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Visual-inertial structure from motion: observability vs minimum

number of sensors

Agostino Martinelli

Abstract— This paper analyzes the observability properties
of the visual inertial structure from motion as the number of
inertial sensors is reduced. Specifically, instead of considering
the standard formulation where the inertial sensors are 3
orthogonal accelerometers and 3 orthogonal gyroscopes, the
sensor system here considered only consists of a monocular
camera and 1 or 2 accelerometers. This analysis has never
been provided before. The main result achieved in this context
is that the observability properties of visual inertial structure
from motion do not change by removing all the 3 gyroscopes
and 1 accelerometer. By removing a further accelerometer, if
the camera is not extrinsically calibrated, the system loses
part of its observability properties. On the other hand, if
the camera is extrinsically calibrated, the system maintains
the same observability properties as in the standard case.
This contribution clearly shows that the information provided
by a monocular camera, 3 accelerometers and 3 gyroscopes
is redundant. Additionally, it provides a new perspective in
the framework of neuroscience to the process of vestibular
and visual integration for depth perception and self motion
perception. Finally, to analyze these systems with a reduced
number of inertial sensors, the paper introduces a new method
to derive the observability properties of a non linear system
when part of its input controls is unknown. This method is a
further original paper contribution in control theory.

I. INTRODUCTION

The visual-inertial structure from motion problem (from

now on the Vi-SfM problem), has particular interest and

has been investigated by many disciplines, both in the

framework of computer science [3], [10], [11], [15], [17],

[21] and in the framework of neuroscience (e.g., [2], [4],

[5]). Vision and inertial sensing have received great atten-

tion by the mobile robotics community since they require

no external infrastructure and this is a key advantage for

robots operating in unknown environments where GPS sig-

nals are shadowed. Inertial sensors usually consist of three

orthogonal accelerometers and three orthogonal gyroscopes.

All together, they constitute the Inertial Measurement Unit

(IMU). We will refer to the fusion of monocular vision

with the measurements from an IMU as to the standard Vi-

SfM problem. In [9], [10], [11], [12], [13], [15], [18] and

[22] the observability properties of the standard Vi-SfM have

been investigated in several different scenarios. Very recently,

following two independent procedures, the most general

result for the standard Vi-SfM problem has been provided in

[7] and [16]. This result can be summarized as follows. In

the standard Vi-SfM problem all the independent observable

modes are: the positions in the local frame of all the observed

features, the three components of the speed in the local
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frame, the biases affecting the inertial measurements, the

roll and the pitch angle, the magnitude of the gravity and

the transformation between the camera and IMU frames.

The fact that the yaw angle is not observable is an obvious

consequence of the system invariance under rotation about

the gravity vector.

In this paper we will take a step forward and we will in-

vestigate the observability properties when the number of in-

ertial sensors is reduced. We will prove that the observability

properties of Vi-SfM do not change by removing all the three

gyroscopes and one of the accelerometers. In other words,

exactly the same properties hold when the sensor system only

consists of a monocular camera and two accelerometers. By

removing a further accelerometer (i.e., by considering the

case of a monocular camera and a single accelerometer) the

system loses part of its observability properties. In particular,

a new symmetry arises. This symmetry corresponds to an

internal rotation around the accelerometer axis. This means

that some of the internal parameters that define the extrinsic

camera calibration, are no longer observable. Although this

symmetry does not affect the observability of the absolute

scale and the magnitude of the velocity, it reflects in an

indistinguishability of all the initial speeds that differ for

a rotation around the accelerometer axis. On the other

hand, if the camera is extrinsically calibrated (i.e., if the

relative transformation between the camera frame and the

accelerometer frame is known) this symmetry disappears

and the system still maintains full observability, as in the

case of three orthogonal accelerometers and gyroscopes. This

contribution clearly shows that the information provided by a

monocular camera and an IMU is redundant. Additionally, it

provides a new perspective in the framework of neuroscience

to the process of vestibular and visual integration for depth

perception and self motion perception.

To analyze these systems with a reduced number of

inertial sensors, the paper introduces a new method to derive

the observability properties of a system when part of its

input controls is unknown. This method is also an original

contribution in the framework of control theory. It is an

extension of the theory developed by Herman and Krener

[8]. It is based on a suitable state extension. In particular,

the extended state includes the unknown inputs together with

their time derivatives up to a given order. Note that, this

augmented state has already been considered in [1] where

a sufficient condition for the state observability has been

provided.

The paper is articulated as follows. The system and its

basic equations are provided in section II. Section III reminds



the reader some basic concepts in non linear observability. In

particular, it provides the main results introduced in [8] and

[14]. Section IV contains the extension of the theory in [8].

Section V contains the new results about the observability

properties when the number of inertial sensors is reduced.

This includes the case of a single accelerometer. Finally,

conclusions are provided in section VI.

II. THE CONSIDERED SYSTEM

We consider a system which consists of a monocular

camera and inertial sensors. Specifically, we consider the

following three cases:

1) The inertial sensors only consist of a single accelerom-

eter and the camera is extrinsically calibrated (i.e.,

the transformation between the camera frame and the

inertial sensor frame is known);

2) The inertial sensors only consist of two accelerometers

and the camera is not extrinsically calibrated;

3) The inertial sensors only consist of one accelerometer

and the camera is not extrinsically calibrated;

For the sake of simplicity, in the last two cases we do not

consider the extreme case of a single feature. In particular,

we assume that the camera is able to provide its position,

orientation and speed up to a scale. This is obtained by

assuming that the camera is observing at least five point

features, simultaneously [19]. This significantly reduces the

computational load.

Regarding the first case, we consider the extreme scenario

of a single point feature. Without loss of generality, we

assume that the camera and the inertial sensor frame have the

same orientation and that the accelerometer points towards

the z−direction of the camera frame. Finally, we denote by

Rc the known position of the camera optical center in the

inertial sensor frame. The state that characterizes this system

is the following 12−dimensional vector:

Xc

1
≡

[

cF , V , q, Abias
z , g

]T
(1)

where we adopt the subscript 1 to denote the case of a

single accelerometer and the apex c to denote the case of

a calibrated camera. cF is the position of the feature in the

camera frame, V is the speed of the inertial sensor in its

frame, q the unit quaternion which describes the orientation

of the camera frame in the global frame, Abias
z the bias of

the accelerometer and g the magnitude of the gravity. The

dynamics of this state are:















cḞ = M(Ω)cF − (V +Ω ∧Rc)

V̇ = M(Ω)V +A−Abias +G

q̇ =
1

2
qΩq

ġ = Ȧbias
z = 0

(2)

where Ω ≡ [Ωx Ωy Ωz] is the unknown angular speed of

the camera, M(Ω) ≡





0 Ωz −Ωy

−Ωz 0 Ωx

Ωy −Ωx 0



, Ωq is the

quaternion associated with Ω, i.e., Ωq ≡ Ωxi+Ωyj +Ωzk,

Abias = [0 0 Abias
z ]T and A − Abias is the camera

acceleration in the local frame, whose first two components

are unknown and the third component is known up to the

bias thanks to the accelerometer.

The monocular camera provides the position of the feature

in the camera frame (cF ) up to a scale. Hence, it provides

the ratios of the components of cF :

hcam(Xc

1
) ≡ [hu, hv]

T =

[

Fx

Fz

,
Fy

Fz

]T

(3)

We have also to consider the constraint q∗q = 1. This

provides the further observation:

hconst(X
c

1
) ≡ hq = q∗q (4)

Regarding the second and the third case, as previously

mentioned, we assume that the camera is observing at least

five features. This allows us to consider the camera as a

sensor able to provide its orientation, its angular speed and

its position and speed up to a scale in a global reference

frame attached to these features. Obviously, the gravity in

this global frame is not necessarily along the vertical axis. We

denote this vector by g ≡ [gx, gy, gz]
T , which is unknown

(both in magnitude and direction). Additionally, we denote

by 1
µ

the unknown absolute scale.

For the second case, without loss of generality, we assume

that the two available accelerometers are along the y and the

z−axis in the inertial sensor frame. Let us denote with Nf

the number of observed features (Nf ≥ 5). The state is:

Xu

2
≡

[

cF 1, · · · , cFNf ,V , q, Abias
y , Abias

z ,Rc, qc, g, µ
]T

(5)

where the subscript 2 denotes two accelerometers and the

apex u the fact that we are considering the case of a

camera extrinsically uncalibrated. cF i (i = 1, · · · , Nf ) is

the position of the ith feature in the camera frame, V is the

speed in the inertial sensor frame and the unit-quaternion q
characterizes the attitude of the inertial sensor frame in the

global frame. Finally, the unit-quaternion qc characterizes

the attitude of the camera frame in the inertial sensor frame

and the vector Rc is included in the state since it is now

unknown. We will also denote with Rqc the rotation matrix

associated with the unit-quaternion qc. The dynamics of this

state are (i = 1, · · · , Nf ):















cḞ i = M(cΩ)cF i −Rqc [V +Ω ∧Rc]

V̇ = M(Ω)V +A−Abias +G

q̇ =
1

2
qΩq ġ = Ṙc = [0 0 0]T

Ȧbias
y = Ȧbias

z = q̇c = µ̇ = 0

(6)

where Ω is the unknown angular speed in the inertial

sensor frame, A is the acceleration in the inertial sensor

frame, whose first component is unknown and Abias =
[0, Abias

y , Abias
z ]T . Since at least five point features are



available, the angular speed is known in the camera frame,

i.e., the vector cΩ (= Rqc Ω) can be obtained from the visual

measurements [19]. Additionally, the visual measurements

provide 3Nf + 9 scalar functions (system outputs). The

first 3Nf are the components of the vectors µ cF i, i =
1, · · · , Nf , which are the positions of the features in the

camera frame up to the scale. Hence, we have:

hF i
x
≡ µ cF i

x; hF i
y
≡ µ cF i

y; hF i
z
≡ µ cF i

z ; i = 1, · · · , Nf

(7)

Regarding the remaining nine outputs, three of them are the

components of the speed in the camera frame up to a scale,

i.e.:

hVx
≡ µ cVx; hVy

≡ µ cVy; hVz
≡ µ cVz (8)

where cV ≡ [cVx,
cVy,

cVz]
T = Rqc [V +Ω∧Rc]. Since the

camera provides its orientation in the global frame, also the

component of the quaternion qqc can be considered system

outputs. We have:

ht ≡ (qqc)t; hx ≡ (qqc)x; hy ≡ (qqc)y; hz ≡ (qqc)z
(9)

Finally, both the quaternions q and qc must be unit quater-

nions. Hence, we have the two outputs:

hq ≡ q2t +q2x+q2y+q2z ; hqc ≡ (qct )
2+(qcx)

2+(qcy)
2+(qcz)

2;
(10)

Regarding the third case, the system is described by the

following state:

Xu

1
≡

[

cF 1, · · · , cFNf , V , q, Abias
z , Rc, qc, g, µ

]T

(11)

where we assumed, without loss of generality, that the

available accelerometer is along the z−axis in the inertial

sensor frame.

III. OBSERVABILITY ANALYSIS

In the systems defined in the previous section part of the

inputs is unknown. For this reason, an observability analysis

cannot be performed by using standard methods. In this

section we remind the reader some basic concepts in the

theory of observability for non linear systems. For the sake

of clarity, we will refer to a simple example. This will allow

us to better illustrate these concepts and, in section IV-A,

to introduce new concepts in order to deal with non linear

systems when part (or even all) of the input controls is

unknown.

A. A simple 2D localization problem

We consider a vehicle moving in a 2D-environment. The

configuration of the vehicle in a global reference frame, can

be characterized through the vector [xv, yv, θv]
T where

xv and yv are the cartesian vehicle coordinates, and θv is

the vehicle orientation. We assume that the dynamics of this

vector satisfy the unicycle differential equations:







ẋv = v cos θv

ẏv = v sin θv

θ̇v = ω

(12)

where v and ω are the linear and the rotational vehicle

speed, respectively, and they are the system input controls.

We assume that the vehicle is equipped with a GPS able to

provide its position, i.e.:

z = [xv, yv]
T (13)

Our system is characterized by the previous two equations:

the former describes its dynamics, the latter its observations.

As the majority of real control systems, the dynamics given

in (12) are affine in the controls, i.e. they can be written as

follows:

{

Ṡ = f(S,u) = f0(S) +

nc
∑

i=1

fi(S)ui (14)

with S = [xv, yv, θv]
T , nc = 2, u = [u1, u2]

T = [v, ω]T ,

f0(S) = [0, 0, 0]T , f1(S) = [cos θv, sin θv, 0]T , f2(S) =
[0, 0, 1]T . Additionally, our system is characterized by two

observation functions (system outputs), which are hx(S) =
xv and hy(S) = yv .

B. Observability rank criterion

This criterion was introduced in 1977 by Hermann and

Krener [8], in order to investigate the observability properties

of a non linear system which satisfies (14) and with one

or more outputs (observations). It requires to compute the

Lie derivatives of all the observation functions with respect

to all the vector fields f0(S), f1(S), · · · , fnc
(S).

The Lie derivatives are defined recursively. The zero order

Lie derivative of a given observation function h(S) is the

function itself, i.e., L0h ≡ h. Then, the (k + 1)-order Lie

derivative of the observation function h(S) with respect to

fi1(S), · · · , fik(S), fik+1
(S) (with i1, i2, · · · , ik+1 =

0, 1, · · · , nc) is L
k+1
i1,··· ,ik,ik+1

h ≡ ∇SL
k
i1,··· ,ik

h · fik+1
(S).

Note that this operation is not commutative with respect to

the indexes’s order. Hence, for a given observation function,

we have (nc + 1)k k−order Lie derivatives.

Let us denote with V the space of all the Lie derivatives

up to the k−order and with ∇V the vector space spanned

by the gradients of these functions. In this notation, the

observability rank criterion can be expressed in the following

way: The dimension of the largest observable sub-system at a

given S is equal to the dimension of ∇V1. As a consequence,

if for a given k−order the dimension of ∇V is equal to

the dimension of S, the state S is observable and it is not

necessary to compute higher order Lie derivatives.

Let us apply the observability rank criterion to our exam-

ple. The system has two outputs: hx ≡ xv and hy ≡ yv . By

definition, they coincide with their zero-order Lie derivatives.

1Actually, this condition guarantees that the system is locally weakly

observable. The reader is addressed to [8] for a detailed description of weak

and local observability.



Their gradients with respect to the state S are, respectively:

[1, 0, 0]T and [0, 1, 0]T . Hence, the space spanned by the

zero-order Lie derivatives has dimension two. In particular,

by considering only the zero-order Lie derivatives, we can

only conclude that the first 2 state components are observ-

able. We do not know whether the third component, i.e.,

the vehicle orientation, is observable or not. Let us compute

the first order Lie derivatives. We obtain: L1
1hx = cos θ,

L1
1hy = sin θ, L1

2hx = L1
2hy = 0. Hence, the space spanned

by the Lie derivatives up to the first order span the entire

configuration space and we conclude that also the vehicle

orientation is observable.

IV. UNKNOWN INPUT OBSERVABILITY

This section introduces a new method to derive the ob-

servability properties of a non linear system when all or

part of its input controls is unknown. As it is common,

we will refer to non linear systems whose dynamics are

affine in the controls, i.e., they can be written as in the

equation (14). Additionally, we will refer to the case when

the observation (system output) is a scalar function of the

state, i.e., z = h(S). The theory of the observability is based

on the assumption that both the system inputs (i.e., ui in (14),

i = 1, · · · , nc) and the system output (i.e., z) are known

during a given time interval. This is a basic assumption.

Specifically, the observability rank criterion introduced in

[8] and used in [14] to define the concept of continuous

symmetry, is based on this assumption. In order to extend the

observability rank criterion, let us focus on the main steps in

the theory introduced in [8]. Let us denote with [Tin, Tfin]
the interval of time where the functions ui(t) (i = 1, · · · , nc)

and z(t) = h(S(t)) are known.

The observability rank criterion is obtained by proceeding

with the following three steps:

1) The Taylor’s theorem is used to obtain the value of

any order time derivative for t = Tin of the functions

ui (i = 1, · · · , nc) and z, starting from the knowledge

of the functions ui(t) (i = 1, · · · , nc) and z(t) for

t ∈ [Tin, Tfin];
2) the values of all the Lie derivatives of the function

h(S) in S(Tin) along all the directions fi(S), i =
0, 1, · · · , nc are obtained by inverting a linear system

whose coefficients and constant terms are given by the

previous time derivatives (see equation (16));

3) the inverse function theorem [20] allows us to identify

if the vector S(Tin) can be obtained starting from the

knowledge of the Lie derivatives (which are non linear

scalar functions of this vector).

The goal of this section is to extend the observability rank

criterion in order to deal with the case when all or part of the

nc input controls of our system are unknown. In this case,

we do not know some of the functions ui(t) (i = 1, · · · , nc)

t ∈ [Tin, Tfin]. Let us denote with nk and nu the number

of known and unknown input controls, respectively. We have

nk + nu = nc. Additionally, we order the inputs such that

the known input are the first nk. In other words, ui(t)
(i = 1, · · · , nk) are known for any t ∈ [Tin, Tfin], while

ui(t) (i = nk + 1, · · · , nc) are unknown. Hence, the time

derivatives of ui(t) (i = nk+1, · · · , nc) are not available and

the second step mentioned above cannot be used to obtain

the Lie derivatives. Our basic idea consists in modifying

the original state in order to be able to select some Lie

derivatives, which can be obtained even without knowing

all the time derivatives of ui(t) (i = nk + 1, · · · , nc) at

t = Tin. This allows obtaining sufficient conditions for the

state observability. We will the new criterion the extended

observability rank criterion. It will be introduced in IV-A.

Then, to better illustrate the proposed method, we consider

again the localization problem discussed in III-A.

A. Extended observability rank criterion

Let us refer to the non linear system described by equation

(14) and a given observation function z = h(S). It is

possible to analytically derive the expression of the nth time

derivative of the observation function in t = Tin in terms

of all the Lie derivatives of the function h along all the

directions fi(S), i = 0, 1, · · · , nc computed in S0 ≡ S(Tin)
up to the nth order and all the time derivatives of the

functions ui (i = 1, · · · , nc) computed in t = Tin. We have:

dnh(S(t))

dtn

∣

∣

∣

∣

t=Tin

=

n
∑

p=1

nc
∑

i1i2···ip=0

L
p
i1i2···ip

h(S0) (15)

n−p
∑

k1,k2,··· ,kp=0, |
∑p

j=1
kj=n−p

Cn, p
k1,k2,··· ,kp

u
(k1)
i1

· · ·u
(kp)
ip

where:

• u
(k)
i ≡ dkui

dtk
, k = 0, 1, · · · , n; i = 1, · · · , nc;

• u0 ≡ 1 and u
(k)
0 = 0, k > 1;

• Cn, p
k1,k2,··· ,kp

, are real numbers satisfying a recursive

equation which can be obtained by directly differen-

tiating the expression in (15) with respect to time.

The expression in (15) allows us to perform the second

step mentioned above, i.e., it allows us to obtain the Lie

derivatives of h starting from the knowledge of the time

derivatives of the system inputs and output by inverting

a linear system. When nu inputs are unknown, this step

cannot be performed starting directly from (15). We split

the expression in (15) as follows:

dnh(S(t))

dtn

∣

∣

∣

∣

t=Tin

=

n
∑

p=1







nk
∑

i1i2···ip=0

L
p
i1i2···ip

h(S0) (16)

n−p
∑

k1,k2,··· ,kp=0, |
∑p

j=1
kj=n−p

Cn, p
k1,k2,··· ,kp

u
(k1)
i1

· · ·u
(kp)
ip

+

+
∑

i1i2···ip=remaining

L
p
i1i2···ip

h(S0)

n−p
∑

k1,k2,··· ,kp=0, |
∑p

j=1
kj=n−p

Cn, p
k1,k2,··· ,kp

u
(k1)
i1

· · ·u
(kp)
ip









The first sum only contains the know controls (i.e.,

i1, i2, · · · , ip = 0, 1, · · ·nk) while, for each addend in the

second sum, i.e., the sum where the indexes i1, i2, · · · , ip
take the remaining values, at least one control is unknown. In

the special case when all the Lie derivatives L
p
i1i2···ip

h(S0)
vanish when at least one index i1, i2, · · · , ip is larger than

nk, the second sum, which also contains unknown controls,

vanishes as well. Hence, the expression in (16) can still be

used to obtain all the Lie derivatives and the observability

rank criterion can still be adopted. Obviously, this is a very

special case. Our idea is to extend the original state in order

to artificially reproduce such a situation. In particular, we

include the unknown inputs in the state together with their

time derivatives. By including the time derivatives up to the

(n − 1)th order, we will obtain L
p
i1i2···ip

h(S0) = 0 when

at least one index i1, i2, · · · , ip is larger than nk and for

all p = 0, 1, · · · , n. Let us illustrate this by referring to

the case when nk = nc − 1 (and, consequently, nu = 1).

Obviously, the zero order Lie derivative can be obtained

without the necessity to know the inputs (it is trivially the

output at t = Tin, L0h(S0) = h(S(Tin))). Let us consider

the first order time derivative (n = 1). The expression in (16)

becomes:

dh(S(t))

dt

∣

∣

∣

∣

t=Tin

=

nc−1
∑

i=0

L1
ih(S0)ui + L1

nc
h(S0)unc

(17)

Let us include the unknown unc
in the state, i.e., S → Se ≡

[S, unc
]T . We have:

{

Ṡe = fe

0
(Se) +

nc
∑

i=1

fe

i
(Se)ue

i (18)

where

• fe

0
(Se) ≡ [f0(S)

T + fnc
(S)Tunc

, 0]T ;

• fe

i
(Se) ≡ [fi(S)

T , 0]T , i = 1, · · · , nc − 1;

• fe

nc
(Se) ≡ [0, 1]T , with 0 the line vector whose entries

are all zero and whose dimension is equal to the one of

ST ;

• ue
i ≡ ui, i = 1, · · · , nc − 1;

• ue
nc

≡ u
(1)
nc = u̇nc

.

It is immediate to realize that the first order Lie derivative

along the direction fe

nc
(Se) is identically zero. This allows

us to obtain all the other first order Lie derivatives. By

including in the state also the first time derivative of unc

(namely, u
(1)
nc ) we can obtain all the Lie derivatives, up

to the second order, along the first nc − 1 directions. By

including higher order time derivatives of the unknown input

control unc
we can obtain higher order Lie derivatives along

the first nc − 1 directions. At this point, the third step in

the Herman & Krener theory previously mentioned can be

performed by using the Lie derivatives which are available.

By analyzing these Lie derivatives it is possible to detect

potential symmetries according to the theory developed in

[14] and for a given mode to be observable. In particular,

we will use the following property, which is a sufficient

condition for a scalar function to be an observable mode:

Property 1 The function m(S) is observable if its gradient

is spanned by the gradients of a set of Lie derivatives

B. Observability of the system in III-A with unknown inputs

We illustrate the method introduced in the previous section

by deriving the observability properties of the simple system

introduced in III-A when part, or all, of the input controls is

unknown. We already know that the state S = [xv, yv, θv]
T

is observable when all the input controls are known (i.e.,

when the functions v(t) and ω(t) are known for any t ∈

[Tin, Tfin]). Intuitively, we know that the knowledge of both

the inputs is unnecessary in order to have the full observabil-

ity of the entire state. Indeed, the first two state components

can be directly obtained from the GPS. By knowing these two

components in a given time interval, we also know their time

derivatives. In particular, we known ẋv(Tin) and ẏv(Tin).

From (12) we easily obtain: θv(Tin) = atan
(

ẏv(Tin)
ẋv(Tin)

)

.

Hence, also the initial orientation is observable, by only using

the GPS measurements. By applying the method introduced

in the previous section we obtain exactly the same result. We

start by including in the original state the unknown v, i.e.,

Se = [xv, yv, θv, v]T . We obtain:











ẋv = v cos θv

ẏv = v sin θv

θ̇v = ω

v̇ = v(1)

(19)

We have: nc = 2, u = [ue
1, ue

2]
T = [ω, v(1)]T , fe

0
(Se) =

[v cos θv, v sin θv, 0, 0]T , fe

1
(Se) = [0, 0, 1, 0]T ,

fe

2
(Se) = [0, 0, 0, 1]T . The first order Lie derivatives

are: L1
0hx(S

e) = v cos θv , L1
1hx(S

e) = L1
2hx(S

e) = 0.

By chance, also L1
1hx(S

e) = 0 and we do not need

to include also ω in the state. By using (16) up to the

first order (i.e., n ≤ 1), we can determine L1
0hx(S

e). In

other words, we can determine v cos θv . By considering the

second observation function (i.e., hy) we find that we can

also determine L1
0hy(S

e) = v sin θv . The gradients of the

functions L0hx(S
e), L0hy(S

e), L1
0hx(S

e) and L1
0hy(S

e)
span the entire configuration space of the state Se meaning

that this extended state is observable.

V. OBSERVABILITY OF VI-SFM WITH UNKNOWN INPUTS

We use the method described in section IV to analyze the

Vi-SfM problem when the number of accelerometers and

gyroscopes is reduced. In other words, we analyze the three

systems defined in section II.

A. Single Accelerometer and Camera extrinsically calibrated

The dynamics in (2) provide seven independent directions

along with the Lie derivatives can be computed. On the other

hand, only two directions are available. They are the vector

f0(X
c

1
), which is obtained by setting Ω = A = [0 0 0]T

in (2) and the vector f3(X
c

1
), which is obtained by setting

Ω = [0 0 0]T and A = [0 0 1]T in the dynamics in (2), once

f0(X
c

1
) has been removed. Since the Lie derivatives along

the other five directions are not null, we have to proceed as in



section IV-B. We must proceed in several subsequent steps.

In each step we check, first of all, which highest order of Lie

derivatives of the observations can be used. This is obtained

by checking that, for a given order, all the Lie derivatives up

to this order, computed along at least one of the directions

which are not available (i.e., f1, f2, f4, f5 and f6) are

identically zero. Once this highest order is identified, we

find the largest number of independent Lie derivatives up

to this order. Then, we compute the set of all of vectors

which are orthogonal to the gradients of these Lie derivatives.

Finally, we apply the property 1 in order to detect which

components of the vector in (1) are observable. Specifically,

we compute the gradient of each state component and we

check if it is orthogonal to all the previous vectors (in

which case it means that the gradient of this component is

spanned by the gradients of the considered Lie derivatives).

We include new time derivatives of the unknown inputs (i.e.,

Ax, Ay, Ωx, Ωy, Ωz) in order to make usable higher order

Lie derivatives, as explained in section IV.
1) First step: We start with the 12−dimensional state

given by the vector in (1). Since the first order Lie derivatives

along f4, f5 and f6 are different from zero both for hu and

hv , we can only use zero-order Lie derivatives. On the other

hand, the first order Lie derivatives along f1 and f2 (and

also f3) vanish. Hence, it suffices to include Ωx, Ωy, Ωz

in the state in order to use the Lie derivatives up to the first

order. The zero-order Lie derivatives are the three functions

in (3, 4). They are independent. Hence the system has

three observable modes. The set of vectors orthogonal to

the gradients of these three functions can be determined.

Property 1 does not allow us to prove the observability for

any component of the state in (1).
2) Second step: We include Ωx, Ωy, Ωz in the state.

The dimension of the new state is 15. We can use all the

Lie derivatives up to the first order. We detect the additional

independent functions from them: L1
0hu and L1

0hv . Hence

the system has five independent Lie derivatives. The set of

vectors orthogonal to the gradients of these functions consists

of 10 vectors. Again, property 1 does not allow us to prove

the observability for any component of the state in (1).
3) Third step: In order to use the second order Lie

derivatives we need to include Ax, Ay, Ω
(1)
x ≡ Ω̇x, Ω

(1)
y ≡

Ω̇y, Ω
(1)
z ≡ Ω̇z in the state. The dimension of the new state is

20. We can use all the Lie derivatives up to the second order.

We detect the following additional independent functions:

L2
00hu, L2

03hu and L2
00hv . Hence the system has eight

independent Lie derivatives. The set of vectors orthogonal

to the gradients of these functions consists of 12 vectors.

This time, property 1 allows us to conclude that the first 3

components of the vector in (1) (i.e., cF ) are observable.
4) Forth step: In order to use the third order Lie deriva-

tives we need to include also A
(1)
x ≡ Ȧx, A

(1)
y ≡

Ȧy, Ω
(2)
x ≡ Ω̇

(1)
x , Ω

(2)
y ≡ Ω̇

(1)
y , Ω

(2)
z ≡ Ω̇

(1)
z in the state.

The dimension of the new state is 25. We detect the following

additional independent functions: L3
000hu, L3

003hu, L3
030hu,

L3
000hv and L3

003hv . Hence the system has 13 independent

Lie derivatives. The set of vectors orthogonal to the gradients

of these functions consists of 12 vectors. Property 1 allows

us to conclude that also the sixth component of the vector

in (1) (i.e., Vz) is observable.

5) Fifth step: In order to use the fourth order Lie

derivatives we need to include also A
(2)
x ≡ Ȧ

(1)
x , A

(2)
y ≡

Ȧ
(1)
y , Ω

(3)
x ≡ Ω̇

(2)
x , Ω

(3)
y ≡ Ω̇

(2)
y , Ω

(3)
z ≡ Ω̇

(2)
z in the

state. The dimension of the new state is 30. We detect

the following additional independent functions: L4
0000hu,

L4
0003hu, L4

0030hu, L4
0300hu, L4

0000hv and L4
0003hv . Hence

the system has 19 independent Lie derivatives. The set of

vectors orthogonal to the gradients of these functions consists

of 11 vectors. Property 1 allows us to conclude that the first

six components of the vector in (1) (i.e., both the vector cF

and V ) are observable.

6) Sixth step: In order to use the fifth order Lie derivatives

we need to include also A
(3)
x ≡ Ȧ

(2)
x , A

(3)
y ≡ Ȧ

(2)
y , Ω

(4)
x ≡

Ω̇
(3)
x , Ω

(4)
y ≡ Ω̇

(3)
y , Ω

(4)
z ≡ Ω̇

(3)
z in the state. The dimension

of the new state is 35. We detect the following addi-

tional independent functions: L5
00000hu, L5

00003hu, L5
00030hu,

L5
03000hu, L5

00000hv and L5
00003hv . Hence the system has 25

independent Lie derivatives. The set of vectors orthogonal to

the gradients of these functions consists of 10 vectors. By

using property 1 we find the same properties obtained in the

previous step.

7) Seventh step: In order to use the sixth order Lie

derivatives we need to include also A
(4)
x ≡ Ȧ

(3)
x , A

(4)
y ≡

Ȧ
(3)
y , Ω

(5)
x ≡ Ω̇

(4)
x , Ω

(5)
y ≡ Ω̇

(4)
y , Ω

(5)
z ≡ Ω̇

(4)
z in the state.

The dimension of the new state is 40. We detect the follow-

ing additional independent functions: L6
000000hu, L6

000003hu,

L6
000030hu, L6

030000hu, L6
000000hv and L6

000003hv . Hence the

system has 31 independent Lie derivatives. The set of vectors

orthogonal to the gradients of these functions consists of

9 vectors. Again, by using property 1, we find the same

properties obtained in the previous step.

8) Eighth step: In order to use the seventh order Lie

derivatives we need to include also A
(5)
x ≡ Ȧ

(4)
x , A

(5)
y ≡

Ȧ
(4)
y , Ω

(6)
x ≡ Ω̇

(5)
x , Ω

(6)
y ≡ Ω̇

(5)
y , Ω

(6)
z ≡ Ω̇

(5)
z in the state.

The dimension of the new state is 45. We detect the following

additional independent functions: L7
0000000hu, L7

0000003hu,

L7
0000030hu, L7

0300000hu, L7
0000000hv and L7

0000003hv . Hence

the system has 37 independent Lie derivatives. The set of

vectors orthogonal to the gradients of these functions consists

of 8 vectors. By using property 1, we find that the first

six components of the vector in (1) (i.e., both the vector
cF and V ) and the last two components of this vector

(i.e., the accelerometer bias Abias
z and the magnitude of the

gravity g) are observable. Additionally, also the roll and

pitch are observable. The unique unobservable mode is the

yaw. Since this unobservable mode is a consequence of the

system invariance with respect to rotations about the vertical

axis, it is useless to include higher order Lie derivatives: the

observability properties of the state in (1) would not change.

We summarize this section with the following theorem:

Theorem 1 (Single accelerometer, calibrated camera)

In the Vi-SfM problem with a single accelerometer, no



gyroscope and known camera-inertial sensor transformation,

all the independent observable modes arethe same as in the

standard Vi-SfM problem. This holds even in the extreme

case of a single point feature.

B. Two Accelerometers and Uncalibrated Camera

We start by investigating the observability properties of a

simplified system, which is obtained by referring to the state

in (5) with Nf = 1 and with the 3 + 9 = 12 outputs given

by (7) for a single feature and (8-10). Note that we are using

the four observations in (9): this implicitly assumes that we

are actually exploiting the camera observations related to at

least five features, simultaneously.

The dynamics in (6) provide seven independent directions

along which the Lie derivatives can be computed. On the

other hand, one of these directions is not available. This is the

vector f1(X
u

2
), which is obtained by setting cΩ = [0 0 0]T

and A = [1 0 0]T in (6), once f0(X
u

2
) has been removed2.

Since the Lie derivatives along this direction are not null,

we have to proceed as in section V-A. We must proceed in

several subsequent steps. In each step we check, first of all,

which highest order of Lie derivatives of the observations can

be used. This is obtained by checking that, for a given order,

all the Lie derivatives up to this order, computed at least

once along f1, are identically zero. Once this highest order

is identified, we find the largest number of independent Lie

derivatives up to this order. We include new time derivatives

of the unknown inputs (i.e., Ax) in order to make usable

higher order Lie derivatives, as explained in section IV. We

will show that, by including Ax and its first time derivative,

we can prove the observability of the entire state.

1) First step: We start with the 23−dimensional state

given by the vector in (5), with a single feature. By chance,

the first order Lie derivatives of the functions hFx
, hFy

and

hFz
along f1 are null. Regarding the other nine outputs, the

first order Lie derivatives along this direction are different

from zero. Among the usable Lie derivatives, we detect 14
independent functions, which are: L0hFx

, L0hFy
, L0hFz

,

L0hVx
, L0hVy

, L0hVz
, L0ht, L0hx, L0hy , L0hq , L0hqc ,

L1
5hFx

, L1
6hFx

and L1
6hFy

.

2) Second step: We include Ax in the state. The new

state has dimension 24. Now we can use the first order

Lie derivatives of all the outputs and the second order

Lie derivatives of the first three outputs. We detect seven

additional independent Lie derivatives which are: L2
00hFx

,

L2
02hFx

, L2
03hFx

, L2
00hFy

, L2
02hFy

, L2
03hFy

and L2
00hFz

.

3) Third step: We include A
(1)
x ≡ Ȧx. The new state

has dimension 25. Now we can use the second order Lie

derivatives of all the outputs. We detect four additional

independent Lie derivatives which are: L2
00hVx

, L2
05hVx

,

L2
06hVx

and L2
06hVy

. Hence, the total number of independent

Lie derivatives which are usable is 25, which coincides with

the dimension of the state. We proved the theorem:

2Note that in this case u = [u1, u2, · · · , unc ]
T =

[Ax, Ay , Az ,
cΩx,

cΩy ,
cΩz ]T , i.e., the last three inputs are the

components of the angular speed in the camera frame, which is known.

Theorem 2 (Two accelerometers, uncalibrated camera)

In the Vi-SfM problem with 2 accelerometers, no gyroscope,

unknown camera-inertial sensor transformation and at

least five features available, all the independent observable

modes are the same as in the standard Vi-SfM problem.

C. Single Accelerometer and Uncalibrated Camera

Before computing the Lie derivatives in order to apply the

extended observability rank criterion introduced in section

IV, we derive a continuous symmetry by using an intuitive

procedure. Let us suppose to collect the data from the camera

and the accelerometer during a given time interval for a

generic vehicle motion, starting from a given initial state.

We remark that, independently of the motion, by rotating

the initial state around the accelerometer axis (i.e., around

the z−axis of the inertial sensor frame) we obtain exactly the

same measurements. Let us derive how this rotation changes

the initial state by referring to an infinitesimal rotation of an

angle ǫ. We rotate all the features, the camera frame (namely

its position and orientation in the inertial sensor frame) the

initial vehicle speed and orientation, simultaneously, around

the z−axis of the inertial sensor frame, by the angle ǫ. The

camera configuration in the inertial sensor frame changes

as follows [6]: Rc → R′c = Rc + ǫ[Y c,−Xc, 0]T and

qc → q′c = qc + ǫ/2(qcz + qcyi − qcxj − qctk). The initial

speed in the inertial sensor frame (V ≡ [Vx, Vy, Vz]
T )

changes as follows: V → V ′ = V + ǫ[Vy,−Vx, 0]
T . Let us

derive how the initial orientation changes. The state in (11)

contains the quaternion q, which describes the orientation

of the inertial sensor frame in the global frame and not

the orientation of the global frame in the inertial sensor

frame. This last orientation is described by the quaternion

p ≡ pt + ipx + jpy + kpz ≡ q∗ = qt − iqx − jqy − kqz .

The quaternion p changes as qc, namely: p → p′ = p +
ǫ/2(pz + pyi− pxj− ptk). Hence, we have: q∗t → q∗t +

ǫ
2q

∗
z ,

q∗x → q∗x+
ǫ
2q

∗
y , q∗y → q∗y−

ǫ
2q

∗
x and q∗z → q∗z−

ǫ
2q

∗
t . By using

q∗t = qt, q
∗
x = −qx, q∗y = −qy and q∗z = −qz we obtain:

q → q′ = q + ǫ/2(−qz + qyi − qxj + qtk). The rotation

does not affect all the remaining quantities in the state in

(11). Indeed, µ and Abias
z are scalar quantities. The vectors

cF 1, · · · , cFNf are the relative positions of the features in

the camera frame. Since, by definition, we are both rotating

the features and the camera frame, these relative positions are

unvaried. Finally, the vector g remains unvaried since we are

rotating the global frame and the gravity, simultaneously. The

rotation described above, is characterized by the symmetry:

wint ≡

[

03Nf
, Vy,−Vx, 0,−

qz
2
,
qy
2
,−

qx
2
,
qt
2
, (20)

0, Y c,−Xc, 0,
qcz
2
,
qcy
2
,−

qcx
2
,−

qct
2
, 0, 0, 0, 0

]T

where 03Nf
is the zero 1 × 3Nf vector. Namely, the trans-

formation: Xu

1
→ Xu

1
+ ǫwint on the initial state, cannot

be detected by analyzing the measurements delivered by the

camera and the accelerometer independently of the trajectory.



By proceeding as in the previous section in several

subsequent steps, it is possible to show that wint is the

only system symmetry. This is obtained by augmenting the

original state in order to include Ax, Ay , A
(1)
x ≡ Ȧx and

A
(1)
y ≡ Ȧy . We proved the theorem:

Theorem 3 (Single accelerometer, uncalibrated camera)

In the Vi-SfM problem with a single accelerometer, no

gyroscope, unknown camera-inertial sensor transformation

and at least five features available, there is a continuous

internal symmetry. As a consequence, the initial speed and

orientation and the camera-inertial sensor transformation

are not fully observable: all these quantities cannot be

distinguished from the same quantities rotated around the

accelerometer axis. All the remaining states are observable

as in the standard Vi-SfM problem.

VI. DISCUSSION AND CONCLUSION

This paper provided new theoretical results on the Vi-

SfM problem. Specifically, the investigation aimed to dis-

cover how the observability properties change as the number

of inertial sensors is reduced. The case of a single accelerom-

eter and no gyroscope was firstly investigated. Theorem 1

basically states that, if the camera is extrinsically calibrated,

the observability properties remain the same as in the case

of 3 accelerometers and 3 gyroscopes. If the camera is

not extrinsically calibrated, an internal symmetry arises (see

theorem 3). As a result, it is not possible to distinguish all

the physical quantities rotated around the accelerometer axis,

independently of the accomplished trajectory. This means

that, in this setting, it is not possible to fully perceive self-

motion. If an additional accelerometer is introduced, the sys-

tem gains again full observability (theorem 2). These results

show that, the information provided by an IMU together

with a monocular camera, is redundant. Additionally, these

results are consistent with our knowledge about the vestibular

system, which provides balance in most mammals. Indeed,

the otoliths, which indicate linear accelerations, consist of

two organs (the utricle and the saccule) able to sense the

acceleration only along two independent axes (see fig. 1).

Fig. 1. The otoliths perceive acceleration only along two independent axes

Finally, to analyze these systems with a reduced number of

sensors, the paper introduced a new method that allows us

to derive the observability properties of a non linear system

when part of its input controls is unknown.
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