SL − SL−i, 0 ≤ i ≤ L) is distributed as (Si, 0 ≤ i ≤ L), the latter probability

is Q{Lα ≤ SL < 2Lα, Si ≥ 0, ∀1 ≤ i ≤ L}, which can be written as Q{Si ≥ 0, ∀1 ≤

i ≤ L} × Q{Lα ≤ SL < 2Lα |Si ≥ 0, ∀1 ≤ i ≤ L}. It is well-known (Kozlov [25])

that L1/2 Q{Si ≥ 0, ∀1 ≤ i ≤ L} converges (when L → ∞) to a positive limit, whereas

according to Caravenna [17], lim infL→∞ L1−2α Q{Lα ≤ SL < 2Lα |Si ≥ 0, ∀1 ≤ i ≤ L} >

0. This yields (4.19).

The proof of (4.20) is also elementary. Let δ1 ∈ (0, 1]. By the Markov inequality,

Q
{

L
∏

j=1

(1 + ηj) > ec4L
}

≤
{

e−δ1c4 EQ[(1 + η1)
δ1 ]
}L

≤
{

e−δ1c4 [1 + EQ(η
δ1
1 )]

}L

.

Note that EQ(η
δ1
1 ) = EQ[(

∑

|y|=1 e
−V (y))δ1 ] < ∞ if we choose δ1 := min{c1, 1} (see (3.2)).

So, as long as

(4.21) c4 >
log[1 + EQ(η

δ1
1 )]

δ1
,

we have e−δ1c4[1 + EQ(η
δ1
1 )] < 1, which yields (4.20). Claim 4.3 is proved. �

We continue with our proof of Theorem 1.1, or more precisely, of the lower bound in

(2.8). By Claim 4.3, we are entitled to choose and fix an integer L such that µL > 1.

Let us construct a super-critical Galton–Watson G(L) which is a sub-tree of T. The

vertices in G
(L)
1 , the first generation of G(L), are those x ∈ T with |x| = L such that

V (x) ≥ Lα , V (x) < 2Lα ,

L−1
∏

j=0

[1 + Λ(xj)] ≤ ec4L ,
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where Λ(x) :=
∑

y:
←
y=x

e−∆V (y) as in (4.2). More generally, for any n ≥ 2, the vertices in

G
(L)
n , the n-th generation of G(L), are those x ∈ T with |x| = nL such that V (x)−V (x∗) ≥

Lα, that max(n−1)L≤i≤nL[V (xi)−V (x∗)] < 2Lα and that
∏nL−1

j=(n−1)L[1+Λ(xj)] ≤ ec4L, where

x∗ is the parent in G
(L)
n−1 of x (so x∗ = x(n−1)L as a matter of fact).

Let c4 > 0 be a constant satisfying (4.21). Let Hs := {x ∈ T : V (x) ≥ s, V (
←
x) < s}

as defined in (2.4). Let

Ks :=
{

x ∈ Hs :

|x|−1
∏

j=0

[1 + Λ(xj)] ≤ e2c4L
1−αs, |x| ≤ 2L1−αs, V (x) ≤ 4s

}

.

We need an elementary result.

Claim 4.4 For n ≥ 1 and s ∈ [2nLα, 2(n+ 1)Lα],

(4.22) #Ks ≥
∑

y∈G
(L)
n

1
{∃z∈G

(L)
2n+2: y<z}

.

Proof of Claim 4.4. Let y ∈ G
(L)
n be such that there exists z ∈ G

(L)
2n+2 with y < z. By

definition of G(L), we have V (y) < 2nLα ≤ s and V (z) ≥ (2n+ 2)Lα ≥ s. So there exists

x ∈ [[y, z]] such that x ∈ Hs. Since x is a descendant of y, all we need is to check that

x ∈ Ks.

Since z ∈ G
(L)
2n+2, we have, by definition of G(L),

∏|z|−1
j=0 [1 + Λ(zj)] ≤ ec4(2n+2)L, and a

fortiori (using x ≤ z),
∏|x|−1

j=0 [1 + Λ(xj)] ≤ ec4(2n+2)L ≤ e4c4nL ≤ e2c4L
1−αs.

On the other hand, |x| ≤ |z| = (2n+ 2)L ≤ 4nL ≤ 2L1−αs.

Finally, V (x) ≤ (2n+ 2)2Lα ≤ 8nLα ≤ 4s. As a conclusion, x ∈ Ks. �

We come back to the proof of the lower bound in (2.8). We use the trivial inequality

∑

y∈G
(L)
n

1
{∃z∈G

(L)
2n+2: y<z}

≥
∑

y∈G
(L)
n

1{the sub-tree in G(L) rooted at y survives} .

Since G(L) is supercritical, there exist constants c7 > 0 and c8 > 0 such that for all

sufficiently large n,

P
{

∑

y∈G
(L)
n

1
{∃z∈G

(L)
2n+2: y<z}

≥ ec7 n
}

≥ c8.

Applying Claim 4.4, we see that there exists a constant c9 > 0 such that for all sufficiently

large s,

(4.23) P{#Ks ≥ ec9 s} ≥ c8.
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Let r > 4s. We have

γr := Pω(THr < T←
∅
) ≥

∑

x∈Ks

Pω{THs < T←
∅
, XTHs

= x} γ
(x)
r−V (x) ,

where, conditionally on FHs , (γ
(x)
t , t ≥ 0), for x ∈ Ks, are independent copies of (γt, t ≥

0), and are independent of FHs . [For x ∈ Ks, we have V (x) ≤ 4s < r, so γ
(x)
r−V (x) is well

defined.] For x ∈ Ks, and with the notation Λ(x) :=
∑

y:
←
y=x

e−∆V (y) from (4.2),

Pω{THs < T←
∅
, XTHs

= x} ≥

|x|
∏

j=1

ω(xj−1, xj) =
e−V (x)

∏|x|−1
j=0 [1 + Λ(xj)]

;

on the other hand, by definition of Ks, we have
∏|x|−1

j=0 [1+Λ(xj)] ≤ e2c4L
1−αs and V (x) ≤ 4s

for x ∈ Ks. Consequently, for x ∈ Ks,

Pω{THs < T←
∅
, XTHs

= x} ≥ e−(4+2c4L1−α)s .

Hence, writing c10 := 4 + 2c4L
1−α, we have

γr ≥ e−c10 s
∑

x∈Ks

γ
(x)
r−s ≥ e−c10 smax

x∈Ks

γ
(x)
r−s.

Applying (4.16) to γr−s implies that if r − s is sufficiently large,

P{γr ≥ e−c10 se−(1+ε2)(2(r−s))1/2} ≥ 1− E{(1− e−ε2(r−s)
1/2

)#Ks}

≥ 1− E{e−e
−ε2(r−s)1/2#Ks}

≥ (1− e−e
−ε2(r−s)1/2ec9s)P{#Ks ≥ ec9s}.

By (4.23), P{#Ks ≥ ec9s} ≥ c8 if s is sufficiently large. As a consequence, for all

sufficiently large s and r − s,

P{γr ≥ e−c10 se−(1+ε2)(2(r−s))1/2} ≥ c8[1− e−e
−ε2(r−s)1/2ec9s].

We take s := 2
c9
ε2 r

1/2, and see that for ε3 := (1 + 21/2 c10
c9

)ε2, there exists c11 ∈ (0, 1) such

that for all sufficiently large r, say r ≥ r0,

(4.24) P{γr ≥ e−(1+ε3)(2r)1/2} ≥ c11.

Let J1 be an integer such that (1− c11)
J1 < ε3. Let P

∗( · ) := P( · | non-extinction) as

before. Under P∗, the system survives almost surely, so there exists an integer J2 such that
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P∗{
∑

|x|=J2
1 > J1} > 1−ε3. Let r1 be sufficiently large such that P∗{

∑

|x|=J2
1{V (x)<r1} ≥

J1} ≥ 1− ε3. We observe that for r ≥ r1,

γr ≥ max
y: |y|=J2, V (y)<r1

Pω{Ty < T←
∅
}P y

ω{THr < T←
∅
}

≥ c12(ω) max
y: |y|=J2, V (y)<r1

P y
ω{THr < T←

∅
} ,

where c12(ω) := miny: |y|=J2, V (y)<r1 Pω{Ty < T←
∅
} > 0 P-a.s. (notation: min∅ := 1,

max∅ := 0).

For |y| = J2 with V (y) < r1, conditionally on V (y), P y
ω{THr < T←

∅
} is distributed as

γr−V (y), which is grater than or equal to γr. It follows from (4.24) that for r ≥ max{r1, r0},

P{γr ≥ c12(ω) e
−(1+ε3)(2r)1/2} ≥ P

{

max
y: |y|=J2, V (y)<r1

P y
ω{THr < T←

∅
} ≥ e−(1+ε3)(2r)1/2

}

≥ (1− (1− c11)
J1)P

{

∑

|x|=J2

1{V (x)<r1} ≥ J1

}

.

By definition of r1, we have P{
∑

|x|=J2
1{V (x)<r1} ≥ J1} ≥ (1 − ε3)(1 − q), where q :=

P{extinction} < 1. Therefore, for r ≥ max{r1, r0},

P{γr ≥ c12(ω) e
−(1+ε3)(2r)1/2} ≥ (1− (1− c11)

J1)(1− ε3)(1− q) ≥ (1− ε3)
2(1− q) ,

the last inequality following from the definition of J1. Since c12(ω) > 0 P-a.s., we have

proved that

P∗
{

lim inf
r→∞

log γr
(2r)1/2

≥ −1− ε3

}

≥ (1− ε3)
2 .

Recall the definition ε3 := (1 + 21/2 c10
c9

)ε2, with ε2 > 6ε + 8ε1, ε > 0 and ε1 ∈ (0, c1 ε);

so ε3 > 0 can be taken arbitrarily small. This yields the lower bound in (2.8), and thus

completes the proof of Theorem 1.1 by admitting Lemmas 4.1 and 4.2. �

The rest of the section is devoted to the proof of Lemmas 4.1 and 4.2.

4.2 Proof of Lemma 4.1

In the study of one-dimensional random walks, a frequent type of technical difficulties

is to handle the overshoots. Such difficulties are, unfortunately, present throughout the

proof of both Lemmas 4.1 and 4.2.

Let r > 0. Let χ ∈ (0, 1). Recall from (4.3)–(4.4) that

k := ⌊r1−χ⌋ , hm :=
r

k
m , 0 ≤ m ≤ k .
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Recall from (2.4) that Hr := {x ∈ T : V (x) ≥ r, V (
←
x) < r}. We distinguish the vertices

x of Hr according to whether there are some “large overshoots” of the random potential

V (·) along the path [[∅, x]]: let θ ∈ (1
2
, χ), and let

Hr,+ :=
{

x ∈ Hr : max
1≤m<k

∆V (x
H

(x)
hm

) > rθ
}

,

Hr,− :=
{

x ∈ Hr : max
1≤m<k

∆V (x
H

(x)
hm

) ≤ rθ
}

,

where, as before, ∆V (y) := V (y)− V (
←
y ) for any vertex y ∈ T\{∅}.

Recall from (2.6) that

THr = inf
x∈Hr

Tx = min
{

inf
x∈Hr,+

Tx, inf
x∈Hr,−

Tx

}

,

where Tx := inf{i ≥ 0 : Xi = x} as in (4.1). So

(4.25) Pω(THr < T←
∅
) ≤

∑

x∈Hr,+

Pω(Tx < T←
∅
) + Pω

(

inf
x∈Hr,−

Tx < T←
∅

)

.

We first bound
∑

x∈Hr,+
Pω(Tx < T←

∅
). By a one-dimensional argument (Zeitouni [41],

formula (2.1.4)), for any x, y ∈ T with y < x,

(4.26) Pω{Tx < T←
∅
|X0 = y} =

∑

u∈[[∅, y]] e
V (u)

∑

u∈[[∅, x]] e
V (u)

.

In particular, for any x ∈ T\{∅},

(4.27) Pω{Tx < T←
∅
} =

1
∑

u∈[[∅, x]] e
V (u)

≤ e−V (x).

Hence
∑

x∈Hr,+

Pω(Tx < T←
∅
) ≤

∑

x∈Hr,+

e−V (x) =
∑

x∈Hr,+

e−V (x),

the last identity following from the fact that V (x) = V (x) for all x ∈ Hr,+. Taking

expectation with respect to E on both sides, we obtain, by means of (3.11),

E
[

∑

x∈Hr,+

Pω(Tx < T←
∅
)
]

≤ Q
[

max
1≤m<k

∆S
H

(S)
hm

> rθ
]

≤
k−1
∑

m=1

Q
[

∆S
H

(S)
hm

> rθ
]

.

We use (3.7) to see that for constant c13 > 0,

E
[

∑

x∈Hr,+

Pω(Tx < T←
∅
)
]

≤ c13 (k − 1) e−c2 r
θ

= c13 (⌊r
1−χ⌋ − 1) e−c2 r

θ

.
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Recall that θ > 1
2
. In view of (4.25), the proof of Lemma 4.1 is reduced to showing the

following:

(4.28) lim sup
r→∞

1

(2r)1/2
logE

[

Pω

(

inf
x∈Hr,−

Tx < T←
∅

)]

≤ −1 .

For any vertex x ∈ Hr, let us recall a
(x)
j from (4.7), and define

τx := inf{j : 1 ≤ j ≤ |x|, V (xj)− V (xj) ≥ a
(x)
j }. (inf ∅ := ∞)

For x ∈ Hr, we have either τx < |x| (with strict inequality), or τx = ∞. We observe that

inf
x∈Hr,−

Tx = min
{

inf
x∈Hr,−: τx<|x|

Tx, inf
x∈Hr,−: τx=∞

Tx

}

≥ min
{

inf
x∈Hr,−: τx<|x|

Ty(x), inf
x∈Hr,−: τx=∞

Tx

}

,

where y(x) := xτx . Hence

Pω

(

inf
x∈Hr,−

Tx < T←
∅

)

≤ Pω

(

inf
x∈Hr,−: τx<|x|

Ty(x) < T←
∅

)

+
∑

x∈Hr,−: τx=∞

Pω{Tx < T←
∅
}

=: Σ1 + Σ2 ,(4.29)

with obvious notation. It is easy to get an upper bound for Σ2: by (4.27), Pω{Tx < T←
∅
} ≤

e−V (x) (which is e−V (x) for x ∈ Hr,−), whereas τx = ∞ implies V (xi)−V (xi) < a
(x)
i , ∀i <

|x|, so

(4.30) Σ2 ≤
∑

x∈Hr

e−V (x) 1
{V (xi)−V (xi)<a

(x)
i , ∀i<|x|}

k−1
∏

m=1

1{∆V (x
H

(x)
hm

)≤rθ} .

To bound Σ1, we note that

inf
x∈Hr,−: τx<|x|

Ty(x) = inf{Ty : ∃x ∈ Hr,−, y = xτx , τx < |x|} .

Let y ∈ T with j := |y| ≥ 1 such that hm−1 ≤ V (y) < hm for some m ∈ [1, k]. We define

a
(y)
i :=

{

λℓ , if H
(y)
hℓ−1

≤ i < H
(y)
hℓ

for ℓ ∈ [1, m) ,

λm , if H
(y)
hm−1

≤ i ≤ j .

Clearly, if y = xτx for some x ∈ Hr,− satisfying τx < |x|, then V (yi)−V (yi) < a
(y)
i , ∀i < j,

and V (yj)− V (yj) ≥ λm, and moreover ∆V (y
H

(y)
hℓ

) ≤ rθ, ∀1 ≤ ℓ < m. Accordingly,

Σ1 ≤
k

∑

m=1

∞
∑

j=1

∑

|y|=j

1{hm−1≤V (y)<hm}
1
{V (yi)−V (yi)<a

(y)
i , ∀i<j; V (yj)−V (yj)≥λm}

×

×
(

m−1
∏

ℓ=1

1{∆V (y
H

(y)
hℓ

)≤rθ}

)

Pω{Ty < T←
∅
} .
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Again, by (4.27), we have Pω{Ty < T←
∅
} ≤ e−V (y). This gives the analogue of (4.30) for

Σ1.

We apply the many-to-one formula in (3.6). Recall from (3.9) that H
(S)
u := inf{i ≥ 0 :

Si ≥ u} (for u ≥ 0), and from (3.8) that ∆Si := Si − Si−1. Define

(4.31) a
(S)
i := λm, if H

(S)
hm−1

≤ i < H
(S)
hm

and 1 ≤ m ≤ k .

By (3.6),

E(Σ1) ≤

k
∑

m=1

∞
∑

j=1

EQ

[

e−(Sj−Sj) 1{hm−1≤Sj<hm}
1
{Si−Si<a

(S)
i , ∀i<j; Sj−Sj≥λm}

×

×
m−1
∏

ℓ=1

1{∆S
H

(S)
hℓ

≤rθ}

]

≤

k
∑

m=1

∞
∑

j=1

e−λm EQ

[

1{hm−1≤Sj<hm}
1
{Si−Si<a

(S)
i , ∀i<j}

m−1
∏

ℓ=1

1{∆S
H

(S)
hℓ

≤rθ}

]

.(4.32)

Similarly, applying (3.11) in place of (3.6) to E(Σ2), we obtain:

(4.33) E(Σ2) ≤ Q
{

Si − Si < a
(S)
i , ∀1 ≤ i < H(S)

r ; max
1≤ℓ<k

∆S
H

(S)
hℓ

≤ rθ
}

.

At this stage, we have two preliminary results.

Claim 4.5 For any integers 1 ≤ m0 ≤ m < k and any s ∈ (−∞, hm0), we define

(4.34) fm0,m(s) := Q
(

m+1
⋂

ℓ=m0+1

{ max
i∈[H

(S)
hℓ−1−s, H

(S)
hℓ−s)

(Si − Si) < λℓ} ∩
m
⋂

ℓ=m0

{∆S
H

(S)
hℓ−s

≤ rθ}
)

.

Then, as r → ∞,

(4.35) sup
s<hm0

fm0,m(s) ≤ e
−(1+o(1))

∑m+1
ℓ=m0+1

rχ

λℓ ,

uniformly in 1 ≤ m0 ≤ m < k. Furthermore,

(4.36) Q
(

m+1
⋂

ℓ=1

{ max
i∈[H

(S)
hℓ−1

,H
(S)
hℓ

)

(Si − Si) < λℓ} ∩
m
⋂

ℓ=1

{∆S
H

(S)
hℓ

≤ rθ}
)

≤ e
−(1+o(1))

∑m+1
ℓ=1

rχ

λℓ ,

uniformly in 1 ≤ m < k.
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Claim 4.6 There exists a constant c14 > 0 such that for r → ∞,

∞
∑

j=1

EQ

[

1{hm−1≤Sj<hm}
1
{Si−Si<a

(S)
i , ∀i<j}

m−1
∏

ℓ=1

1{∆S
H

(S)
hℓ

≤rθ}

]

≤ c14 r exp
(

− (1 + o(1))
m−1
∑

ℓ=1

rχ

λℓ

)

,(4.37)

uniformly in m ∈ [1, k].

Proof of Claim 4.5. Applying the strong Markov property successively atH
(S)
hm−s

, H
(S)
hm−1−s

,

· · · , H
(S)
hm0−s

, we obtain:

fm0,m(s) ≤
m+1
∏

ℓ=m0+1

sup
u∈[0, rθ]

Q
(

max
0≤i<H

(S)
hℓ−hℓ−1−u

(Si − Si) < λℓ

)

.

By Lemma A.3, we arrive at the following estimate: when r → ∞,

fm0,m(s) ≤ exp
(

− (1 + o(1))
m+1
∑

ℓ=m0+1

hℓ − hℓ−1 − rθ

λℓ

)

≤ exp
(

− (1 + o(1))
m+1
∑

ℓ=m0+1

rχ

λℓ

)

,

uniformly in s < hm0 and in 1 ≤ m0 ≤ m < k;6 this yields (4.35). The proof of (4.36 is

along the same lines. �

Proof of Claim 4.6. Let LHS(4.37) denote the sum on the left-hand side of (4.37). Then

LHS(4.37) = EQ

[(

m−1
∏

ℓ=1

1{∆S
H

(S)
hℓ

≤rθ}

)

H
(S)
hm
−1

∑

j=H
(S)
hm−1

1
{Si−Si<a

(S)
i , ∀i<j}

]

.

By definition of a
(S)
i in (4.31), this yields

LHS(4.37) = EQ

[

H
(S)
hm
−1

∑

j=H
(S)
hm−1

1
{Si−Si<λm,∀i∈[H

(S)
hm−1

, j)}
×

×
(

m−1
∏

ℓ=1

1{max
i∈[H

(S)
hℓ−1

, H
(S)
hℓ

)
(Si−Si)<λℓ}∩{∆S

H
(S)
hℓ

≤rθ}

)]

.

6Since hm−hm−1 = r
k
(by (4.4)), it is here we use the condition θ < χ to ensure hm−hm−1− rθ > 0.
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We proceed to get rid of the sum over j on the right-hand side. Applying the strong

Markov property at time H
(S)
hm−1

, we have

(4.38) LHS(4.37) ≤ EQ

[(

m−1
∏

ℓ=1

1{max
i∈[H

(S)
hℓ−1

, H
(S)
hℓ

)
(Si−Si)<λℓ}∩{∆S

H
(S)
hℓ

≤rθ}

)

Ξm

]

,

where

Ξm := sup
x∈[hm−hm−1−rθ, hm−hm−1]

EQ

(

H
(S)
x −1
∑

j=0

1{Si−Si<λm,∀i∈[0, j)}

)

≤ EQ

(

∞
∑

j=0

1{Si−Si<λm,∀i∈[0, j)}

)

.

To estimate the expectation on the right-hand side, we write
∑∞

j=0 =
∑∞

n=1

∑nλ2
m−1

j=(n−1)λ2
m

(by implicitly treating λ2
m as an integer; otherwise we replace λm by ⌈λm⌉, and the next

three paragraphs will still go through with obvious modifications), so that

Ξm ≤

∞
∑

n=1

EQ

(

nλ2
m−1
∑

j=(n−1)λ2
m

1{Si−Si<λm,∀i∈[0, j)}

)

≤

∞
∑

n=1

λ2
mQ

{

max
0≤i<(n−1)λ2

m

(Si − Si) < λm

}

.

By the Markov property, Q{max0≤i<(n−1)λ2
m
(Si − Si) < λm} ≤ [Q{max0≤i<λ2

m
(Si −Si) <

λm}]
n−1. So

Ξm ≤
∞
∑

n=1

λ2
m

[

Q
{

max
0≤i<λ2

m

(Si − Si) < λm

}]n−1

.

We let r → ∞ (so that λm → ∞ uniformly in m ∈ [1, k]). By Donsker’s theorem,

Q{max0≤i<λ2
m
(Si −Si) < λm} → P{sups∈[0, 1](W s−Ws) <

1
σ
} < 1, where (Ws, s ≥ 0) un-

der P is a standard Brownian motion, and W s := supu∈[0, s]Wu. So there exists a constant

0 < c15 < 1 such that for all sufficiently large r and allm ∈ [1, k], Q{max0≤i<λ2
m
(Si−Si) <

λm} ≤ 1− c15, which, in turn, yields

Ξm ≤
∞
∑

n=1

λ2
m(1− c15)

n−1 =
λ2
m

c15
≤

2r

c15
.

Going back to (4.38), this yields that for all sufficiently large r (writing c16 :=
2
c15

),

LHS(4.37) ≤ c16 rQ
(

m−1
⋂

ℓ=1

{ max
i∈[H

(S)
hℓ−1

, H
(S)
hℓ

)

(Si − Si) < λℓ} ∩ {∆S
H

(S)
hℓ

≤ rθ}
)

.
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This implies Claim 4.6 in case 2 ≤ m < k by means of (4.36), and trivially in case m = 1.

�

We continue with the proof of Lemma 4.1. By (4.32) and Claim 4.6, we have

E(Σ1) ≤ c14 r

k
∑

m=1

exp
(

− λm − (1 + o(1))

m−1
∑

ℓ=1

rχ

λℓ

)

.

By definition, k := ⌊r1−χ⌋ and λm := (2r)1/2 (k−m+1
k

)1/2; hence for r → ∞,

(4.39)
m+1
∑

ℓ=1

rχ

λℓ

= (2rχ)1/2[k1/2 − (k −m)1/2] + o((2r)1/2) ,

uniformly in 1 ≤ m0 ≤ m < k. In particular,

(4.40)

k
∑

ℓ=1

rχ

λℓ
∼ (2r)1/2 .

So uniformly in m ∈ [1, k],

λm + (2rχ)1/2[k1/2 − (k −m+ 1)1/2]

≥ (1 + o(1))(2r)1/2 inf
s∈[0, 1]

(

(1− s)1/2 + [1− (1− s)1/2]
)

,

and the infimum equals 1 because the function s 7→ (1−s)1/2+[1−(1−s)1/2] is identically

1 on [0, 1]. Therefore,

E(Σ1) ≤ c14 rke
−(1+o(1))(2r)1/2 ≤ e−(1+o(1))(2r)1/2 ,

the second inequality being a consequence of definition k := ⌊r1−χ⌋.

On the other hand, by (4.33) and (4.36) (applied to m := k − 1), we have

E(Σ2) ≤ e
−(1+o(1))

∑k
ℓ=1

rχ

λℓ ≤ e−(1+o(1))(2r)1/2 ,

the second inequality being a consequence of (4.39) (applied to m := k − 1). Since

Pω(infx∈Hr,− Tx < T←
∅
) ≤ Σ1 +Σ2 (see (4.29)), this yields (4.28), and completes the proof

of Lemma 4.1. �

The rest of the section is devoted to the proof of Lemma 4.2, which is more technical.

For the sake of clarity, we prove the three parts — namely, (4.10), (4.11) and (4.12) —

separately.

24



4.3 Proof of Lemma 4.2: inequality (4.10)

Recall from (4.9) the definition Zr :=
∑

x∈H ∗
r
1{Tx<T←

∅

}, where

H
∗
r :=

{

x ∈ Hr : max
1≤m<k

∆V (x
H

(x)
hm

) ≤ rθ, V (x) ≥ −β, |x| < ⌊eε1 r
1/2

⌋ ,

V (xj)− V (xj) ≤ a
(x)
j , ∀0 ≤ j < |x|, max

0≤ℓ<|x|
Λ(xℓ) ≤ eεr

1/2
}

,

with Λ(x) :=
∑

y:
←
y=x

e−∆V (y) as in (4.2). For brevity, we write, in this subsection,

n = n(ε1, r) := ⌊eε1 r
1/2

⌋ ;

so |x|+ 1 ≤ n for all x ∈ H ∗
r . Since only Tx and T←

∅
depend on the biased walk (Xi), we

have

(4.41) Eω(Zr) =
∑

x∈H ∗
r

Pω{Tx < T←
∅
} .

By the identity in (4.27), we have Pω{Tx < T←
∅
} ≥ 1

|x|+1
e−V (x), which is ≥ 1

n
e−V (x) =

1
n
e−V (x) for all x ∈ H ∗

r . Taking expectation with respect to E on both sides leads to:

E[Eω(Zr)] ≥
1

n
E
[

∑

x∈H ∗
r

e−V (x)
]

=
1

n
E
[

∑

x∈Hr

e−V (x) 1
{V (xj)−V (xj)<a

(x)
j ,∀0≤j<|x|}

1{V (x)≥−β} ×

×1{|x|<n} 1{Λ(xℓ)≤eεr
1/2

, ∀0≤ℓ<|x|}

k−1
∏

m=1

1{∆V (x
H

(x)
hm

)≤rθ}

]

.

The expression on the right-hand side is, according to formula (3.10),

=
1

n
Q
[

H
(S)
r −1
⋂

j=0

{Sj − Sj < a
(S)
j , Sj ≥ −β} ∩

∩{H(S)
r < n} ∩

H
(S)
r
⋂

ℓ=1

{ηℓ ≤ eεr
1/2

} ∩
k−1
⋂

m=1

{∆S
H

(S)
hm

≤ rθ}
]

,

where H
(S)
r := inf{i ≥ 0 : Si ≥ r} as in (3.9), Sj := max0≤i≤j Si as in (4.17), ∆Sj :=

Sj − Sj−1 as before (with S0 := 0), and ηℓ :=
∑

y:
←
y=wℓ−1

e−∆V (y). [In particular, η1 :=
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∑

y: |y|=1 e
−V (y).] Recall from Section 3 that (∆Si, ηi), i ≥ 1, are i.i.d. random vectors

under Q. Hence

(4.42) E[Eω(Zr)] ≥
1

n
[q1(r)− q2(r)] ,

where

q1(r) := Q
[

H
(S)
r −1
⋂

j=0

{Sj − Sj < a
(S)
j , Sj ≥ −β} ∩ {H(S)

r < n} ∩

k−1
⋂

m=1

{∆S
H

(S)
hm

≤ rθ}
]

,

q2(r) := Q
[

H
(S)
r −1
⋂

j=0

{Sj − Sj < a
(S)
j } ∩

k−1
⋂

m=1

{∆S
H

(S)
hm

≤ rθ} ∩

H
(S)
r ∧n
⋃

ℓ=1

{ηℓ > eεr
1/2

}
]

.

By definition of (a
(S)
j ) in (4.31) (with notation ∆S0 := 0 for the term m = 1 below),

q1(r) = Q
(

{H(S)
r < n} ∩

∩

k
⋂

m=1

H
(S)
hm
−1

⋂

j=H
(S)
hm−1

{Sj − Sj < λm, Sj ≥ −β} ∩ {∆S
H

(S)
hm−1

≤ rθ}
)

.

Since {H
(S)
r < n} ⊃ ∩k

m=1{H
(S)
hm

−H
(S)
hm−1

< ⌊n
k
⌋}, we have

q1(r) ≥ Q
{

k
⋂

m=1

H
(S)
hm
−1

⋂

j=H
(S)
hm−1

{Sj − Sj < λm, Sj ≥ −β} ∩

∩{∆S
H

(S)
hm−1

≤ rθ, H
(S)
hm

−H
(S)
hm−1

< ⌊
n

k
⌋}
}

≥ Q
{

k
⋂

m=1

H
(S)
hm
−1

⋂

j=H
(S)
hm−1

{Sj − Sj < λm, Sj − S
H

(S)
hm−1

≥ −β} ∩

∩{∆S
H

(S)
hm−1

≤ rθ, H
(S)
hm

−H
(S)
hm−1

< ⌊
n

k
⌋}
}

.

Recall that hm − hm−1 = h1. Applying the strong Markov property successively at times

H
(S)
hk−1

, H
(S)
hk−2

, · · · , H
(S)
h1

, this gives that7

q1(r) ≥
k
∏

m=1

inf
x∈(rθ, h1]

Q
{

H
(S)
x −1
⋂

j=0

{Sj − Sj < λm, Sj ≥ −β} ∩

∩{∆S
H

(S)
x

≤ rθ, H(S)
x < ⌊

n

k
⌋}
}

.(4.43)

7For the term m = k on the right-hand side, there is no need to consider {∆S
H

(S)
x

≤ rθ}, whereas the

m = 1 term has only the value x = h1. The current form of the inequality is used to give a compact
expression for the lower bound.
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We let r → ∞. By Lemma A.2, uniformly in m ∈ [1, k] and x ∈ (rθ, h1],

Q
{

H
(S)
x −1
⋂

j=0

{Sj − Sj < λm, Sj ≥ −β}
}

≥ exp
[

− (1 + o(1))
x

λm

]

≥ exp
[

− (1 + o(1))
rχ

λm

]

.

On the other hand, (3.7) tells us that c17 := supb>0EQ[exp(c2∆S
H

(S)
b

)] < ∞. By the

Markov inequality, for r → ∞, uniformly in m ∈ [1, k] and x ∈ (rθ, h1],

Q{∆S
H

(S)
x

> rθ} ≤ c17 e
−c2 rθ ≤

1

3
exp

[

− (1 + o(1))
rχ

λm

]

.

[The last inequality, valid for all sufficiently large r, relies on the facts that θ > χ
2
and

that λm ≥ (2rχ)1/2.] Also, for some constant c18 > 0 and all sufficiently large r and

all m ∈ [1, k], supx∈(rθ, h1]Q{H
(S)
x ≥ ⌊n

k
⌋} ≤ c18

h1

(⌊n
k
⌋)1/2

(see Theorem A of Kozlov [25]),

which is bounded by 1
3
exp[−(1 + o(1)) rχ

λm
] as well for some constant ε1 > 0 (for r → ∞;

recalling that n := ⌊eε1 r
1/2

⌋). [We use the fact that 1
2
> χ

2
.] As a consequence, for r → ∞,

uniformly in m ∈ [1, k] and x ∈ (rθ, h1],

Q
{

H
(S)
x −1
⋂

j=0

{Sj − Sj < λm, Sj ≥ −β} ∩ {∆S
H

(S)
x

≤ rθ, H(S)
x < ⌊

n

k
⌋}
}

≥ Q
{

H
(S)
x −1
⋂

j=0

{Sj − Sj < λm, Sj ≥ −β}
}

−Q{∆S
H

(S)
x

> rθ} −Q{H(S)
x ≥ ⌊

n

k
⌋}

≥
1

3
exp

[

− (1 + o(1))
rχ

λm

]

,

which is still exp[−(1 + o(1)) rχ

λm
] by changing the value of o(1). Going back to (4.43), we

see that for r → ∞,

(4.44) q1(r) ≥ exp
[

− (1 + o(1))

k
∑

m=1

rχ

λm

]

= e−(1+o(1))(2r)1/2 ,

the last identity following from the observation in (4.40) that
∑k

m=1
rχ

λm
∼ (2r)1/2, r → ∞.

We now estimate q2(r). By definition,

q2(r) ≤
n

∑

ℓ=1

Q
[

H
(S)
r −1
⋂

j=0

{Sj − Sj < a
(S)
j }; max

1≤i<k
∆S

H
(S)
hi

≤ rθ; ηℓ > eεr
1/2

; ℓ ≤ H(S)
r

]

=

n
∑

ℓ=1

k
∑

m=1

q
(ℓ,m)
2 (r) ,(4.45)
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where

q
(ℓ,m)
2 (r)

:= Q
[

H
(S)
r −1
⋂

j=0

{Sj − Sj < a
(S)
j }; max

1≤i<k
∆S

H
(S)
hi

≤ rθ; ηℓ > eεr
1/2

; H
(S)
hm−1

< ℓ ≤ H
(S)
hm

]

= Q
[

k
⋂

i=1

H
(S)
hi
−1

⋂

j=H
(S)
hi−1

{Sj − Sj < λi}; max
1≤i<k

∆S
H

(S)
hi

≤ rθ; ηℓ > eεr
1/2

; H
(S)
hm−1

< ℓ ≤ H
(S)
hm

]

,

We apply the strong Markov property at H
(S)
hk−1

, to see that, for 1 ≤ m < k,

q
(ℓ,m)
2 (r) ≤ Q

[

k−1
⋂

i=1

H
(S)
hi
−1

⋂

j=H
(S)
hi−1

{Sj − Sj < λi}; max
1≤i<k

∆S
H

(S)
hi

≤ rθ; ηℓ > eεr
1/2

;

H
(S)
hm−1

< ℓ ≤ H
(S)
hm

]

× sup
x∈[hk−1, hk−1+rθ]

Q
[

H
(S)
hk−x−1
⋂

j=0

{Sj − Sj < λk}
]

.

Let r → ∞. By Lemma A.3, we have, uniformly in x ∈ [hk−1, hk−1 + rθ],

Q
[

H
(S)
hk−x−1
⋂

j=0

{Sj − Sj < λk}
]

≤ exp
[

− (1 + o(1))
hk − hk−1 − rθ

λk

]

≤ exp
[

− (1 + o(1))
rχ

λk

]

.

We iterate the argument and apply the strong Markov property successively at H
(S)
hk−2

,

H
(S)
hk−3

, · · · , H
(S)
hm

, to see that

q
(ℓ,m)
2 (r) ≤ Q

[

m
⋂

i=1

H
(S)
hi
−1

⋂

j=H
(S)
hi−1

{Sj − Sj < λi}; max
1≤i≤m

∆S
H

(S)
hi

≤ rθ; ηℓ > eεr
1/2

;

H
(S)
hm−1

< ℓ ≤ H
(S)
hm

]

× exp
[

− (1 + o(1))
k

∑

i=m+1

rχ

λi

]

≤ Q
[

m−1
⋂

i=1

H
(S)
hi
−1

⋂

j=H
(S)
hi−1

{Sj − Sj < λi}; max
1≤i≤m−2

∆S
H

(S)
hi

≤ rθ; ηℓ > eεr
1/2

;

H
(S)
hm−1

< ℓ
]

× exp
[

− (1 + o(1))

k
∑

i=m+1

rχ

λi

]

.
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To bound the probability expression Q[· · · ] on the right-hand side, we note that under

Q, given H
(S)
hm−1

< ℓ, ηℓ is independent of everything concerning the potential V (·) until

H
(S)
hm−1

, and has the law of η1. Consequently,

q
(ℓ,m)
2 (r) ≤ Q

[

m−1
⋂

i=1

H
(S)
hi
−1

⋂

j=H
(S)
hi−1

{Sj − Sj < λi}; max
1≤i≤m−2

∆S
H

(S)
hi

≤ rθ; H
(S)
hm−1

< ℓ
]

×

×Q(η1 > eεr
1/2

)× exp
[

− (1 + o(1))

k
∑

i=m+1

rχ

λi

]

≤ Q
[

m−1
⋂

i=1

H
(S)
hi
−1

⋂

j=H
(S)
hi−1

{Sj − Sj < λi}; max
1≤i≤m−2

∆S
H

(S)
hi

≤ rθ
]

×

×Q(η1 > eεr
1/2

)× exp
[

− (1 + o(1))
k

∑

i=m+1

rχ

λi

]

.

Looking at the two probability expressions Q[∩m−1
i=1 · · · ] and Q(η1 > eεr

1/2
) on the

right-hand side. The first probability expression is, according to (4.36), bounded by

exp[−(1 + o(1))
∑m−1

ℓ=1
rχ

λℓ
]. For the second probability expression, let us recall that η1 =

∑

y: |y|=1 e
−V (y) by definition; so by (3.2), there exists a constant c19 > 0 such that Q(η1 >

eεr
1/2

) ≤ c19 e
−c1 εr1/2. We have thus proved that, for 1 ≤ m ≤ k,

q
(ℓ,m)
2 (r) ≤ c19 e

−c1 εr1/2 exp
[

− (1 + o(1))
∑

i: 1≤i≤k, i 6=m

rχ

λi

]

≤ c19 e
−c1 εr1/2−(1+o(1))(2r)1/2 .

Since q2(r) ≤
∑n

ℓ=1

∑k
m=1 q

(ℓ,m)
2 (r) (see (4.45)), and n := ⌊eε1 r

1/2
⌋ ≤ eε1 r

1/2
, this yields

q2(r) ≤ c19 k e
−(c1 ε−ε1)r1/2−(1+o(1))(2r)1/2 .

Recall that E[Eω(Zr)] ≥
q1(r)−q2(r)

n
(see (4.42)) and that q1(r) ≥ e−(1+o(1))(2r)1/2 (see (4.44)),

we obtain, for r → ∞,

E[Eω(Zr)] ≥
1

n

[

e−(1+o(1))(2r)1/2 − c19 k e
−(c1 ε−ε1)r1/2−(1+o(1))(2r)1/2

]

.

Since ε1 ∈ (0, c1 ε), the term c19 k e
−(c1 ε−ε1)r1/2−(1+o(1))(2r)1/2 does not play any role when

taking the limit r → ∞ (recalling that k := ⌊r1−χ⌋). By definition, n := ⌊eε1 r
1/2

⌋, this

readily yields (4.10). �

29



4.4 Proof of Lemma 4.2: inequality (4.11)

Recall definition again from (4.9): Zr :=
∑

x∈H ∗
r
1{Tx<T←

∅

}, where

H
∗
r :=

{

x ∈ Hr : max
1≤m<k

∆V (x
H

(x)
hm

) ≤ rθ, V (x) ≥ −β, |x| < ⌊eε1 r
1/2

⌋ ,

V (xj)− V (xj) ≤ a
(x)
j , ∀0 ≤ j < |x|, max

0≤j<|x|
Λ(xj) ≤ eεr

1/2
}

,

with Λ(x) :=
∑

y:
←
y=x

e−∆V (y) as in (4.2). By definition,

Eω(Z
2
r ) =

∑

x, y∈H ∗
r

Pω{Tx < T←
∅
, Ty < T←

∅
}

= Eω(Zr) +
∑

x 6=y∈H ∗
r

Pω{Tx < T←
∅
, Ty < T←

∅
} .(4.46)

By (4.27), Pω{Tx < T←
∅
} ≤ e−V (x). On the other hand, by the definition of Hr, we

have V (x) = V (x) for x ∈ H ∗
r ⊂ Hr. So

Eω(Zr) ≤
∑

x∈H ∗
r

e−V (x)

≤
∑

x∈Hr

e−V (x) 1{max1≤m<k ∆V (x
H

(x)
hm

)≤rθ} 1{V (xj)−V (xj)≤a
(x)
j , ∀0≤j<|x|}

.

Taking expectation on both sides, we obtain:

E[Eω(Zr)] ≤ E
(

∑

x∈Hr

e−V (x) 1{max1≤m<k ∆V (x
H

(x)
hm

)≤rθ} 1{V (xj)−V (xj)≤a
(x)
j , ∀0≤j<|x|}

)

,

which, by formula (3.11), is

= Q
(

max
1≤m<k

∆S
H

(S)
hm

, Sj − Sj ≤ a
(S)
j , ∀0 ≤ j < H(S)

r

)

.

Applying (4.36), we get E[Eω(Zr)] ≤ e
−(1+o(1))

∑k
ℓ=1

rχ

λℓ . Since
∑k

ℓ=1
rχ

λℓ
∼ (2r)1/2 (see

(4.40)), we arrive at:

(4.47) E[Eω(Zr)] ≤ e−(1+o(1))(2r)1/2 .

Also, since V (x) ≥ r for x ∈ H ∗
r , we have

∑

x∈H ∗
r
e−2V (x) ≤ e−r

∑

x∈H ∗
r
e−V (x), so that

for all sufficiently large r,

(4.48) E
(

∑

x∈H ∗
r

e−2V (x)
)

≤ e−r .
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By (4.47) and (4.46), we have

(4.49) E[Eω(Z
2
r )] ≤ e−(1+o(1))(2r)1/2 + E

[

∑

x 6=y∈H ∗
r

Pω{Tx < T←
∅
, Ty < T←

∅
}
]

.

For any pair of distinct vertices x 6= y, let x∧y denote their youngest common ancestor;

equivalently, x ∧ y is the unique vertex satisfying [[∅, x ∧ y]] = [[∅, x]] ∩ [[∅, y]]. Consider

Pω{Tx < Ty < T←
∅
}.

To realize Tx < Ty < T←
∅
, the biased walk first needs to hit x ∧ y before hitting

←
∅, then,

starting from x ∧ y, it should hit x before hitting
←
∅, (and then, starting from x, it hits

automatically x∧y before hitting
←
∅), and then, starting from x∧y, it should hit y before

hitting
←
∅. Applying the strong Markov property, we obtain:

Pω{Tx < Ty < T←
∅
} ≤ Pω{Tx∧y < T←

∅
}P x∧y

ω {Tx < T←
∅
}P x∧y

ω {Ty < T←
∅
},

where, for any vertex z, P z
ω denotes the (quenched) probability under which the biased

walk starts at z. By exchanging x and y, we also have

Pω{Ty < Tx < T←
∅
} ≤ Pω{Tx∧y < T←

∅
}P x∧y

ω {Ty < T←
∅
}P x∧y

ω {Tx < T←
∅
}.

Hence

Pω{Tx < T←
∅
, Ty < T←

∅
} = Pω{Tx < Ty < T←

∅
}+ Pω{Ty < Tx < T←

∅
}

≤ 2Pω{Tx∧y < T←
∅
}P x∧y

ω {Tx < T←
∅
}P x∧y

ω {Ty < T←
∅
}.

[Although we have implicitly assumed x ∧ y is different from the root∅, the last inequality

remains trivially valid even if x ∧ y is the root.] By (4.27), Pω{Tx∧y < T←
∅
} ≤ e−V (x∧y).

More generally, we use (4.26) to see that

P x∧y
ω {Tx < T←

∅
} ≤ (|x ∧ y|+ 1)e−[V (x)−V (x∧y)] .

We also have P x∧y
ω {Ty < T←

∅
} ≤ (|x ∧ y| + 1)e−[V (y)−V (x∧y)] by exchanging the roles of x

and y. As a consequence,

Pω{Tx < T←
∅
, Ty < T←

∅
} ≤ 2(|x ∧ y|+ 1)2 eV (x∧y)−V (x)−V (y),
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which is bounded by 2(|x ∧ y| + 1)eV (x∧y)−V (x)−V (y). Moreover, for x ∈ H ∗
r , we have

|x ∧ y|+ 1 ≤ |x|+ 1 ≤ ⌊eε1 r
1/2

⌋. Going back to (4.49), we obtain:

E[Eω(Z
2
r )]

≤ e−(1+o(1))(2r)1/2 + 2e2ε1 r
1/2

E
(

∑

z: V (z)<r

∑

x, y∈H ∗
r : x∧y=z

eV (z)−V (x)−V (y)
)

(4.50)

= e−(1+o(1))(2r)1/2 + 2e2ε1 r
1/2

E
(

∞
∑

n=0

k
∑

m=1

Σ
(n,m)
3

)

,(4.51)

where

Σ
(n,m)
3 :=

∑

z: |z|=n

eV (z) 1{hm−1≤V (z)<hm}

∑

x, y∈H ∗
r : x∧y=z

e−V (x)−V (y) .

For further use, we also see from the inequality Eω(Zr) ≤
∑

x∈H ∗
r
e−V (x) that, for all

sufficiently large r,

(4.52) E[(EωZr)
2] ≤ e−r + E

(

∑

z: V (z)<r

1{V (z)≥−β}

∑

x, y∈H ∗
r : x∧y=z

e−V (x)−V (y)
)

.

The term e−r comes from E(
∑

x∈H ∗
r
e−2V (x)) and (4.48). The indicator function 1{V (z)≥−β}

was implicitly present in x ∈ H ∗
r ; it is written explicitly here because it is going to play

a crucial role later. We note that the expectation expressions on the right-hand side of

(4.50) and (4.52) are very similar to each other, except that there is no V (z) term on the

right-hand side of (4.52).

For each pair (n, m), we estimate E(Σ
(n,m)
3 ). By definition (recalling that xi is the

ancestor of x in generation i for i ≤ |x|),

Σ
(n,m)
3 =

∑

z: |z|=n

eV (z) 1{hm−1≤V (z)<hm}

∑

u 6=v,
←
u=z=

←
v

e−V (u)−V (v) ×

×
∑

x∈H ∗
r : xn+1=u

e−[V (x)−V (u)]
∑

y∈H ∗
r : yn+1=v

e−[V (y)−V (v)] .

We first take expectation conditioning on Fn+1 := σ{V (w) : |w| ≤ n + 1}, the σ-field

generated by the random potential in the first n + 1 generations:

E(Σ
(n,m)
3 |Fn+1)

≤
∑

z: |z|=n

eV (z) 1{hm−1≤V (z)<hm}
1
{V (zi)−V (zi)<a

(z)
i , ∀0≤i≤n}

1{max1≤ℓ<m ∆V (z
H

(z)
hℓ

)≤rθ} ×

×1
{Λ(z)≤eεr

1/2
}

∑

(u, v): u 6=v,
←
u=z=

←
v

e−V (u)−V (v) fm(V (u))fm(V (v)),(4.53)
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where Λ(x) :=
∑

y:
←
y=x

e−∆V (y) as in (4.2), and for s < hm+1,

fm(s) := E
{

∑

x∈Hr−s

e−V (x)
(

k−1
∏

ℓ=m+1

1{∆V (x
H

(x)
hℓ−s

)≤rθ}

)(

k
∏

ℓ=m+2

H
(x)
hℓ−s−1
∏

i=H
(x)
hℓ−1−s

1{V (xi)−V (xi)<λℓ}

)}

.

Some care needs to be taken in order to make (4.53) valid in all situations. On the right-

hand side of (4.53), V (u) < hm for most u with
←
u = z (and V (u) < r for most v with

←
v = z); however, there is a possible situation when V (u) ≥ hm: this is when u ∈ Hhm

(for some 1 ≤ m ≤ k), in which case we only have V (u) ≤ hm + rθ (which is strictly

smaller than hm+1). In order to take care of this situation, only overshoots ∆V (x
H

(x)
hℓ−s

)

for ℓ > m are involved in the definition of fm(s). In particular, fk−1(s) = 1 for s < r, and

fk(s) should be defined as 1 for all s ∈ R.

By formula (3.11), this gives, for s < hm+1,

fm(s) = Q
(

k−1
⋂

ℓ=m+1

1{∆S
H

(S)
hℓ−s

≤rθ} ∩
k
⋂

ℓ=m+2

H
(S)
hℓ−s−1
⋂

i=H
(S)
hℓ−1−s

{Si − Si < λℓ}
)

,

where H
(S)
t := inf{i ≥ 0 : Si ≥ t} (for any t ≥ 0) as in (3.9). By Claim 4.5, we arrive at

the following estimate: when r → ∞,

fm(s) ≤ exp
(

− (1 + o(1))

k
∑

ℓ=m+2

rχ

λℓ

)

,

uniformly in s < hm+1 and m ∈ [1, k] (and in n ≥ 1).

Let us go back to (4.53), and first look at the double sum
∑

(u, v): u 6=v,
←
u=z=

←
v
on the

right-hand side. Thanks to the upper bound for fm(s) we have just obtained that is valid

uniformly in s ≥ 0, we get that, on the right-hand side of (4.53),

1
{Λ(z)≤eεr

1/2
}

∑

(u, v): u 6=v,
←
u=z=

←
v

e−V (u)−V (v) fm(V (u))fm(V (v))

≤ 1
{Λ(z)≤eεr

1/2
}
e
−(2+o(1))

∑k
ℓ=m+2

rχ

λℓ

[

∑

u:
←
u=z

e−V (u)
]2

≤ e
−(2+o(1))

∑k
ℓ=m+2

rχ

λℓ

[

e−V (z) eεr
1/2

]2

,

where, in the last inequality, we used the definition of Λ(z) :=
∑

u:
←
u=z

e−[V (u)−V (z)] as in

(4.2) to see that on the event {Λ(z) ≤ eεr
1/2

}, we have
∑

u:
←
u=z

e−V (u) = e−V (z) Λ(z) ≤
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e−V (z) eεr
1/2

. Therefore, (4.53) yields

E(Σ
(n,m)
3 |Fn+1) ≤ e

2εr1/2−(2+o(1))
∑k

ℓ=m+2
rχ

λℓ

∑

z: |z|=n

eV (z)−2V (z) 1{hm−1≤V (z)<hm}
×

×1
{V (zi)−V (zi)<a

(z)
i , ∀0≤i≤n}

1{max1≤ℓ<m ∆V (z
H

(z)
hℓ

)≤rθ} .

Taking expectation to get rid of the conditioning, and using the many-to-one formula

(3.6), we obtain:

E(Σ
(n,m)
3 ) ≤ e

2εr1/2−(2+o(1))
∑k

ℓ=m+2
rχ

λℓ EQ

[

eSn−Sn 1{hm−1≤Sn<hm}
×

×1
{Si−Si<a

(S)
i , ∀0≤i≤n}

1{max1≤ℓ<m ∆S
H

(S)
hℓ

≤rθ}

]

.

Going back to (4.51), this yields

E[Eω(Z
2
r )] ≤ e−(1+o(1))(2r)1/2 + 2e2ε1 r

1/2
∞
∑

n=0

k
∑

m=1

e
2εr1/2−(2+o(1))

∑k
ℓ=m+2

rχ

λℓ ×

×EQ

[

eSn−Sn 1{hm−1≤Sn<hm}
1
{Si−Si<a

(S)
i , ∀0≤i≤n}

1{max1≤ℓ<m ∆S
H

(S)
hℓ

≤rθ}

]

.(4.54)

Similarly, (4.52) leads to: for r → ∞,

E[(EωZr)
2] ≤ e−r +

∞
∑

n=0

k
∑

m=1

e
2εr1/2−(2+o(1))

∑k
ℓ=m+2

rχ

λℓ EQ

[

e−Sn 1{min0≤i≤n Si≥−β} ×

×1{hm−1≤Sn<hm}
1
{Si−Si<a

(S)
i , ∀0≤i≤n}

1{max1≤ℓ<m ∆S
H

(S)
hℓ

≤rθ}

]

.(4.55)

We proceed with (4.54). Recall from (4.31) that a
(S)
i := λℓ if H

(S)
hℓ−1

≤ i < H
(S)
hℓ

.

In particular, a
(S)
n = λm on the event {hm−1 ≤ Sn < hm}, so that eSn−Sn ≤ eλm on

{hm−1 ≤ Sn < hm} ∩ {Sn − Sn < a
(S)
n }. Consequently,

E[Eω(Z
2
r )] ≤ e−(1+o(1))(2r)1/2 + 2e2ε1 r

1/2
∞
∑

n=0

k
∑

m=1

e
λm+2εr1/2−(2+o(1))

∑k
ℓ=m+2

rχ

λℓ ×

×Q
(

{hm−1 ≤ Sn < hm} ∩ {Si − Si < a
(S)
i , ∀0 ≤ i ≤ n} ∩ { max

1≤ℓ<m
∆S

H
(S)
hℓ

≤ rθ}
)

.

According to Claim 4.6, this yields

E[Eω(Z
2
r )] ≤ e−(1+o(1))(2r)1/2 +

+2e2ε1 r
1/2

k
∑

m=1

e
λm+2εr1/2−(2+o(1))

∑k
ℓ=m+2

rχ

λℓ × c14r e
−(1+o(1))

∑m−1
ℓ=1

rχ

λℓ .
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By definition, k := ⌊r1−χ⌋ and λm := (2r)1/2 (k−m+1
k

)1/2. Hence

λm − 2
k

∑

ℓ=m+2

rχ

λℓ

−
m−1
∑

ℓ=1

rχ

λℓ

∼ −(2r)1/2 .

This completes the proof of inequality (4.11) in Lemma 4.2. �

4.5 Proof of Lemma 4.2: inequality (4.12)

We recall from (4.55) that

E[(EωZr)
2] ≤ e−r +

∞
∑

n=0

k
∑

m=1

e
2εr1/2−(2+o(1))

∑k
ℓ=m+2

rχ

λℓ EQ

[

e−Sn 1{min0≤i≤n Si≥−β} ×

×1{hm−1≤Sn<hm}
1
{Si−Si<a

(S)
i , ∀0≤i≤n}

1{max1≤ℓ<m ∆S
H

(S)
hℓ

≤rθ}

]

.

On the right-hand side, we throw away 1{max1≤ℓ<m ∆S
H

(S)
hℓ

≤rθ} by saying that it is bounded

by 1. On the event {hm−1 ≤ Sn < hm}, we have a
(S)
n = λm, so that 1

{Si−Si<a
(S)
i , ∀0≤i≤n}

≤

1{Sn−Sn<λm}
. This leads to:

E[(EωZr)
2] ≤ e−r +

k
∑

m=1

e
2εr1/2−(2+o(1))

∑k
ℓ=m+2

rχ

λℓ EQ

[

∞
∑

n=0

e−Sn 1{min0≤i≤n Si≥−β} ×

×1{hm−1≤Sn<hm}
1{Sn−Sn<λm}

]

=: e−r +

k
∑

m=1

Σ
(m)
4 ,(4.56)

with obvious notation.

Fix 0 < ε5 < 1. We use different estimates for Σ
(m)
4 on the right-hand side, depending

on whether m ≤ ⌈ε5k⌉ or not.

First case: 1 ≤ m ≤ ⌈ε5 k⌉. In this case, we simply use 1{hm−1≤Sn<hm}
≤ 1 and

1{Sn−Sn<λm}
≤ 1, to see that for large r,

Σ
(m)
4 ≤ e

2εr1/2−(2+o(1))
∑k

ℓ=m+2
rχ

λℓ EQ

[

∞
∑

n=0

e−Sn 1{min0≤i≤n Si≥−β}

]

.

According to Lemma B.2 of Äıdékon [3], for any b > 0, there exists a constant c20(b) > 0,

whose value depends also on β, such that

(4.57) EQ

[

∞
∑

j=1

e−b Sj 1{Si≥−β,∀i≤j}

]

≤ c20(b) .
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Consequently, for all sufficiently large r,

Σ
(m)
4 ≤ c20(1) e

2εr1/2−(2+o(1))
∑k

ℓ=m+2
rχ

λℓ .

By (4.39) and (4.40), for 1 ≤ m ≤ ⌈ε5k⌉, we have

k
∑

ℓ=m+2

rχ

λℓ
=

k
∑

ℓ=1

rχ

λℓ
−

m+1
∑

ℓ=1

rχ

λℓ
= (1 + o(1))(2r)1/2 − (2rχ)1/2[k1/2 − (k − ⌈ε5k⌉)

1/2],

which is (1 + o(1))(1− ε5)
1/2(2r)1/2, r → ∞. Therefore,

(4.58)

⌈ε5 k⌉
∑

m=1

Σ
(m)
4 ≤ c20(1) ⌈ε5 k⌉ e

2εr1/2−(2+o(1))(1−ε5)1/2(2r)1/2 .

Second (and last) case: ⌈ε5 k⌉ < m ≤ k. Since m > ⌈ε5 k⌉, we have hm−1 =

(m − 1) r
k
≥ ε5r. So on the event {hm−1 ≤ Sn < hm} ∩ {Sn − Sn < λm}, we have Sn >

Sn−λm ≥ hm−1−λm ≥ ε5r−λm, which is greater than or equal to ε5r−λ1 = ε5r−(2r)1/2.

Accordingly,

Σ
(m)
4 ≤ e

2εr1/2−(2+o(1))
∑k

ℓ=m+2
rχ

λℓ EQ

[

∞
∑

n=0

e−
1
2
Sn e−

1
2
[ε5r−(2r)1/2] 1{min0≤i≤n Si≥−β}

]

≤ e2εr
1/2

EQ

[

∞
∑

n=0

e−
1
2
Sn e−

1
2
[ε5r−(2r)1/2] 1{min0≤i≤n Si≥−β}

]

= e2εr
1/2− 1

2
[ε5r−(2r)1/2]EQ

[

∞
∑

n=0

e−
1
2
Sn 1{min0≤i≤n Si≥−β}

]

.

So by (4.57), we have Σ
(m)
4 ≤ c20(

1
2
) e2εr

1/2− 1
2
[ε5r−(2r)1/2] for ⌈ε5 k⌉ < m ≤ k. As a conse-

quence,

(4.59)

k
∑

m=⌈ε5k⌉+1

Σ
(m)
4 ≤ c20(1/2)k e

2εr1/2− 1
2
[ε5r−(2r)1/2] .

Since E[(EωZr)
2] ≤ e−r +

∑k
m=1Σ

(m)
4 (see (4.56)), it follows from (4.58) and (4.59)

that

E[(EωZr)
2] ≤ e−r + c20(1) ⌈ε5 k⌉ e

2εr1/2−(2+o(1))(1−ε5)1/2(2r)1/2 +

+c20(1/2)k e
2εr1/2− 1

2
[ε5r−(2r)1/2] .

Recall that k := ⌊r1−χ⌋. Since ε5 > 0 can be as close to 0 as possible, this yields (4.12),

and completes the proof of Lemma 4.2. �
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5 Some remarks

The main result of the paper, Theorem 1.1, says that under assumptions (1.2) and

(1.3), max0≤k≤n V (Xk) behaves P-a.s. like 1
2
(log n)2 on the system’s survival. One may

wonder how V (Xn) behaves as n → ∞. We believe that V (Xn) would be much smaller

than max0≤k≤n V (Xk):

Conjecture 5.1 Assume (1.2) and (1.3). Under P, on the set of non-extinction, V (Xn)
logn

converges weakly to a limit law which is (finite and strictly) positive.

If Conjecture 5.1 is true, it will give yet another distinction between random walks in

random environment on trees and on the line. In fact, in the one-dimensional recurrent

case, it is proved by Monthus and Le Doussal [37] that logn is the common order of

magnitude for both V (Xn) and max0≤k≤n V (Xk).

Concerning the walk (Xi, i ≥ 0) itself, we recalled in (1.4) that max0≤i≤n |Xi| has

order of magnitude (logn)3. The order of magnitude of |Xn| remains so far unknown

(there are, however, some interesting results proved in Andreoletti and Debs [8]). Again,

it is our conviction that |Xn| would be much smaller than max0≤k≤n |Xk|:

Conjecture 5.2 Assume (1.2) and (1.3). Under P, on the set of non-extinction, |Xn|
(logn)2

converges weakly to a limit law which is (finite and strictly) positive.

In the one-dimensional recurrent case, (logn)2 is the common order of magnitude for

both |Xn| and max0≤k≤n |Xk|.

A Appendix: Probability estimates for one-dimen-

sional random walks

Let (Ω, F , P) be a probability space. Let S0 := 0 and let (Si − Si−1, i ≥ 1) be a

sequence of i.i.d. real-valued random variables defined on (Ω, F , P) with E(S1) = 0 and

σ2 := E(S2
1) ∈ (0, ∞). We write

Sj := max
0≤i≤j

Si, j ≥ 0.

For any b ∈ R, let8

Hb := inf{i ≥ 1 : Si ≥ b}, H
−
b := inf{i ≥ 1 : Si ≤ b} .

8For b > 0, Hb is nothing else but H
(S)
b defined in (3.9).
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Applying (2.6) of Borovkov and Foss [15] to the ladder heights, we immediately see that

the assumption E(S2
1) < ∞ ensures that E(SHb

) < ∞ for all b ≥ 0, and that there exists

a constant c21 > 0 satisfying E(SHb
− b) ≤ c21(b+ 1) for all b ≥ 0.

Lemma A.1 (i) Assume E(|S1|
3) < ∞. There exists a constant c22 > 0 such that for

any a ≥ 0 and b ≥ 0 with a + b > 0,

(A.1)
b− c22
a+ b

≤ P{Ha < H
−
−b} ≤

b+ c22
a + b

.

(ii) Assume E(|S1|
3+δ) < ∞ for some δ > 0. Then for any a ≥ 0,

(A.2) P{H−−b < Ha} ∼
E(SHa)

b
, b → ∞.

Proof. We follow the same argument as in [5].

(i) Since E(|S1|
3) < ∞, it is known (Mogulskii [36]) that supb>0 E(−S

H
−
−b

− b) < ∞.

By the optional stopping theorem, 0 = E(S
Ha∧H

−
−b
) = E[(SHa − S

H
−
−b
) 1{Ha<H

−
−b}

] +

E(S
H
−
−b
) ≥ (a+ b)P{Ha < H

−
−b}− b−E(−S

H
−
−b
− b) ≥ (a+ b)P{Ha < H

−
−b}− b− c23 where

c23 := supb>0 E(−S
H
−
−b

− b) < ∞. This yields the second inequality in (A.1). Considering

(−Sn) in place of (Sn) (and exchanging the roles of a and b) yields the first inequality.

(ii) Again, by the optional stopping theorem, 0 = E(S
Ha∧H

−
−b
) = −bP{H−−b < Ha} +

E(SHa) + E{[(S
H
−
−b

+ b)− SHa] 1{Ha<H
−
−b}

]}, which leads to

(A.3) bP{H−−b < Ha} = E(SHa) + E{[ |S
H
−
−b

+ b| + SHa] 1{H−
−b<Ha}

]} .

We let b → ∞. We have P{H−−b < Ha} → 0 (by (A.1)), whereas supb>0 E( |SH
−
−b
+ b|1+δ) <

∞ and E[(SHa)
1+δ) < ∞ (which is a consequence of the assumption E(|S1|

3+δ) < ∞; see

Mogulskii [36]). By Hölder’s inequality, E{[ |S
H
−
−b

+ b| + SHa ] 1{H−
−b<Ha}

]} → 0. So (A.3)

implies (A.2). �

Lemma A.2 Assume E(|S1|
3) < ∞. There exist constants c24 > 0, c25 > 0 and c26 > 0

such that for all r ≥ 1 and λ ≥ c24, we have

(A.4) P

{

Sj − Sj < λ, Sj ≥ 0, ∀0 ≤ j ≤ Hr

}

≥ c25 exp
(

−
r

λ
−

c26 r

λ3/2

)

.

Proof. Let c22 > 0 be the constant in Lemma A.1. Since E(S1) = 0 and E(S2
1) > 0, there

exist c27 > 0 and c28 ∈ (0, 1) such that P{S1 ≥ c27} ≥ c28, so that

P{Hc22+1 < H
−
0 } ≥ P

{

Si − Si−1 ≥ c27, ∀1 ≤ i ≤ ⌈
c22 + 1

c27
⌉
}

≥ c
⌈
c22+1
c27
⌉

28 =: c29 > 0.

38



Let y > 0 and let rk := (c22 + 1) + yk, for 0 ≤ k ≤ N := ⌈ r
y
⌉.

Let E(A.4) := {Sj−Sj < λ, Sj ≥ 0, ∀0 ≤ j ≤ Hr}. Since rN ≥ r, E(A.4) will be realized

if Hr0 < H
−
0 and if for all 0 ≤ k ≤ N−1, the following is true: after hitting [rk, ∞) for the

first time, the walk (Sn) hits [rk+1, ∞) before hitting (−∞, rk − λ]. Applying the strong

Markov property gives (Px being the probability under which the random walk starts at

x; so P0 = P)

P(E(A.4)) ≥ P{Hr0 < H
−
0 } ×

N−1
∏

k=0

Prk{Hrk+1
< H

−
rk−λ

} ≥ c29

N−1
∏

k=0

Prk{Hrk+1
< H

−
rk−λ

} .

[We do not need to worry about overshoots, because x 7→ Px{Hrk+1
< H

−
rk−λ

} is non-

decreasing for x ∈ [rk, ∞).]

Since Prk{Hrk+1
< H

−
rk−λ

} = P{Hrk+1−rk < H
−
−λ} = P{Hy < H

−
−λ}, it follows from

Lemma A.1 that (with λ sufficiently large such that λ > y + c22)

Prk{Hrk+1
< H

−
rk−λ

} ≥
λ− c22
y + λ

= 1−
y + c22
y + λ

≥ 1−
y + c22

λ
,

which is greater than or equal to exp[−y+c22
λ

− (y+c22
λ

)2] if y+c22
λ

≤ 1
2
(by the elementary

inequality that 1− x ≥ e−x−x
2
for 0 ≤ x ≤ 1

2
). Since N ≤ r

y
+ 1 = r+y

y
, we obtain:

P(E(A.4)) ≥ c29 exp
[

−
y + c22

λ

r + 1

y
−

(y + c22)
2

λ2

r + 1

y

]

.

We choose λ ≥ 1 and r ≥ 1. We note that y+c22
λ

r+1
y

= r
λ
+ 1

λ
+ c22

λ
r+1
y

≤ r
λ
+1+ 2c22r

λy
, and

that if y ≥ c22,
(y+c22)2

λ2
r+1
y

≤ 4y2

λ2
2r
y
= 8ry

λ2 . So, taking y := λ1/2 yields

P(E(A.4)) ≥ c29 exp
[

−
r

λ
− 1−

2c22r

λ3/2
−

8r

λ3/2

]

,

proving the lemma. �

The next lemma says that, under sufficient integrability conditions, the main term r
λ

within the exponential function in Lemma A.2 is, in some sense, optimal:

Lemma A.3 Assume E(eδS1) < ∞ for some δ > 0. For any ε > 0, there exist constants

c30 > 0 and c31 > 0 such that for all r ≥ 1 and λ ≥ c30, we have

(A.5) P

{

Sj − Sj < λ, ∀0 ≤ j ≤ Hr

}

≤ c31 exp
(

− (1− ε)
r

λ

)

.
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Proof. Let τ0 := 0 and for any k ≥ 1, let τk := inf{i > τk−1 : Si ≥ Sτk−1
} be the k-th

ascending ladder epoch. Let P(A.5) denote the probability expression on the left-hand side

of (A.5). For any k ≥ 1, we have

P(A.5) ≤ P{Sτk ≥ r}+ P

{

Sτi−1
− min

τi−1≤j≤τi
Sj < λ, ∀1 ≤ i ≤ k

}

.

We now estimate the two probability expressions on the right-hand side.

For the first probability expression, we write Sτk =
∑k

i=1(Sτi − Sτi−1
), and observe

that (Sτi −Sτi−1
, i ≥ 1) is a sequence of i.i.d. random variables, with E(eaSτ1 ) < ∞ for all

a < δ. So we take

k = k(r, ε) :=
⌈ 1− ε

E(Sτ1)
r
⌉

;

there exist constants c32 > 0 and c33 > 0, depending on ε, such that

P{Sτk(r, ε) ≥ r} ≤ c32 e
−c33 r ,

for all r ≥ 1.

For the second probability expression (now with k := k(r, ε)), we use the fact that

(Sτi−1
− minτi−1≤j≤τi Sj, i ≥ 1) is also a sequence of i.i.d. random variables, having the

same distribution as −min0≤j≤τ1 Sj; accordingly,

P

{

Sτi−1
− min

τi−1≤j≤τi
Sj < λ, ∀1 ≤ i ≤ k(r, ε)

}

=
[

P

{

− min
0≤j≤τ1

Sj < λ
}]k(r, ε)

.

Since τ1 = H0 and {−min0≤j≤τ1 Sj < λ} = {H0 < H
−
−λ}, we are entitled to apply (A.2) to

see that for all sufficiently large λ (say λ ≥ λ0), P{−min0≤j≤τ1 Sj < λ} ≤ 1−(1−ε)
E(Sτ1 )

λ
.

Hence for λ ≥ λ0,

P

{

Sτi−1
− min

τi−1≤j≤τi
Sj < λ, ∀1 ≤ i ≤ k(r, ε)

}

≤
(

1− (1− ε)
E(Sτ1)

λ

)k(r, ε)

,

which is bounded by exp[−(1 − ε)
E(Sτ1 )

λ
k(r, ε)]. Assembling these pieces yields that for

r ≥ 1 and λ ≥ λ0,

P(A.5) ≤ c32 e
−c33 r + exp

[

− (1− ε)
E(Sτ1)

λ
k(r, ε)

]

,

which yields (A.5) as ε > 0 is arbitrary. �
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