N
N

N

HAL

open science

Verification of non-linear overconstraints in Euclidean

geometry with linear programming

Denis Bouhineau

» To cite this version:

Denis Bouhineau. Verification of non-linear overconstraints in Euclidean geometry with linear pro-
gramming. proceedings of OverConstraints Systems, ISSN 0302-9743. Cassis 1995., 1995, Cassis,

France. 7 p. hal-00962031

HAL Id: hal-00962031
https://hal.science/hal-00962031
Submitted on 27 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00962031
https://hal.archives-ouvertes.fr

Verification of non-linear overconstraints in Euclidean geometry
with linear programming

Denis Bouhineau
Denis.Bouhineau@imag.fr
LGI Bureau D 300, Bat. ENSIMAG
Institut IMAG BP 53x
38041 Grenoble Cedex
France

Abstract

to define figures. And direct manipulations of the fig-

This paper is about one possible exact, nor-
mal representation of “constructible” num-
bers, i.e. ones which can be defined in Eu-
clidean geometry. Due to the special nature
of these numbers, we are able to propose a
representation which allows use of linear pro-
gramming to solve linear systems over these
algebraic numbers and a straightforward ver-
ification of overconstraints on these num-
bers. In the first part, constructible numbers
are introduced as algebraic expressions con-
taining rational numbers and the operations
+, —, X, +and ,/. Then we develop a rep-
resentation and an arithmetic for these num-
bers. Explicit predicates for the manipula-
tion of these number are given in Prolog III.
In the third part, this representation is com-
pared with standard floating point represen-
tation. The two points of comparison are :
time of evaluation and precision of the calcu-
lations. These experiments show that com-
putation time is obviously high compared to
standard floating point calculation, but that
precision become much higher with the same
computation time ratio. In order to obtain
better performances from computation time
and a fixed length for the integer needed for
the representation, we evoke as perspective
a weak representation of constructible num-
bers based on finite fields.

Keywords : quadratic algebraic extension,
constructible numbers, dynamic geometry,
exact representation.

Introduction

In the last decades, graphical user interfaces [Borning,
1981; Helm et al., 1993], drawing packages, geomet-
ric micro-world for the teaching of geometry [Baulac
et al., 1992; Bouhineau, 1995; Sketchpad, 1991], have
been implemented with the same idea : adding con-
straints in order to provide intelligent behavior for
direct manipulation of objects. Constraints specify
semantic relationships between objects in user inter-
faces by means of geometric and spatial relation. In
the most evident way, in the domain of education for
the teaching of geometry, electronic sketch-book have
been produced where geometric constraints are used

ures are done according to the geometric definition
given by the constraints. Apart, these last works have
lead to a new frame work for the world of education
introduced by a special sessions in the last MAA-AMS
joint Meeting conference in January 1995 : Dynamic
Geometry.

Softwares packages developed for Dynamic Geom-
etry [Baulac et al., 1992; Sketchpad, 1991] are essen-
tially procedural. Geometric figures are obtained from
a procedural construction given by the users with the
tools of Euclidean geometry (ruler and compass). Our
main work [Bouhineau, 1995] concerns the implemen-
tation of a declarative geometric drawing packages.
We use Prolog III, both as a constraint logic pro-
gramming languages with linear solver [Colemauer,
1990] and as an aid in interface development. Ac-
tually, the language used in Euclidean geometry con-
tains constraints which are linear for the most part,
e.g. parallelism, perpendicularity, belonging to a line,
midpoint. But there is one important geometric con-
straint which is not linear, belonging to a circle. As
a consequence, we have adopted the solver of linear
systems of equations from Prolog III, and added pred-
icates for the resolution of second degree equation of
the form aX?+bX +c¢ = 0 where a, b and ¢ are known.
These predicates, obviously, introduce algebraic num-
bers.

The implementation of a first prototype has shown
that overconstraints appear very naturally in geomet-
ric specifications and that overconstraints are very im-
portant in the definition of geometric figures. First of
all, overconstraints help the automatic construction
of the user’s geometric figure. Thus overconstraints
are automatically added in the specification given by
the user, e.g. when one point A is declared to be on
two circles C7 and Cs, the linear overconstraint A €
CommonChord(Cy, Cy) is added. Secondly, inequali-
ties are useful overconstraints for specifying geometric
figures when multiple solutions are possible, e.g. the
definition of the symmetric A’ of point A with respect
of point O : A’ € (OA), A" € Circle(O,A), A" # A.

The introduction of overconstraints in the specifi-
cation of geometric figures has lead us to consider the
verification of these overconstraints. Some overcon-
straints could be verified by using automatic demon-
stration, see [Chou, 1988; Tarski, 1951; Wu, 1994].
Here we are only concerned with numerical verifica-

tion of their geometrical properties which can be ex-
pressed by algebraic expressions (we do not evoke in
this article inequalities <,>,<,>). A problem con-
nected to the verification of overconstraints concerns
the representation of constructible numbers. We use
one representation so that the linear solver of Pro-
log IIT can be used to solve linear systems over these
numbers and overconstraints can be check straightfor-
wardly. The solution that we propose is based on a
binary tree of rational numbers whose height is the

Assume that we aim to construct a point P from
points whose coordinates belong to an algebraic ex-
tension K of Q. Then it can be shown that :

e If P is the point of intersection of two lines, then
the coordinates of P belong to K.

o If P is the point of intersection of one line (d) and
one circle whose center is O and which radius is R,
then the coordinates of P belong to the quadratic
extension K[d], with §% = R? — dist(O, d)*.

length of the sequence of quadratic extension (see sec-
tion 1.1) needed to represents the numbers.

In the first section of this paper, we define the na-
ture of numbers which occur in geometry, that is ex-
pressions with rational numbers and the operations
+, —, X, + and Vv (a special case of algebraic num-
ber). In the second section we propose an exact rep-
resentation and the associated arithmetic for these
numbers. This representation is proposed to check
correctly properties of geometric figures, i.e. to ver-
ify overconstraints, and more important this repre-
sentation works with Gauss elimination of the linear
solver. In the third section our representation and
floating point representation are compared using ex-
amples taken from school exercises concerning figures
construction. The precision of floating point arith-
metic and the computing times of our exact arithmetic
are shown for four examples.

1 Euclidean geometry and
constructible numbers

We recall here rapidly the principal results concerning
constructible numbers.

1.1 Preliminary

Below are the notations used in this paper. See [Car-
rega, 1989; Lang, 1971; Lebesgue, 1989] for complete
definition of these notions.

Definition 1 Let K be a field on Q, and x so that x>
e K, we denote K[x] the quadratic algebraic extension
of K over R with x.

Definition 2 Let L be an algebraic extension of K,

we denote L:K the dimension of L as vector space over
K.

1.2 Euclidean geometry

For simplicity, we consider a geometric figure defined
by points whose coordinates are rational number ! and
points obtained as follows :

e intersection of two lines described by known
points,

e intersection of one line, defined by two known
points, and one circle, defined by its center points
(one known point) and another known point be-
longing to the circle,

e intersection of two circles, each of these circles
described by its center and another known point
on it.

!Some people would have taken only two points with
coordinates (0,0) and (0,1)

e If P is the point of intersection of two circles, then
P is the intersection of one of the two circles and
of the common chord to the two circles. As the
equation defining the common chord also belongs
to K, we come back to the the above case. The
coordinates of P belong to a quadratic extension
of K.

Consequently, the purpose of this paper is to study
numbers belonging to sequences of quadratic exten-
sions of Q, i.e. numerical expressions containing ra-
tional numbers and the operations 4+, —, x, =+ et Vv
are concerned. Formally we define :

Definition 3 Constructible numbers make the small-
est real field containing rational numbers which is sta-
ble by square root (square root is considered as a par-
tial function defined on positive numbers).

1.3 Examples

The following expressions are constructible numbers :

e =V2+v3-V5+2V6
e2=V1+v3—V10+6V3+V3+3/3
The numbers have been of interest for Zippel [1985]

and Borodin et al. [1985] because they can be simpli-
fied, see also [Landau, 1992]. Actually :

61:0
€2=0

Essentially, constructible numbers like e; and eq
are algebraic numbers, and consequently they can be
worked out by general softwares for symbolic calcula-
tion as with Mathematica [Wolfram, 1991] or Maple.
But the simplification of e; and e is not direct, and
these two computer algebra systems do not simplify
e and e; to 0. For example, numeric evaluation of e;
with Mathematica gives the following uncertain nu-
merical result :

N[Sqrt[2]+ Sqrt[3] — Sqrt[5+2Sqrt[6]],20] = 0.1073*

Another example shows that these general symbolic
calculators are not suitable for constructible numbers.
Consider the series :

Uy=1,U,=2,Us =2
Un =Up—1 * Un—2 + Un—3

This series is defined in Q[v2] and we have U, =
an + by, * V2, with

a0=1,a1=2,a2=0\/§
bp=0,0 =0,b=1
(n = Qpn—10n—2 + @n—3 + 20,102
bn = Gn—1 bn—2 + bn—lan—Q + bn—3

We would like to obtain :

U= 1+2V2
U= 6++2
Us= 10+ 142
Us = 89+ 96v2

Unfortunately, simplifying general algebraic expres-
sions is difficult (as noted before) and Mathematica
gives :

Us= 2v2+1

Up= V2(2v2+1)+2

Us= (V22vV2+1)+2)2v2+ 1) +V2
Us= ((V22vV2+1)+2)(2vV2+1)+V?2)

«(V22v2+1) +2) +2v2+1

The calculation of U;g fails after a few minutes be-
cause of the limits of computer main memory. Sym-
bolic calculation limitations are clear and are of two
kinds : computing time and memory consumption.

2 Proposed representation for
constructible numbers

2.1 General representation

The proposed representation is based on the decom-
position of a constructible number in a sequence of
quadratic extensions of Q. The crucial point of this
representation, i.e. the construction of the sequence
of extensions, is considered below in a paragraph on
square root, extraction.

Suppose we have a sequence of quadratic extensions

of Q:
L4 kO:Qa
e ki = ko[ay] where o? € ko, ay & ko. The number
a1 have been chosen such that &y : kg = 2 and
then (1, o) constitutes a basis of the vector space
kl over ko.

e Continuing like that, suppose we have k, =
kn_1[on] where a2 € ky—1, ap € kn—1. The num-
ber «, have been chosen such that k&, : k,—1 =2
and then (1, «,,) constitutes a basis of the vector
space k, over k,_1.

Let A € k,,. Since (1, a,) is a basis of k,, as a vector
space over k,_1, then there is a;,as € k,_1 such that
A = ay + as * a,,. The representation of A is defined
with the binary tree whose leaves are ay, as.

We shall write in the following : A :: (a1,a2) in
order to be close to the computational model. This
notation may be ambiguous, then we shall note A ::

(a1, az),

Remark Given a sequence of quadratic extensions
over Q, the representation of a constructible number
is unique.

The unique representation of A = 0 in all sequences
of extensions k, is a binary tree whose leaves are all
null :

A =0,

iliz‘

Vj=1l.n,i;€[1,2]

“ln

For example, 0 :: ((0,0), (0,0))k[\/§][\/§]

The following predicate ng_ null (E,N), true if value
of N is zero in the sequence of extension E, is defined
by :
ng_null([]1,0) .
ng_null([E|L],[A,B]) :-

ng_null(L,A),
ng_null(L,B).

Example : representation of A = V2 +2v3-56
In k[v/2][v/3] we have : A = a; +as\/3 with a1, az €

k[ﬂ], a; = 0+ 2 and ay = 2 — 5/2. Using the

notation defined above : A :: ((0,1), (2, —5))k[\/§][\/§]

We have also A € k[v/3][v/2], since A = a; + azv/2
with a1, as € k[\/g], a1 =0+2v3 and as = 1 — 5v/3.
Using the same notation, A :: ((0,2), (1, =5));31v2)

Similarly, we have A € k[V6][v2], thus : A =
((0,-5), (1, 1))k[\/€_i][\/§]‘ And so on, depending on the
choice of the extension where A is defined.

2.2 Elementary arithmetic

We define five operations in this arithmetic. The def-
inition of the four first ones, elementary arithmetic
operations, is straightforward with the chosen repre-
sentation.

Addition
Given A, B € k,, with A :: (a1,a2)k, = a1 +asa, and
B (bl,bz)k” =0b; + bocvy.

Then A + B :: (a1 + bi,a2 + by) since A+ B =
ap + by + (az + bz)an.

Let distinguish addition between elements of k,, and
additions between elements of k,,_1, we have :

A+4+"B:(a; +"" by, a2 +"7 1 be)

The operation +° denote the usual addition in Q.

The predicate ng_plus(E,A,B,C), true if C is equal
to A+B in the extension E, can be described by :

ng_plus([],A,B,A+B).

ng_plus([E|L], [A1,A2], [B1,B2],[C1,C2]) :-
ng_plus(L,A1,B1,C1),
ng_plus(L,A2,B2,C2).

Subtraction
Let A,B € k, with A :: (a1,a2)k, = a1 + asa,, and
B :: (bl,bg)kn = by + baavy.

We could define A — B :: (ay — by, as — by). We pro-
pose the ng minus(E,A,B,C) predicate below which
uses the declarative predicate ng_plus\4. Since C' =
A-B& A=C+ B, wedefine C =A—BbyCCis
solution of A = C + B.

ng_minus(L,A,B,C) :-
ng_plus(L,B,C,A).

Multiplication
Given A,B € k, where A :: (a1,a2), = a1 + asay,
and B : (bl,bg)k“‘ = b1 + by,

Then A * B :: (a1 * by + az * by ¥ a2, ay * by + ag *
b1). Distinguishing operations in k, and operations in
kn_1, we get :

Ax" B(ap "~ by +" " ag x" by " a2 ag 7!
bQ +n-t a 1 bl),

The operation *° denotes the usual multiplication

in Q.

The predicate ng_plus(E,A,B,C), true if C is equal
to A*B in the extension E, can be described by :

ng_mult([],A,B,A*B).

ng_mult([E|L], [A1,A2],[B1,B2],[C1,C2]) :-
ng_mult(L,A1,B1,T1),
ng_mult(L,A1,B2,T2),
ng_mult(L,A2,B1,T3),
ng_mult(L,A2,B2,T4),
ng_mult(L,E,T4,T5),
ng_plus(L,T1,T5,C1),
ng_plus(L,T2,T3,C2).

2.3 Square root

This is the crucial point.

Let A € k,,, we want to calculate the square root of
A, ie. VA. The main idea is to check whether A is a
square in k, or not.

If A is a square k,, i.e. A =a? with a € k,,a >0,
then v/A = a (we show below how a square root of A
can be find in k,).

If A is not a square in k,, the calculation of v/A in-
troduces a new quadratic extension : kp11 = kn[at1]

where a,41 = VA and we get A :: (0,1),,,. In that

Division
Given A, B € k, with A :: (a1,a2)r, = a1 + asa, and
B :: (bhbg)k" =b; + baav,,.

We may define A/B = A x B~! where B™! :
(b /(b — b3ay), =ba/ (b} — b3a7)), but since C' =
A/B & A = C % B, we define declaratively C = A/B
by C' is solution of A = C x B.

ng_div(L,A,B,C) :-
ng_mult(L,B,C,A).

This definition works with CLP languages with
Gauss elimination procedure since the system of con-
straints, on the coordinates of A, B and C, equivalent
to the equation A = C x B is a linear system. The
purity of this definition? is clearly indebted to logic
programming with linear constraints.

Properties of the proposed representation

The predicates proposed above, using the representa-
tion defined earlier, have the following characteristics :

e Exact, explicit and normal representation of con-
structible numbers. The representation is exact
and explicit (obvious). The representation is nor-
mal, i.e. zero has only one representation, since

Qay, ...,y are 1-linear independent in kg, ..., k1.

e Compatibility with Gauss elimination procedure.
One linear system on constructible numbers is
transposed, with the predicates +, —, , / defined
above, into a set of linear systems on rational
numbers, into exactly 2" linear system, where n
is the length of sequence of quadratic extensions.
Each subsystem corresponds with a projection of
the complete system on one element of the basis,
defined with (a;)i=1..n, of k, as vector space over
ko. The compatibility with simplex algorithm can
not be easily obtained with this representation
since A > B is not equivalent with a; > b; and
as > bs.

e Exponential complexity of the representation,
with the length n of sequence of quadratic ex-
tensions. The complexity of the representation is
in O(2™). The complexity of addition and sub-
traction are exponential, like O(2"). Complexity
of multiplication and division are in O(5™). But
this exponential complexity is not so catastrophic
in a teaching environment since geometric figures
at school are simple and rarely need more than
three or four extensions (It does mean four inter-
sections with circles or more than four).

*Usually, definition of division with algebraic numbers
needs Bezout relation and long program

case, we verify that k,y1 : k, = 2 since A is not a
square in k.

We have seen that a quadratic extensions is intro-
duced if A is not a square in k,. So we have now to
show how to compute a square root in k,. This is the
particularity of constructible number : explicit square
root can be obtained, if one exists.

Let A € k,,, is there a € k,, such that a> = A ? Let
us consider the following cases :
nzO,kn:kon .

Then A is rational, i.e. A = N/D with N, D
integer and ged(N,D) =1, N >0, D > 0.

Then a square root of A exists if and only if N and
D have a square root in N. Thus, if N =n?,D =
d? then A = a® with a = n/d, (we always choose
the positive root).

Otherwise A is not a square in Q.

n>0.
Then A = ay + as *x o, With a1, a0 € k1.
A is a square in k,, if and only if there are z,y €
k,—1 such that :

a tagxa, =A=(z+y*xa,)’ (0)

Rewriting this equation we get :
a = LL’Q + yz(an)2 (1)
as = 2xy

We have to consider different cases in order to
solve this system of non-linear equations.

a2 = 0.
Then A is a square in k,, if and only if x =0
ory =0.

Assume z = 0 then A is a square in k, if and
only if A/a? is a square in k,_.
Assume y = 0 then A is a square in k,, if and
only if A is square in k,,_1.
In both cases, we have to look for a square
using recurrence in k,_i.

a 75 0.
Then we have to solve the following equation,
obtained from (1) by substitution of x :

y (om)® —ary® + (a2)*/4=0 (2)

We note Y = y?. This leads to the second
degree equation :

Y(an)? —a1Y + (a2)?/4=0 (3)
whose discriminant is : A = 16(a1)? —
4(az)?(an)?.

Usually, in real field, solution of (3) exists
if the sign of A is positive. But here the
sign of A is not sufficient : A must be a
square in k,_1. (apart, if A is a square, then
the question of the sign is settled) [proof :
Actually, (1) has solution for the variable y
in k,,_1, is equivalent to (3) has solutions for
the variable Y in k,_1. As A = (£(a,,)?Y —
4a1)?, with +(a,)?Y —4a; € k,_1, (1) has
solution implies that A has roots in k,_1.
Conversely, if A has no root in k,_; then
(3) has no solution for Y in k,_1; therefore
(1) has no solution in k]

If, by recurrence, a root § of A is found in

Most of the calculation in this sequence are “square
root”, they are performed accordingly to section 2.3.
They are not straightforward. On one hand, checking
that 3 is not a square in Q[v/2] needs computation. On
the other hand, in Q[v/2][v/3] the same computation
are performed to find a square root for 6 and for 5 +
2v/6 (the square root of 6 is not evident). The other
calculations, “addition”, can be verified by hand.

Remark We notice here that the computation in
Q[V2][V3] of A gives the unique representation of
zero. The computation of A in an other sequence of
extension leads to the same result ((0,0),(0,0)) since

kn_1, i.e. A = 62 then two solutions for Y
are obtained :

Vi = (4a; +0)/2(an)?, and
Yy = (4a1 — 6)/2(an)?
We look, by recurrence in k,_; for square
root y; et yo, of Yi et Y5, If square roots

exist for Y or Y5 then y; and ys are solutions
of (1) in kn—l .

it is the only representation of zero.

Conciseness of the representation

Calculation of the U, series, described at the begin-
ning of the paper.

If Y7 and Y5 are not squares in k,—1 then (1)
has no solution and A is not a square in k.

Remarks

e As (a,)? > 0,(a2)? > 0 solutions of equations (3)
have the same sign that a;. Therefore, if a; < 0,
equation (2) has solution. Otherwise (2) has no
solution.

e As Yy x Yy = (a2)?/(an)?, if Vi is a square in
kn_1 then Y5 can not be a square in k,_q. That
is because if Y7 and Y: are square in k,_1, i.e.
Y, = y? and Yo = y2 with yi,y2 € k,_1, then
an = az/(y1y2). Thus we would have o, € kyp—1,
and this is impossible by construction (because of
the choice of a, such that a,, : k,—1 = 2).
Consequently, Y7 and Y> can not be square simul-
taneously, and the search for square leads to an
unique solution (the only convention is to choose
for the positive root)

2.4 Examples of calculation with
constructible numbers

Uniquity of the representation

How is represented A = V2+V3 -
We calculate successively :

5+2v6

Ag o (2)g = 2

Ay (0, 1)Q[\/_] = V2

Ay (3,)Q[\/_ = 3

Az ((0,0), (1, 0))@[\/5][\/5,] = V3

Ay ((0,1), (1, 0))Q[\/§][\/§] = V2+V3
As = ((6,0), (0,))Q[\/i][\/g] = 6

Az ((0,0),(0.))gpyayyg = V6

Az ((0,0),(0,2)grymrvs = 2V6

A ((5,0),(0,0)gvayyy = 5

Ay ((5,00,00,2))gymyvs = 5+2V6
AlO . ((y),(1 O))Q[\/— \/—] = 5"‘2\/6
A ((0,0),(0,0)gpyz1v3 V2t V3

5+ 26

Uog:: (1,0)
Uy (2,0)
Us:: (0,1)
Us:: (1,2)
Uy (6,1)
Us:: (10,14)
Us = (89,96)

(3584, 2207)
(742730, 540501)
(5047715823, 3576360790)
U = (7615143139931954, 5384565899606230)
: (76953379230890022173294272
,54414257827318720194601451)
(1 172005312243417792577922713561480518962771
, 82873290387431 1492000197638627684580540604)

An important growth of coefficients’s size is ob-
served. This growth is natural in symbolic calcula-
tion. This calculation have been executed in less than
0.1 second with a Mac IT ST and Prolog III.

3 Tests

Four geometric figures have been chosen. Two tests
are performed, the evaluation of the relative error with
floating point arithmetic, and the evaluation of the
time needed for the computation with floating point
representation and with exact representation of con-
structible numbers.

Note Within the computation with constructible
numbers, a computation with floating point arith-
metic is done for a fast evaluation of the sign of the
expressions.

3.1 Triangle and altitudes

The first geometric figure is the construction of the
three perpendicular heights of a triangle. Numerical
calculation permits testing whether the three altitudes
are concurrent or not. All the calculations are per-
formed in Q, where no extension is introduced. The
complexity of this figure can be compared with the
resolution of a system of sixteen linear equations with
one overconstraint, i.e. the intersection of two per-
pendicular height belongs to the third one.

The tests give the following results :

Test 1 | Test 2 | Test 3
Error (Float P.) | 0e-16 | 1e-10 | 0e-16
Time (Float P.) | 45 ms | 45 ms | 45 ms
Time (Exact R.) | 80 ms | 80 ms | 328 ms

Test 1 is performed with a general position of the
points. Test 2 is performed with two altitudes almost
parallel. What is to be noticed is the fact the rela-
tive error can be found as big as wanted. Test 3 is
performed with big rational numbers (more than 20
digits). This introduces the limitation of exact ratio-
nal calculations.

3.2 Right triangle inscribed in a circle

The second geometric figure is composed of one circle
given by one diameter [A,B] and a line intersecting
the circle on point M. Numerical calculation permits
testing whether lines (A,M) and (B,M) are perpen-
dicular. One quadratic extension is introduced dur-
ing the calculation. The complexity of this figure
can be compared with the resolution of a system of
twelve equations (including non-linear equations) and
one overconstraint, i.e. line (A,M) and (B,M) are per-
pendicular.

The tests give the following results :

Test 1 | Test 2
Error (Float P.) | 0Oe-16 le-5
Time (Float P.) | 82 ms | 320 ms
Time (Exact R.) | 82 ms | 320 ms

3.4 Regular pentagon

This geometric figure corresponds to the construction
of a regular pentagon from one edge A, and the cen-
ter of the circumscribe circle G. Numerical calculation
permits testing whether it is really a regular pentagon.
Two quadratic extensions are introduced during the
calculation. The complexity of this figure can be com-
pared with the resolution of a system of 38 equations
(including non-linear equations).

The tests give the following results :
Test 1 | Test 2
Error (Float P.) | 0e-16 | 1e-5
Time (Float P.) 1s 39 s
Time (Exact R.) 1s 395

Test 1 is performed with a general position of the
points. Test 2 is performed with point G almost on
the same vertical line as point A (a line is represented
by the equation y = mx + p).

The time needed for exact calculation is important
because of the number of extensions and the length of
the calculation. The two extensions introduced mean
that a constructible number is represented with four
rational numbers (so exact calculation takes at least
four times as long as a floating point calculation). The
length of the calculation has lead to important growth
of the coefficients of constructible numbers. At the
end of calculations, integers used in the representation
of constructible numbers are very big (more than 50
digits).

Test 1 is performed with a general position of the
points. Test 2 is performed with M very close to A.
The time needed to perform exact calculation was ex-
pected to be at least three times longer than the time
for floating point calculation (one extension that dou-
ble the size of the data, and, moreover, floating point
calculations are performed to evaluate the sign of ex-
pression).

3.3 Regular triangle

The third geometric figure corresponds to the con-
struction of a regular triangle from one edge A, and
the center of the circumscribe circle G. Numerical cal-
culation permits testing whether it is really a regular
triangle. One quadratic extension is introduced dur-
ing the calculation. The complexity of this figure can
be compared with the resolution of a system of four-
teen equations (including non-linear equations), and
verification of two overconstraints, i.e. tests whether
vertices are equal.

The tests give the following results :

Test 1 | Test 2
Error (Float P.) | 0e-16 le-9
Time (Float P.) | 326 ms 1s
Time (Exact R.) | 326 ms 1s

Test 1 is performed with a general position of the
points. Test 2 is performed with point G almost on
the same vertical line as point A.

Perspective and further works

The proposed arithmetic has been shown effective
for exact computation in Euclidean geometry using
Gauss elimination and immediate verification of over-
constraints. But two limitations have been observed :
the growth of the coefficient (normal in symbolic cal-
culation), and the exponential growth of the represen-
tation’s size with the number of extensions introduced
due to square roots.

In order to avoid the growth of coefficients, a solu-
tion can be considered : take a finite field kg instead of
Q. For example a weak representation can be defined
with Q replaced by ko = Z/pZ, where p is a prime
number. Two advantages can be observed by consid-
ering finite field kg = Z/pZ. First, the coefficients
are bounded. Second, in a finite field whose charac-
teristic is odd, about one element in two is a square
(or a residue square). Consequently, the length of the
sequence of quadratic extensions is divided by two.
Moreover, the prime number p can be easily chosen
to avoid three or four first extensions. Last but not
least, when p is chosen such that p =3 (mod 4), the
calculation of the square root is immediate.

The weak representation can be used to evaluate
equality between expressions. When expressions are
not equal in the weak representation, they are not
equal at all. When expressions are equal in the weak
representation, they are equal in R with probability
P.,=1—-P., =1-(1/p)*", where n represents the
length of the sequence of extensions. For example,
with p = 32749 and n = 3, we have a test with a

probability of error P., = 7,55818FE — 37 which is
very small (equal to 0 for a human being). What
is most important is that this probability of error is
independent of the length of the calculation.

Acknowledgments

I would like to thank Evelyne Chevigny, Richard Allen
and Laurent Trilling for their assistances with the
redaction of this paper.

References

[Baulac et al., 1992] Y. Baulac, F. Bellemain, J.M.
Laborde, , Cabri, the interactive geometry
notebook, Brooks/Cole publishing com-
pany, Pacific grove, CA, 1992.

[Borning, 1981] Alan Borning, The programming lan-
quage aspects of ThingLab -a constraint-
oriented simulation laboratory, in ACM
Transaction on Programming Languages
and Systems, vol. 3, no.4, page 343-387,
October 1981.

[Borodin et al., 1985] Allan Borodin, Ronald Fagin,
John E. Hopcroft, Martin Tompa, De-
creasing the nested depth of expression in-
volving square roots, Journal of Symbolic
Computation, 1 page 169-188, 1985.

[Bouhineau, 1995] Denis Bouhineau, Vers une ap-
proche déclarative pour les logiciels de
dessins géométriques, in Actes des qua-
triemes journées EIAO de Cachan, ed Ey-
rolles, 1995.

[Carrega, 1989] Carrega, J.C., Théorie des corps, la
regle et le compas, réedition, Herman,
Paris, 1989.

[Chou, 1988] Chou, S.C., Mechanical Geometry The-
orem Proving, Reidel Publishing, Norwell,
1988.

[Colemauer, 1990] Colmerauer, A. An introduction to
Prolog III, Communication of the ACM
vol. 33, no. 7 page 69-90, 1990.

[Helm et al., 1993] Helm, R., Huynh, T., Marriot, K.,
Vlissides, J., An Object-Oriented Architec-
ture for Constraint-Based Graphical Edit-
ing, Advances in Object-Oriented Graph-
ics II, Springer Verlag, 1993.

[Lang, 1971] Serge Lang, Algebra, Addison-Wesley,
Reading, MA,1971.

[Landau, 1992] Landau, S., Simplification of nested
radicals, STAM Journal of Computing Vol
21, no.1 page 85-110, February 1992.

[Lebesgue, 1989] Henry Lebesgue, Lecons sur les con-
structions géométriques, réédition, Gau-
thier - Villard, Paris, 1989.

[Sketchpad, 1991] Geometer’s Sketchpad, Key Cur-
riculum Press, Berkeley CA

[Tarski, 1951] Tarski, A., A decision method for ele-
mentary algebra and geometry, University
of California Press, second edition, Los
Angeles, 1951.

[Wolfram, 1991] Wolfram, S., Mathematica: a sys-
tem for doing mathematics by computer,
Addison-Wesley, 1991.

[Wu, 1994] Wu, W., Mechanical Theorem Proving in
Geometries, Springer-Verlag, Wien, 1994.

[Zippel, 1985] Zippel, R., Simplification of expression
involving radicals, Journal of Symbolic
Computation, 1 page 189-210, 1985.

