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NUMERICAL SIMULATIONS OF THE PERIODIC INVISCID BURGERS

EQUATION WITH STOCHASTIC FORCING

Emmanuel Audusse1, Sébastien Boyaval2, Yueyuan Gao3 and Danielle Hilhorst4

Abstract. We perform numerical simulations of the first order Burgers equation with a stochastic source
term in the one-dimensional torus. To that purpose we apply a Finite-Volume scheme combining Godunov
numerical flux with Euler-Maruyama integrator in time. We perform the numerical tests with different
regularities of the source term in space, while it has the regularity of a white noise in time. Our computations
exhibit features of the solution, in particular their large time behavior, for various regularities in space. The
expectation always converges to the space-average of the initial function as the time tends to infinity in all
cases (even when the regularity in space is rougher than what is covered by the existing large-time theories).
Moreover, the variance stabilizes, at a value depending on the space regularity and on the intensity of the
noise. We perform Monte Carlo simulations for which we visualize both statistical averages and single
realizations.

Résumé. Nous proposons dans cet article une étude détaillée de la résolution numérique de l’équation
de Burgers stochastique non-visqueuse en dimension un avec des conditions aux limites priodiques. Nous
utilisons un schéma de Volumes Finis combinant une intégration en temps de type Euler-Maruyama avec
un flux numérique de Godunov. Dans tous les tests numériques, le terme stochastique possède la régularité
d’un bruit blanc en temps, tandis que nous considérons différentes régularités en espace. Nous effectuons des
simulations de Monte-Carlo et présentons et analysons les solutions obtenues avec ces différentes régularités,
en accordant une attention particulière au comportement en temps long. Il apparâıt que la moyenne des
réalisations converge toujours vers la moyenne en espace de la solution initiale, même si la régularité du
terme stochastique est plus faible que ce qui est couvert par les théories existantes. De plus, la variance
se stabilise elle aussi vers une valeur, qui dépend de la régularité et de l’amplitude du terme stochastique.
Enfin, nous présentons également les résultats obtenus au niveau des réalisations individuelles, ce qui nous
permet là encore de mettre en évidence l’influence de la régularité du terme stochastique.

1. Introduction

We would like to numerically approximate solutions to the stochastically-forced inviscid Burgers equation

∂u

∂t
+

∂

∂x

(

u2

2

)

= g (1)

in a bounded domain of unit length with periodic boundary conditions, equivalently on the torus x ∈ S
1.

The stochastic forcing has zero space average
∫

S1

g = 0 (2)

to preserve the conservative character of the inviscid Burgers equation on the torus. In particular, in a given
probability space (Ω,F ,P), we consider the Cauchy problem for (1) together with the initial condition u(t = 0) = u0
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of deterministic space-average
∫

S1
u0. Then, (2) implies

∫

S1

u =

∫

S1

u0 ∀t > 0.

Moreover, the stochastic source term g is assumed to behave as a white noise with respect to time t ∈ [0, T ).
A notion of global solution is possible only if one admits discontinuous solutions, as in the deterministic case. We
briefly discuss below in this introduction some existing results concerning the (non obvious) interpretation of (1),
depending on the regularity in space of the stochastic source term, for general cases. As in the deterministic case,
a notion of entropic solution is necessary.

In this note, we only consider space-time discrete versions of (1), with obvious interpretation. Of course, we take
care of the difficulties inherent to the nature of (1) through our numerical scheme. In particular, it is well known
that one cannot expect global smooth solutions to conservation laws as (1) in the deterministic case g = 0, and
that a notion of stochastic differential evolution should take into account the adaptation to a filtration in time.
Our numerical scheme thus combines standard discretization techniques for scalar first order conservation laws like
the inviscid Burgers equation with periodic boundary conditions [7, 28] with standard discretization techniques for
stochastic differential equations similar to what one obtains after discretizing the inviscid Burgers equation in space.

More precisely, we consider a Finite-Volume (FV) discretization of the flux difference. Given I ∈ N
⋆, we split

the one-dimensional torus S
1 regularly into cells of uniform volume ∆x := 1/I. Then, a discretization of (1) in

between two times tn+1 > tn > 0 is typically obtained from the integral formula

∫ (i+1/2)∆x

(i−1/2)∆x

u(x, tn+1)dx =

∫ (i+1/2)∆x

(i−1/2)∆x

u(x, tn)dx

+

∫ tn+1

tn

(

(u2/2)((i− 1/2)∆x, t)− (u2/2)((i+ 1/2)∆x, t)
)

dt+

∫ tn+1

tn

∫ (i+1/2)∆x

(i−1/2)∆x

gdxdt (3)

by defining a numerical solution un for n > 0 through the relation

un+1
i = uni − ∆t

∆x

(

Fn
i+1/2 − Fn

i−1/2

)

+Gn
i ∀n ∈ N ∀i ∈ {1, ..., I}, (4)

where the space derivative in approximated in a conservative way through the definition of the fluxes Fn
i+1/2 [28]

and the time process is discretized by an explicit Euler-Maruyama time integrator [22,24], recalling that g is a white
noise in time. We have thereby defined a Markov process (un)n∈N with values in R

I to discretize the cell-averages
of the solution of (1). In the following, we fix a deterministic initial condition u0 approximated as

u0i =
1

∆x

∫ (i+1/2)∆x

(i−1/2)∆x

u0(x).

We make precise the definition of the flux Fn
i+1/2 and of the stochastic source term Gn

i in the next Section. We recall

that the source term Gn is the image by a linear mapping of a Gaussian vector with zero mean (i.e. expectation)
E(Gn

i ) = 0 uniformly in time and space, and with correlations

E(Gn
i G

m
j ) = δn,mB

TB (5)

where the matrix B can vary as a function of two parameters α ∈ R and β ∈ N. We refer to Section 2 for a more
precise formula defining Gn, which covers the space-time white noise E(Gn

i G
m
j ) = δn,mδi,j

∆t
∆x when β = 0.

A question is of course whether, and how, the Markov process defined above in (4) allows one to approximate
solutions of (1). Note that in the deterministic case with Gn = 0 the discrete sequences (un)n∈N are known to
converge, as the space and time steps tend to zero under a CFL condition [14, 25], to entropic solutions of the
inviscid Burgers equation with periodic boundary conditions

∂u

∂t
(x, t) +

∂

∂x

(

u2

2
(x, t)

)

= 0 for all (x, t) ∈ S
1 × [0, T ) , (6)

for all T > 0. We recall that in order to consider stochastic cases where Gn 6= 0, one should first define a notion of
entropic solution of (1) that holds in a probabilistic setting. For the “space-time white noise” case in the sense of
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zero correlation-length in space and time which is among the cases considered here, the existence of some kind of
entropic solutions has been shown in e.g. [15], and more recently in [10]. Though it is not clear whether our (very
natural) constructive numerical scheme does indeed approximate any kind of entropic solutions.

Note that the viscous Burgers equation with stochastic forcing, with an additional diffusion term −ν∂2xxu on
the left-hand-side of (1) (ν > 0), has been much more studied than the inviscid one, from the pure theoretical
as well as numerical [1] viewpoints. In one space dimension, all viscous solutions are known to converge to the
entropic solutions when ν → 0 in the deterministic case. So one might expect a similar behaviour in the stochastic
case. This is used for instance in [11]. Though, it has been shown in [19] that the discretization of the nonlinear
term has a lot of impact on the limit of the viscous case. It is thus not fully clear yet how to obtain univoque,
physically-meaningful, entropic solutions of the stochastic Burgers equation. Note that as opposed to [19], we
use here a more usual discretization of the nonlinear (flux) term, which actually allows one to define univoque,
physically-meaningful, entropic solutions of the deterministic Burgers equation. However, we are not able to pass
to the continuous limit I → ∞ in the stochastic case.

Having fixed the discretization of (1), that is with a positive constant I being fixed, another important question
with respect to the stochastic dynamics is the behaviour of un as n → ∞. In this work, we numerically study
the large time behaviour when the noise Gn is defined with various regularities in space and various intensities
(parameterized by α ∈ R and β ∈ N, see Section 2).

In order to obtain detailed information about the large time properties, existing theories for Markov processes [23]
would for instance consider the Kolmogorov forward equation satisfied by the probability density functional ψn(u)
on R

I of the Markov process un ∈ R
I at step n ∈ N

ψn+1(u) = ψn(u) + I∆t∇u ·
((

F+1/2(u, τ+u)− F−1/2(τ−u, u)
)

ψn(u) +∇uψ
n(u)

)

. (7)

where τ± denote translation operators of length ±∆x. Unfortunately, the nonlinear term F+1/2 − F−1/2 cannot
be written as a gradient of u, and it is not even useful to compute stationary measures (invariant by the Markov
dynamics) solutions of e.g.

(

F+1/2 − F−1/2

)

ψ∞+∇uψ
∞ ≡ C ∈ R. We thus limit ourselves to numerical simulations.

Note however that, in deterministic cases without noise [8] or with a time-independent forcing with zero space
average [2], the solutions of (6) are known to converge for large times to the constant

∫

S1
u0(x)dx. Moreover, the

existence of an invariant measure has been proved for sufficiently regular noise in space (the case β ≥ 2 in the
formula (10) below), using the equivalence with a Hamilton-Jacobi equation in the celebrated article [11], and with
kinetic formalism in [9].

The stochastic Burgers equation with periodic boundary conditions has already been studied numerically by
numerous authors in the past. Let us simply mention [12,13] here as an example, where some physical motivations
are explained. The numerical scheme which we propose here does not seem to have been used yet, in particular for
a long-time study.

2. Numerical method

We define the two-point numerical approximation of the flux (u2/2)((i − 1/2)∆x, t) by using the Godunov
scheme [28]

Fi−1/2 =


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


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











u2i
2

if ui−1 ≤ ui ≤ 0

u2i−1

2
if 0 ≤ ui−1 ≤ ui

0 if ui−1 ≤ 0 ≤ ui
u2i−1

2
if ui ≤ ui−1 and

ui + ui−1

2
≥ 0

u2i
2

if ui ≤ ui−1 and
ui + ui−1

2
≤ 0.

(8)

In the deterministic case, this flux is known to be consistent, stable and entropy-satisfying under the classical
CFL condition

∆tn ≤ ∆x

max
i∈{1,2,..I}

{uni }
, (9)

We now turn to the stochastic term. We generate a noise with the formula

Gn
i = α

√

2

I

I

2
−1

∑

k=1

1

|k|β {Cn
k cos(2πkxi)− Sn

k sin(2πkxi)}+ α
(−1)i√

I

1

| I2 |β
Cn

I

2

(10)
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where Cn
k and Sn

k are i.i.d. random variables that follow the normal distribution N (0,∆t) for all k and n (N (µ, σ2)
denotes the normal distribution with expected value µ and variance σ2). When α = 1 and β = 0, a straightforward
computation yields

E(Gn
i G

n
i ) =

I − 1

I
∆t (11)

Note that (10) has the same scaling as in [15,19], but is restricted to a combination of basis functions with zero
average in space as in [12] in order to preserve conservativity.

We compute empirical mean and variance estimators of the Markov chain entries (4) by the Monte-Carlo method

E(uni ) :=
1

M

M
∑

m=1

uni (ωm), Var(uni ) :=
1

M

M
∑

m=1

|uni (ωm)− E(uni )|2,

invoking M i.i.d. realizations uni (ωm), m = 1 . . .M computed with INM Gaussian numbers N (0,∆t) (cf. (10)).
Here N denotes the number of time iterations that one needs to reach the stationary distribution, see next Section.

The number of volume elements is first fixed equal to I = 80, so the number of Fourier modes in (10) is equal to
79 (recall that the constant mode is eliminated to ensure a zero space average.)

The CFL condition (9) is naturally stochastic, i.e. dependent on the realization. To maintain a fixed number of
time steps for each realization, we assume that |uni | ≤ ū with ū := 10 set arbitrarily, which allows to fix the CFL
condition as ∆t = 0.1∆x. Of course, we are aware that this may introduce a bias in the probability law which is
simulated.

We have performed numerical tests with a variety of values of α and β. In each case, we chose the number of
realizationsM large enough so that confidence intervals for E(uni ) and Var(uni ) are small enough, and our assumption
|uni | ≤ ū was hardly violated (at a frequency less than 1/2000).

The influence of the number of realizations on the evaluations of ‖Varu(·, t)‖L2(0,1), in the cases that α = 1,
β = 0 and α = 1, β = 1 is presented in Figure 1.

(a) α = 1 and β = 0 (b) α = 1 and β = 1

Figure 1. Time evolution of the L2 norm of the variance

It is remarkable that long-time convergence seems to occur while β < 2. However, to conclude about the contin-
uous limit, one should still discuss the space and time discretization in those cases. And a complete understanding
of ergodic properties would require the study of higher-order moments as well.

3. Results and discussion

Numerical tests are all performed with the deterministic initial condition u0(x) = sin(2πx), x ∈ S
1. We performed

2048 realizations for each computation. In the figures 2, 3 and 4, we present on the left-hand side comparisons
between E(uni ), and u

n
i in the case without noise, for different values of the discrete time tn = n∆t. On the right-

hand side, we show comparisons between uni for some realization and uni in the case without noise, at the same
values of the discrete time tn = n∆t.

We first fix two cases α = 0.1, β = 0 and α = 0.1, β = 1.
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Figure 2. Empirical average (left) and one realization (right) at t = 0.05

Figure 3. Empirical average (left) and one realization (right) at t = 1

Figure 4. Empirical average (left) and one realization (right) at t = 20

In Figure 5 we rescale the comparisons for the empirical average at the times t = 1 and t = 20.
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(a) t = 1 (b) t = 20

Figure 5. Rescaled graphs for t = 1 and t = 20

We then fix α = 1, β = 0 and α = 1, β = 1. We present the corresponding results in the figures 6, 7 and 8.

Figure 6. Empirical average (left) and one realization (right) at t = 0.05

Figure 7. Empirical average (left) and one realization (right) at t = 1
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Figure 8. Empirical average (left) and one realization (right) at t = 20

In Figure 9 we rescale again the comparisons at the times t = 1 and t = 20.

(a) t = 1 (b) t = 20

Figure 9. Rescaled graphs for t = 1 and t = 20

It seems that solutions of the periodic inviscid Burgers equation (1) have definitely different innterpretation
depending on the regularity in space of the stochastic forcing.

Whereas realizations look like discontinuous functions in the case that β = 1, they do not even look like functions
in the case that β = 0. However, the expectation seems to behave in long times as the solution of the deterministic
case without noise, or equivalently as the statistical average of deterministic solutions forced by time-independent
periodic forces with zero statistical average.

We have tried to characterize the regularity of the solution by a Fourier analysis of the empirical mean when
α = 1, β = 0 and α = 1, β = 1 in the figures (10) and (11).
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(a) EU (·, 1) (b) EU (·, 20)

Figure 10. Fourier coefficients for E(u(·, 1)) and E(u(·, 20)) when α = 1, β = 0

(a) EU (·, 1) (b) EU (·, 20)

Figure 11. Fourier coefficients for E(u(·, 1)) and E(u(·, 20)) when α = 1, β = 1

We now compare the ways in which the expectation and the variance converge towards their stationary values
when the parameters α and β are varying. In particular we observe in the figures (12) and (13) faster convergence
in time as α and β increase, and larger variance in the long time limit as α increases and β decreases.
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Figure 12. Norm L1 of the expectation (left) and variance (right) of the solution

Figure 13. Norm L2 of the expectation (left) and variance (right) of the solution

4. Some conclusions

We have considered cases of a white noise in space and time (α = 0.1, β = 0) and that of a smoother in space
version (α = 0.1, β = 1). In both cases, the average of the realizations is a good approximation of the deterministic
solution; as time tends to infinity it converges to the space-average of the initial function [8]. However, while the
deterministic solution is discontinuous, the average of the realizations smoothens it out.

We have also considered corresponding cases with a larger amplitude, namely (α = 1, β = 0) and (α = 1, β = 1);
then our numerical results for one realization are very dispersed. The average smoothens the deterministic solution
and goes faster to equilibrium than in the cases where α = 0.1. However, when β = 0, the expectation at t = 20
does not seem to be a function anymore, which is consistent with the fact that the existence proofs of an invariant
measure for the PDE solution only holds with smooth enough in space noise [6, 9, 11].

Our results are still far from complete. A forthcoming work will also involve a numerical study of the limit
I → ∞, as well as a more detailed study of single realizations. We also propose to compute various distribution
functions.
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