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Résumé — Développement de réseaux de capteurs chimiques intelligents par des méthodes de

séparation source fondée sur l’analyse de composantes indépendantes non linéaire — Les réseaux

de capteurs chimiques fondés sur la Séparation Aveugle de Sources (SAS) fournissent une

solution prometteuse pour palier le problème d’interférence typique des électrodes ion-

sélective. Cette nouvelle approche peut rendre plus simple la phase d’étalonnage, surtout en

évitant l’utilisation d’un ensemble important de points pour l’ajustage de la méthode de

traitement des données. Les premiers travaux sur le problème n’ont considéré que la situation

dans laquelle les ions en cours d’analyse ont des valences égales. Motivé par cette limitation, le

présent travail vise à développer une technique de SAS qui fonctionne lorsque les ions ont des

valences différentes. Dans ce cas, le modèle de mélange résultant appartient à une classe

particulière de systèmes non linéaires qui n’ont jamais été étudiés dans la littérature de SAS.

La solution proposée est fondée sur un réseau récurrent comme système de séparation et sur

une approche de minimisation de l’information mutuelle pour l’estimation des paramètres. La

méthode peut être utilisée pour des analyses off-line. La validité de notre approche est justifiée

par des tests où les paramètres du modèle de mélange ont été obtenus à partir de données réelles.

Abstract — Design of Smart Ion-Selective Electrode Arrays Based on Source Separation through

Nonlinear Independent Component Analysis — The development of chemical sensor arrays based

on Blind Source Separation (BSS) provides a promising solution to overcome the interference prob-

lem associated with Ion-Selective Electrodes (ISE). The main motivation behind this new approach

is to ease the time-demanding calibration stage.While the first works on this problem only considered

the case in which the ions under analysis have equal valences, the present work aims at developing a

BSS technique that works when the ions have different charges. In this situation, the resulting mixing

model belongs to a particular class of nonlinear systems that have never been studied in the BSS lit-

erature. In order to tackle this sort of mixing process, we adopted a recurrent network as separating

system. Moreover, concerning the BSS learning strategy, we develop a mutual information minimi-

zation approach based on the notion of the differential of the mutual information. The method works

requires a batch operation, and, thus, can be used to perform off-line analysis. The validity of our

approach is supported by experiments where the mixing model parameters were extracted from

actual data.
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INTRODUCTION

There is a great number of situations in chemical analysis

in which the estimation of the concentration and/or the

activity of a certain number of ions is desirable. For

instance, this problem arises in water quality control

[1, 2] and biomedical monitoring [3, 4]. A widely used

approach to this problem is founded on potentiometric

Ion-Selective Electrodes (ISE), in which the transduction

mechanism relates the potential difference in an electro-

chemical system with the concentration of a charged

chemical specie. The advent of miniaturization has ren-

dered potentiometric sensors a practical and inexpensive

option, becoming attractive for a number of applica-

tions. Besides the ubiquitous glass-electrode for pHmea-

surement, one may find a growing interest on the

detection of other ions [5], such as Na+ and NHþ4 .

Although attractive, there is an important drawback

limiting the use of ISE. Usually, such a device is not

selective, i.e., the generated potential at the membrane

depends on a given target ion but also on other undesir-

able ions, which are called interfering ions. While in

some situations the interfering process can be negligible,

there are cases in which this problem seems to be more

accentuated and, as consequence, the measurements

acquired by the chemical sensor become uncertain when

the concentrations of the interfering ions are high

enough.

A first approach to overcome the interference prob-

lem is to develop more selective membranes [6]. Alterna-

tively, one may adopt sensors that are not very selective

in conjunction with signal processing methods. There-

fore, due to the lack of selectivity, at time t, the response

xiðtÞ of the i-th sensor within the array is a function of the

concentrations of all ions present in the solution, that is:

xiðtÞ ¼ fiðs1ðtÞ; s2ðtÞ; . . . ; sN ðtÞÞ ð1Þ

where sjðtÞ corresponds to the temporal evolution of the

concentration of the j-th ion. The goal of the signal pro-

cessing algorithm is to estimate sjðtÞ, j ¼ 1; . . . ;N . If a set

containing samples of the concentrations and of the cor-

responding sensor responses is available, then the func-

tions fi can be identified by means of a calibration step

([7, 8] for instance). Nonetheless, there are at least two

problems in this approach (usually referred to as super-

vised approach):

– the acquisition of training samples may be cost and

time-demanding;

– this calibration procedure must be performed from

time to time due to the sensors drift.

On the other hand, if a set of training samples is not

available, the problem is to retrieve the signals sjðtÞ,

j ¼ 1; . . . ;N , by solely means of the sensor responses

xiðtÞ. Such a problem has been intensively studied in sig-

nal processing since 1990, and is known as Blind Source

Separation (BSS) [9, 10]. According to the BSS terminol-

ogy, the signals sjðtÞ are called sources whereas the sen-

sor responses xiðtÞ correspond to the mixtures. There is

a number of methods for performing BSS. The basis of

the majority of these techniques is the Independent Com-

ponent Analysis (ICA) [11, 12], a powerful data analysis

framework that works under the assumption that the

sources are statistically independent.

In [13, 14], BSS algorithms have been adopted to face

the interference problem in ISE. Despite the promising

results obtained in these works, they are only suitable

for the cases in which the ions under analysis have equal

valences. In the present paper, we propose a novel BSS

framework for the case in which the valences are differ-

ent. It should be emphasized that such a situation is quite

different from the approaches [13, 14], since it defines a

new class of nonlinear functions that has never been

dealt with.

The proposed BSS method is based on a combination

of a nonlinear recurrent network as separating system

with an ICA-based learning algorithm. We conduct a

stability analysis for the separating system which per-

mits us to establish the operation range of the chemical

sensor array. Concerning the learning algorithm, we

consider a method based on the minimization of the

mutual information between the retrieved sources. The

paper is organized as follow. We first introduce the

BSS problem. Then, in Section 2, we discuss the mixing

model associated with the chemical sensor array. After

that, in Section 3, we describe the building blocks of our

method, starting with a description of the adopted sep-

arating system and ending with the ICA method

adopted as learning rule. The method works requires

a batch operation, and, thus, can be used to perform

off-line analysis. In Section 4, we conduct some experi-

ments to assess the performance of our proposal.

Finally, we state our conclusions and some perspectives

for future works.

1 BLIND SOURCE SEPARATION REVIEW

Let s1ðtÞ; s2ðtÞ; . . . ; sN ðtÞ represent a set of N source sig-

nals. In addition, let x1ðtÞ; x2ðtÞ; . . . ; xM ðtÞ denote a set

of signals that are generated by mixing the source sig-

nals. Then, the mixing process can be described in the

same way as in Equation (1). We can equally represent

the mixing process through a matrix notation, i.e.:

xðtÞ ¼ FðsðtÞÞ ð2Þ
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where xðtÞ ¼ ½x1ðtÞ; . . . ; xM ðtÞ�
T
, sðtÞ ¼ ½s1ðtÞ; . . . ; sN ðtÞ�

T
,

and the mixing system is represented by

F ¼ ½f1ðsðtÞÞ; . . . ; fM ðsðtÞÞ�
T
. The aim of BSS methods is

to provide estimates of the source signals sðtÞ by using

only the information contained in the mixtures xðtÞ.

Assuming that Fð�Þ is invertible, this problem can be

dealt with by defining a separating system

G ¼ ½g1ðxðtÞÞ; . . . ; gM ðx tð ÞÞ�T such that the signals given

by:

yðtÞ ¼ GðxðtÞÞ ð3Þ

are as close as possible to the signals sðtÞ.

The problem of BSS is ill-posed by nature [10] and, as

a consequence, it becomes necessary to make use of some

additional information. For instance, each source siðtÞ

may be modeled as a random variable, and one may

assume that these sources are mutually statistically inde-

pendent. In this scenario, the mixtures are no longer

independent, since all xi are functions of the same ran-

dom variables. Therefore, an attempt to retrieve the ori-

ginal sources would be based on the recovery of

statistical independence, i.e. one could search for a sepa-

rating system Gð�Þ that provides a vector yðtÞ that has,
again, statistical independent components. This idea is

known as Independent Component Analysis (ICA) [9,

11]. In ICA, the measure of dependence is based only

on samples of yðtÞ. As will become clear in Section 3, this

allows one to estimate the parameters of Gð�Þ without

requiring a learning database constituted of pairs

ðsiðtÞ; xiðtÞÞ, t ¼ 1; . . . ; T .

A fundamental question in the ICA concerns the sep-

arability of the mixing model, i.e., the conditions on the

sources and on the mixing system for which the recover-

ing of statistical independence results in source separa-

tion. For instance, when the mixing system is linear

(xðtÞ ¼ AsðtÞ, where A is a M � N matrix), it was shown

[11] that ICA results in source separation when the fol-

lowing conditions are held:

– there is at most one source signal that is Gaussian dis-

tributed,

– M � N , i.e., the number of mixtures is greater than or

equal to the number of sources,

– A is full rank so that its inverse or pseudo-inverse

exists.

On the other hand, it has been shown that ICA meth-

ods do not work for general nonlinear models [15, 16]. In

other words, there are cases in which the recovery of the

independence does not guarantee source separation.

Fortunately, there are constrained mixing systems as,

for example, Post-NonLinear (PNL) mixtures [16] and

linear-quadratic mixtures [17], in which the ICA frame-

work is still valid.

Let us now turn our attention to some practical

aspects of an ICA method. A first step concerns the def-

inition of the separating system structure Gð�Þ. For a lin-
ear mixing process a natural choice is a matrix. However,

in a nonlinear scenario, this task becomes tricky since the

separating system mapping should be able to invert the

action of the mixing system Fð�Þ but, at the same time,

it cannot be too general in order to preserve the separa-

bility of the model [15]. A second important point is how

to define a statistical independence measure. For

instance, the mutual information [18] between random

variables can be used, since this measure is always non-

negative and takes zero only when the random variables

are independent — it should be stressed here that,

although based on statistical criteria, there is no need to

define the statistical distribution for the sources, since

ICA works in a blind fashion. Finally, the development

of ICA methods boils down to an optimization problem,

i.e., onemust design an optimization scheme to adjust the

parameters of the separating systemGð�Þ in order tomax-

imize a measure associated with the independence of the

retrieved sources yðtÞ. Later, in Section 3, we shall discuss

how each of these steps can be accomplished in the con-

text of the chemical sensing application envisaged in this

paper. A first step in this direction is the modeling of the

ISE. This will permit us to define a parametric model for

the function Fð�Þ which in turn is fundamental for a good

choice of Gð�Þ. We shall discuss this point in the next

section.

2 MIXING PROCESS MODEL

There are basically two ways to design a potentiometric

sensor for estimating ions concentrations, either it can be

implemented through electrodes or it can be built

on a Metal-Oxide-Semiconductor Field-Effect Transis-

tor (MOSFET) by replacing the metallic gate with a

membrane sensitive to the ion of interest [19], giving rise

to a device called Ion-Sensitive Field-Effect Transistor

(ISFET). For both cases, the Nernst’s equation can be

used for modeling the electrochemical sensor [5].

However, this equation does not predict the interference

process which, as discussed later, is paramount when

more than one ion is analyzed. For such a situation, a

more adequate description is given by an empirical

extension of the Nernst’s equation: the Nicolsky-

Eisenman (NE) model [5, 20]. According to this model

the response of the i-th potentiometric sensor within

the array is given by:

xi ¼ Ei þ
RT

ziF
ln

�

si þ
X

j;j6¼i

aijs

zi
zj

j

�

ð4Þ
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where Ei is a constant, zi the valence of the i-th ion, R the

gas constant, T the temperature in Kelvin, F the Faraday

constant and aij the selectivity coefficients; si represents

the activity of the i-th ion, which is very close to its con-

centration for solutions with a small ionic strength [5](1).

Note that when the valences of the ions under analysis

are the same, the mixing model resulting from Equation

(4) becomes a linear mixture followed by a component-

wise nonlinear function (logarithm in this case). Actu-

ally, this kind of mixing system is a particular case of

the class of Post-NonLinear (PNL) models [16], and con-

sequently has the nice property to be identifiable using

ICA. In [13], a PNL source separation method was

developed for the problem of estimating the concentra-

tions of K+ and NHþ4 . However, when the valences are

different and sensors having different ions as targets

are used, the resulting model (4) becomes tougher due

to the appearance of a nonlinearity (power relation)

inside the logarithm term and, as a consequence, PNL

algorithms cannot be used anymore in this new case.

In this work, we focus on a simpler version of the

model (4). We assume knowledge on the parameter that

multiplies the logarithm term and the constant Ei. For

instance, at room temperature, according to (4), the sen-

sibility of a potentiometric sensor per decade is:

Ln(10)RT/Fzi � 59/zi mV(2)

The electrodes with such sensibility are said to have a

Nernstian response.

Another simplification of the model (4) concerns the

number of sources and sensors. Despite the fact that the

proposed technique can be extended to high-dimensional

scenarios, we will consider only the case with 2 sources

(or, equivalently, 2 ions in the solution) and 2 chemical

sensors. This assumption is realistic in many practical sit-

uations, where one interfering ion is dominant and the

others can be neglected. For instance, when analyzing

potassium and ammonium, the interference from other

ions is so weak that a model based only on these two ions

provides a satisfactory result. Moreover, this choice

makes possible a theoretical analysis and, thus, a better

understanding of the elements of our proposal.

If we consider the two simplifications described in the

last paragraphs and a scenario with two ions and with an

array of two sensors (each one having a different ion as

target), then we obtain the following realistic mixing

model Fð�Þ:

x1 ¼ s1 þ a12s
k
2

x2 ¼ s2 þ a21s
1=k
1

ð5Þ

where xi and sj denote the i-th mixture and the j-th

source, respectively. The term k corresponds to z1=z2
and we assume that we know it in advance and that it

takes only positive integer values. Indeed, in many actual

applications, typical target ions are NHþ4 , Ca
2þ, Kþ, etc.

Consequently, we always have k 2 N. In addition, the

sources are supposed positive, since they represent con-

centrations. Finally, it is assumed that the signals s1
and s2 are statistically independent.

3 A SOURCE SEPARATION ALGORITHM FOR THE
NICOLSKY-EISENMAN MODEL

In this section, we described the developed BSS algo-

rithm. As discussed in Section 1, the design of a source

separation method encompasses:

– the definition of a separating system Gð�Þ suited to the

mixing model (5);

– the derivation of a learning strategy (cost function

definition plus optimization technique design).

Our presentation will follow these two steps, and we

will start by conducting an analysis of the adopted non-

linear separating system. After that, we shall deal with

the problem of adjusting the parameters of this system

through an ICA technique.

3.1 The Separating Structure

3.1.1 Invertibility of the Mixing Model

An important point to be addressed before defining a

separating system concerns the invertibility of the mixing

system (5). In other words, one should verify if it is pos-

sible to restore the sources values si from the knowledge

of xi and of the coefficients aij. This can be done by solv-

ing Equation (5) for s1 and s2. By a simple substitution

on this expression, we obtain:

x1 ¼ s1 þ a12ðx2 � a21s
ð1=kÞ
1 Þk ð6Þ

After straightforward calculation, including a bino-

mial expansion, Equation (6) becomes:

ð1þ a12b0Þs1 þ a12
X

k�1

i¼1

bis
1� i

k

1 þ ða12bk � x1Þ ¼ 0 ð7Þ

where:

bi ¼
k

i

� �

xi2ð�a21Þ
ðk�iÞ

being
k

i

� �

defined as k!
i!ðk � iÞ!

.

1 In our problem, the sources represent the temporal evolution of the

activities of each ion under analysis. Henceforth, for the sake of sim-

plicity, we shall omit the temporal index t.
2 The factor lnð10Þ is due to the logarithm transformation (natural to

decimal logarithm) in Equation (4).
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By considering the transformation u ¼ s
1
k

1 in Equation

(7), one can verify that the solution of this expression is

equivalent to the determination of the roots of a polyno-

mial of order k and, as a consequence, the number of

solutions grows linearly as k increases. With that in

mind, we may investigate the nature of these solutions,

i.e., if there are solutions that are still nonlinear combi-

nations of s1 and s2. The main problem of such an

approach is that we need to solve Equation (7), which

is a difficult task for high values of k.

In order to gain more insight into Equation (7), we

can solve it for k ¼ 2. After some calculation, we obtain

two sets of solutions, the first one being the expected pair

ð/1;/2Þ ¼ ðs1; s2Þ, while the second one is given by:

/1 ¼
ð2a12a21s2Þ þ ða12a

2
21 � 1Þs

1
2

1

ð1þ a12a
2
21Þ

 !

/2 ¼ s2 þ a21s
1
2

1 � a21
ð2a12a21s2Þ þ ða12a

2
21 � 1Þs

1
2

1

ð1þ a12a
2
21Þ

 !�

�

�

�

�

�

�

�

�

�

ð8Þ

From (8), one may notice that the mixing model is not

invertible, since there is a solution that still consists of a

nonlinear mixture of the actual sources. Therefore, the

only alternative is to limit the operation of the source

separation technique to regions in which the mixing

model is locally invertible. In the sequel, we show how

this can be done in a systematic way by using a recurrent

network as separating system.

3.1.2 A nonlinear Recurrent Separating System

The use of a recurrent network as separating system was

developed in the first approaches regarding linear BSS

[21]. Its extension to the nonlinear came up in [22], in

the context of source separation of linear-quadratic mix-

tures. The use of this kind of separating system is partic-

ularly attractive for the cases in which one desires to

counterbalance the action of the mixing system without

relying on its direct inversion.

In our case, we adopt the separating structure shown

in Figure 1. In mathematical terms, this recursive struc-

ture is characterized by the following dynamics:

y1 nþ 1ð Þ ¼ x1 � w12y2ðnÞ
k

y2 nþ 1ð Þ ¼ x2 � w21y1ðnÞ
1
k

ð9Þ

where ½w12 w21�
T
are the parameters to be adjusted, and

where n is the iteration number. In order to understand

how this structure works, we must investigate their equi-

librium points. By setting y1ðnþ 1Þ ¼ y1ðnÞ ¼ y1 and

y2ðnþ 1Þ ¼ y2ðnÞ ¼ y2 in (9), one can easily check that,

when ½w12 w21�
T ¼ ½a12 a21�

T
, the equilibrium points cor-

respond to the solutions of (5). In other words, it is pos-

sible, by running this network, to achieve the solutions of

(7) in a sort of implicit inversion of the considered mixing

model.

Evidently, we saw that the mixing model is not glob-

ally invertible and, thus, the recurrent network in (9)

may converge to points other than the actual sample of

the sources, e.g. to (8). The next step of our investigation

is exactly to verify the conditions to be satisfied so that

the equilibrium point associated with the sources is sta-

ble and, thus, a potential attractor for the adopted

dynamical system.

In view of the difficulty embedded in a global analysis

of stability, we consider the study of the local stability in

the neighborhood of the equilibrium point s ¼ ½s1 s2�
T

based on the first-order approximation of the nonlinear

system (9). This linearization can be expressed by using a

vectorial notation as follows:

yðnþ 1Þ � cþ Jjy¼syðnÞ ð10Þ

where yðnÞ ¼ ½y1ðnÞ y2ðnÞ�
T
, c is a constant vector and

Jjy¼s is the Jacobian matrix of (9) evaluated at ½s1 s2�
T
,

which is given by:

Jjy¼s ¼

oy1 nð Þ
oy1 n� 1ð Þ

jy¼s
oy1 nð Þ

oy2 n� 1ð Þ
jy¼s

oy2 nð Þ
oy1 n� 1ð Þ

jy¼s
oy2 nð Þ

oy2 n� 1ð Þ
jy¼s

2

6

6

4

3

7

7

5

¼
0 �a12ks

ðk�1Þ
2

� 1
k
a21s

ð1
k
�1Þ

1 0

" #

ð11Þ

It is well known that a necessary and sufficient condi-

tion for local stability of a discrete system is that the

x
1 
(T ) y

1 
(n )

y
2 
(n )x

2 
(T  )

-w
12

-w
21

(·)
1/k

(·)
k

z -1

z -1

+

+

Figure 1

A recurrent separating system for the simplified NE mixing

model.
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absolute values of the eigenvalues of the Jacobian matrix

evaluated at the equilibrium point of interest be smaller

than one [23]. Applying this result on (11), the following

condition of local stability is obtained:

ja12a21s
ð1
k
�1Þ

1 sk�12 j < 1 ð12Þ

This stability condition points out a first constraint of

our method, given that we are able to separate only the

sources lying in this region. In the context of the chemi-

cal sensing problem treated in this work, this condition

gives the range in which our chemical sensor array can

operate properly.

Another interesting point related to the stability of the

recurrent separating system is that it can provide a sys-

tematic way of avoiding the convergence to a solution

that does not correspond to the actual sources. In order

to clarify this idea, let us present an example. Consider

the mixing of the sample s ¼ ½0:5 1:5�T in a scenario

where the parameters in (5) are given by

a12 ¼ a21 ¼ 0:5 and k ¼ 2. The resulting sample of the

mixtures is x ¼ ½1:625 1:853�T . In Figure 2, we plot the

contour lines x1 ¼ constant and x2 ¼ constant in the

ðs1; s2Þ plane. In particular, the contour lines corre-

sponding to the mixtures are highlighted. Obviously,

the solutions of Equation (5), or equally the equilibrium

points of (9), are given by the intersection of these two

contour lines. In this case, we may find two points that

solve our problem, which is in accordance with our pre-

vious discussion. Finally, we indicate in this same figure

the region for which the condition (12) is met. Note that

the point within this region corresponds to the actual

source, whereas the spurious solution lies outside and,

as a consequence, will never be a potential attractor for

the recurrent network (9). Of course, this example is

not a proof. However, we observed in our simulations

such an approach may indeed be useful to deal with

the non-invertibility of the mixing model.

Analogously to Figure 2, it is also possible to analyze

the stability boundaries in the ða12; a21Þ plane, so we can

have an idea about the coefficients for which the adopted

recurrent network works properly. Indeed, as mentioned

before, the stability condition of Equation (12) should be

satisfied for each sample. Thus, if s1 and s2 are bounded

in the intervals ðs1min ; s1maxÞ and ðs2min ; s2maxÞ, respectively,

then a necessary condition for the stability of all samples

can be written as(3):

ja12a21s
ð1
k
�1Þ

1min
sk�12max
j < 1 ð13Þ

It is interesting to note that such condition is some-

what related to the degree of nonlinearity of the mixing

model given that the point ðs1min ; s2maxÞ is one that suffers

the most severe nonlinear distortion(4).

The stability condition (13) provides an important

practical information in the context of ISE, namely:

given the range of the sources, one can trace the stability

boundaries in the ða12; a21Þ plane, i.e. one may know for

which selectivity coefficients the adopted recurrent net-

work works properly. For example, suppose that we

are interested in detecting the ions in the range

0:001M-0:5M, where M stands for Mole. Then, the

adopted recurrent separating will work properly if the

ISE array has selectivity coefficients inside the gray

regions shown in Figure 3a (for k ¼ 2) and in Figure 3b

(for k ¼ 3). Note that the area of the stability region

becomes smaller as k grows.

3.2 Design of an ICA Learning Algorithm

After defining the structure of the separating system, we

can now develop a learning algorithm which, in this

work, will follow the guidelines provided by ICA. In

short, the unknown parameters of (9) are adjusted so

that the statistical independence between the outputs yi
be maximum. The cornerstone of our approach is the

notion of the differential of the mutual information, pro-

posed in [24]. In this work, it was proved that a small

variation � of a given random vector y results, up to
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Figure 2

Stability boundary (dashed line) and equilibrium points

(black dots) of the dynamic (9).

3 This is simply a worst-case condition.
4 Note that the derivative of s

1=k
1 increases as s1 decreases whereas the

derivative of sk2 increases as s2 increases.
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higher-order terms (expressed by oð�)), in the following

variation of the mutual information:

Iðyþ�Þ � IðyÞ ¼ Ef�TbyðyÞg þ oð�Þ ð14Þ

where byðyÞ is the score function difference vector asso-

ciated with the random vector y. In view of this result,

byðyÞ can be interpreted as the gradient of the mutual

information with respect to y. In mathematical terms,

the i-th element of byðyÞ is given by:

byiðyÞ ¼ �
o log pðyÞ

oyi

� �

� �
d log pðyiÞ

dyi

� �

ð15Þ

i.e., it is the difference between the i-th component of the

joint score function of y and the marginal score function

of yi. It is not difficult to prove [24] that y have indepen-

dent components if, and only if, byiðyÞ ¼ 0 for every i.

The result expressed in (14) provides the guidelines for

the design of a learning algorithm according to the min-

imum mutual information idea. The first step is to deter-

mine how a small variation of the separating system

parameters, denoted by the vector �w ¼ ½�w12 �w21�
T
,

affects their outputs. Then, the ‘‘gradient’’ of the mutual

information with respect to w is estimated by (14), by

substituting the calculated small variations of the out-

puts in this expression.

In order to determine the variation �y ¼ ½�y1 �y2�
T

related to a small variation �w, one may consider a lin-

earized version of the separating system (9) with respect

to w. Considering two sources, this is expressed by:

�y1

�y2

� �

¼
oy

ow
�w ¼

oy1
ow12

oy1
ow21

oy2
ow12

oy2
ow21

2

6

4

3

7

5

�w12

�w21

� �

ð16Þ

where the elements of oy

ow
are determined in Appendix.

Replacing in (14) � by �y, then one readily

obtains:

I yþ�yð Þ � I yð Þ ¼ E �wT oy

ow

T

by yð Þ

� �

þ o �yð Þ ð17Þ

As stated above, the score function difference byðyÞ

may be interpreted as the gradient of (14). Hence, con-

sidering (14) and (17), one may argue that the “gradient”

of the mutual information with respect to the parameters

w is:

oI

ow
¼ E

oy

ow

T

byðyÞ

� �

ð18Þ

Therefore, it is expected that the following learning

rule minimizes the mutual information between the

reconstructed sources:

w w� lE
oy

ow

T

byðyÞ

� �

ð19Þ

where l denotes the learning rate.

The system given in (9), together with the learning rule

(19) form the basis of our source separation framework.

From (19), one can note that in a blind (unsupervised)

scheme the adaptation is done based only on the data

provided by the sensors. This contrasts to supervised

processing, where the learning rule requires a set of

source samples (learning database) that must be known

in advance. This explains why blind methods avoid the

need of a training (calibration) stage before the effective

use of the measurement system.
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Stability boundaries in the ða12; a21Þ plane: an example

where the ions lie in the range 0:001M-0:5M. a) Stability

region for k = 2; b) stability region for k = 3.
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3.3 Notes on the Application of the Developed BSS
Algorithm in a Practical Scenario

As commented in Section 2, we assume that Ei and

di ¼ RT=ziF in Equation (4) are known in advance.

Therefore, before applying the developed method on

the acquired data, we should conduct the following

pre-processing step:

xi ¼ exp
x�i � Ei

di

� �

ð20Þ

where x�i denotes the actual response provided by the i-th

electrode of the sensor array. It should be stressed that

there may be some situations for which a strong devia-

tion between the value predicted by the Nernst equation

for di and the actual one is observed. This can be due to

the sensor aging for example. In these cases, this pre-

processing step will introduce a nonlinear effect that is

not predicted by Equation (4) and, as a consequence,

our proposal becomes useless if the deviation is too high.

Fortunately, a discrepancy between the actual value of

Ei and the one used in the pre-processing stage is not

important as in the case of the parameter di. Indeed,

when Ei is not exactly known, we can still apply our

method but the best we can do is to retrieve each source

up to a unknown multiplicative gain. In these cases, a

simple two-point calibration can be conducted to cancel

the introduced gain.

Another important point that should be emphasized is

that our proposal works in an off-line fashion. Actually,

in Equation (19), the estimation of byðyÞ requires a batch

operation.

4 EXPERIMENTAL RESULTS

Aiming to assess the performance of our proposal, we

present a set of experiments considering an array formed

by a Ca2þ ISE and a Naþ ISE. Therefore, this situation is

modeled by Equation (5) where k ¼ 2 (considering that

the first equation models the Ca2þ ISE response). The

signals siðtÞ, which represent the ions activities, were arti-

ficially generated, but the mixtures xiðtÞ were obtained

using the selective coefficients that were extracted from

actual experiments. Concerning the organization of this

section, we firstly describe the practical scenarios that

provided us the selectivity coefficients used in our tests.

After that, we present the results obtained by the devel-

oped source separation method.

In all experiments, the quality of each retrieved source

is quantified according to Signal-to-Interference Ratio

(SIR), which, for each pair source/retrieved signal, is

defined as follows:

SIRi ¼ 10 log
Efs2i g

Ef si � yið Þ2g

 !

ð21Þ

Thus, SIR ¼ 0:5ðSIR1 þ SIR2Þ defines a global index.

Regarding the estimation of the score function difference

vector in (19), we considered the method proposed in

[25]. In short, this is a kernel-based method which differs

from the classical approaches in two points: the estima-

tion is done over a regular grid and a cardinal spline is

used as kernel function. As a consequence, one obtains

a faster algorithm than the classical kernel method.

4.1 Scenarios

We consider two distinct scenarios. In the first one, the

selective coefficients were obtained through experiments

conducted by us(5), in which we started with a fixed con-

centration of Naþ and then a solution of CaCl2 was

injected. In Figure 4, we present the responses of the elec-

trode Naþ and of the electrode Ca2þ as well as the pre-

dicted responses provided by the Nicolsky-Eisenman

equation. Note that two experiments are represented in

these figures and in both cases, the concentration of

Ca2þ varies from 10�4M to almost 10�1M. However, in

one of them the initial concentration of Naþ is approxi-

mately 10�4M while in the other one this initial concen-

tration is 10�1M. In Table 1, we present the selective

coefficients obtained from a regression considering the

NE model and also the associated Mean Squared Error

(MSE). The total number of regression points in this case

was 86.

We also consider a second scenario where the selective

coefficients are higher that in the first case. Actually, this

allows us to assess the performance of the BSS method in

a situation where the interference takes place in the two

electrodes. For this second scenario, the values of the

selective coefficients, which are presented in the second

row of Table 1, were taken from [27].

4.2 Performance of the Developed BSS Method

For the first scenario, we consider a situation in which

the activity of the ion Ca2þ lies in the interval

½10�4; 10�3�M, whereas the activity of Naþ varies

between ½10�4; 10�1�M. In Figure 5, we present the artifi-

cial sources generated for this case and also the mixtures

generated by Equation (5). Concerning the separation

system, a set of 500 samples of the mixtures was consid-

ered. The learning rate was set l ¼ 0:003 and the

initial conditions of the recurrent network were

5 This dataset is publicly available [26].
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½y1ð1Þ y2ð1Þ�
T ¼ ½0 0�T . In this situation, the learning

algorithm converged after 8 500 iterations. The results

of this first case are expressed in the first row of Table 2.

Our method was able to provide a very good source sep-

aration, as can be seen in Figure 5.

For the second scenario, the Ca2þ ion activity varies in

½10�4; 10�2�M while the Naþ activity is varying in

½10�4; 10�1�M. The sources and the associated mixtures
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Electrodes responses in the first scenario. a) Ca2+ electrode

response; b) Na+ electrode response.

TABLE 1

Selective coefficients

log(a12) log(a21) MSE Ca2+ MSE Na+

Scenario 1 �1:23 �4:03 2:74 1:65

Scenario 2 �0:70 �0:40 � �
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a) Sources, b) mixtures and c) sources estimates for the first

scenario (retrieved sources after 8 500 iterations).
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are depicted in Figure 6. Note that in this situation, the

interference is important in both electrodes. Again, the

number of available samples was 500. The convergence

was observed after 600 iterations while the learning rate

in this case was set l ¼ 0:01. As can be checked in the

second row of Table 2, our proposal was able to provide

good source estimations. This is illustrated in Figure 6,

where we show the retrieved sources in a typical

situation.

In Figure 7, we present the evolution of the ½w12 w21�
T

during the learning algorithm. Note that these parame-

ters indeed converge to the ideal values which are given

by selectivity coefficients a12 and a21. As discussed in

Section 3.2, the adjustment of ½w12 w21�
T
is conducted

by solely means of the data provided by the sensor array

(unsupervised scheme), that is, our method was able to

estimate the selectivity coefficients without any calibra-

tion step. Of course, as discussed in Section 3.3, if the

parameters Ei in Equation (20) are unknown, then a

two-point calibration is mandatory. Moreover, even

when Ei is known, there would be a scale indetermina-

tion for scenarios with a greater number of sources.

Actually, this gain indetermination is inherent in ICA/

BSS methods [11] and, thus, a two-point calibration

would also be required in this case. However, even in

these scenarios, BSS methods would avoid a complete

calibration step based on a great number of learning

samples (calibration points).

4.3 Sensibility to Noise

Although the NE model is widely used for modeling the

response of an ISE, there has been reported in the liter-

ature that the prediction provided by such a model may

deviate from the actual response. In this situation, a

more adequate description of mixing model would have

to incorporate noise. Hence, we here study the perfor-

mance degradation of our proposal in a noisy situation.

As discussed in Section 2, our method was developed

for a simplified version of the NE model which omits the

logarithm term, since we assume that its multiplying fac-

tor is known (Nernstian case). Also we discuss in

Section 3.3, the inversion of these logarithm functions

can be done by simply passing our data through

TABLE 2

Obtained SIR for both scenarios

SIR1 SIR2 SIR

Scenario 1 56:90 56:35 56:62
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a) Sources, b) mixtures and c) sources estimates for the sec-

ond scenario (retrieved sources after 600 iterations).
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exponential functions. This procedure opens at least two

possibilities for modeling the noise, we consider either an

additive noise inside the logarithm term(6) of the model

(4), or the noise added to the outputs of the logarithm

functions(7). In the sequel, we provide experiments for

both cases.

In a first step, we considered an Additive White

Gaussian Noise (AWGN) on each sensor of model (5),

which is equivalent to consider an AWGN inside the log-

arithm functions of (4). We tested our method in a sce-

nario in which k ¼ 2 and the random sources are

uniformly distributed between ½0:1; 1:1�. In Figure 8,

where each result represents the average of 30 experi-

ments, we can note that the performance index SIR

increases linearly as the Signal-to-Noise Ratio (SNR)

grows.

We have performed another set of experiments to ver-

ify the influence of the (measurement) noise on our

method with an AWGN outside the logarithm function.

The results of this experiment are shown in Figure 9

(average of 30 experiments). Although the algorithm still

works properly for SNRs higher than 25 dB, the perfor-

mance degradation due to noise is rather stronger than

the first situation. This case is nothing but the model
(5) with a log-normal multiplicative noise on each sen-

sor. Indeed, the pre-processing given in Equation (20),

where the additive Gaussian noise is passed through an

exponential function, returns two multiplicative terms,

one of them being the exponential of a Gaussian random

variable which in turn culminates in a log-normal distri-

bution.
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Output SIR versus input noise (AWGN outside the loga-

rithm term) SNR.

6 This noise here is associated with model error due to the missing inter-

fering ions.
7 The noise here models measurement errors.
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4.4 Influence of the Number of Samples

We also investigated the performance degradation of our

method as the number of available samples decreases.

Our motivation for this analysis comes from the fact that

in the envisaged chemical sensing application the num-

ber of samples is usually small(8). In this study, we con-

sider a scenario with sources uniformly distributed and

k ¼ 2. We checked through simulations that good esti-

mations are provided for SIR higher than 20 dB. There-

fore, as we can see in Figure 10, where each result

represents the average of 20 experiments, the proposed

algorithm works properly with a number of samples

equal to or greater than 400.

CONCLUSIONS

The objective of this work was to develop a blind source

separation method for processing the signals acquired by

an array of ion selective electrodes. The motivation

behind our study was to overcome the interference prob-

lem in the situation in which the ions under analysis have

different valences. Our method was built by defining a

recurrent network as separating structure and by devel-

oping a mutual information approach for its training.

A set of experiments using parameters extracted from

real experiments and signals artificially generated was

conducted. The obtained results attested that our pro-

posal was able to estimate the source signals (temporal

evolution of the activities) as well as the selective

coefficients without the need of performing a calibration

stage before the measurement.

In additional to the very promising results obtained in

this work, there are still several points to be addressed in

future works. The first one regards the limitations of the

use of an ICA-based source separation. For instance the

assumption that the sources are mutually independent in

the considered application is equivalent to state that

there is no interaction between the ions under analysis.

Also, ICA methods present a performance degradation

when the number of available samples is small (in our

problem, we could check that a proper operation

requires more than 300 samples). Finally, two other

points could be investigated. First, an investigation

about the possibility of incorporating stabilizing ele-

ments into our recurrent network so we can increase its

operation range in the mixing parameter space. Our

motivation comes from the very good results obtained

with a stabilized network developed for the separation

of linear-quadratic mixtures [28]. Secondly, despite the

fact that BSS methods are quite general, they rely on a

parametric description of the mixing system. Therefore,

we could investigate the gains brought by the develop-

ment of BSS methods for more precise models than the

one offered by the Nicolsky-Eisenman, like the one pre-

sented in [29].
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APPENDIX

Calculation of ¶y
¶w

In this appendix, we are interested in the determination of:

oy

ow
¼

oy1
ow12

oy1
ow21

oy2
ow12

oy2
ow21

2

6

4

3

7

5
ðA1Þ

After the convergence of (9), the mapping performed by the separating system for a given value of w is given by:

x1 ¼ y1 þ w12y
k
2

x2 ¼ y2 þ w21y
1
k

1

ðA2Þ

Therefore, the derivatives in (A1) can be calculated by applying the chain rule property on (A2). For instance, it is

not difficult to verify from that:

oy1
ow12

¼ �ðyk2 þ w12ky
k�1
2

oy2
ow12

Þ ðA3Þ

Given that:

oy2
ow12

¼ �
1

k
w21y

1
k
�1
1

oy1
ow12

ðA4Þ

and substituting this expression in (A3), one obtains:

oy1
ow12

¼
�yk2

1� w12w21y
1
k
�1
1 yk�12

ðA5Þ

By conducting similar calculations, one obtains the other derivatives:

oy2
ow12

¼
w21y

1
k
�1
1 yk2

kð1� w12w21y
1
k
�1
1 yk�12 Þ

ðA6Þ

oy1
ow21

¼
kw12y

1
k

1y
k�1
2

1� w12w21y
1
k
�1
1 yk�12

ðA7Þ

oy2
ow21

¼
�y

1
k

1

1� w12w21y
1
k
�1
1 yk�12

ðA8Þ
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