N

N

Solving Geometrical Constraint Systems Using CLP
Based on Linear Constraint Solver

Denis Bouhineau

» To cite this version:

Denis Bouhineau. Solving Geometrical Constraint Systems Using CLP Based on Linear Constraint
Solver. Lecture Notes in Computer Science, 1996, pp.274-288. hal-00961982

HAL Id: hal-00961982
https://hal.science/hal-00961982
Submitted on 25 Mar 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00961982
https://hal.archives-ouvertes.fr

Solving Geometrical Constraint Systems Using
CLP Based on Linear Constraint Solver

Denis Bouhineau

Laboratoire IMAG - LSR
BP 53 X, 38041 Grenoble Cedex 9
FRANCE

Abstract. Euclidean geometrical configurations obtained with ruler,
square and compass may be described as arithmetic constraint systems
over rational numbers and consequently belong to the domain of CLP(R).
Unfortunately, CLP based on linear constraint solvers which are efficient
and can deal with geometrical constraints such as parallelism, perpendic-
ularity, belonging to a line i.e. pseudo-linear constraints, cannot handle
quadratic constraints introduced when using circles.

Two problems arise with quadratic constraints : the first problem is how
to solve mixed constraint systems i.e. linear constraints combined with
quadratic constraints; the second problem is how to represent the real
numbers involved in the resolution of mixed constraints, so that correct-
ness and completeness of linear constraint solvers are preserved.

In this paper we present a naive algorithm for mixed constraints based on
a cooperation with a linear constraint solver. We define a representation
for the real numbers, i.e. constructible numbers, occuring in Euclidean
geometry. This representation preserves correctness and completeness of
above algorithms. A survey over 512 theorems of Euclidean geometry
shows that from both theoretical and experimental points of view, this
representation is appropriate. This work is intended to be used to verify
geometrical properties in Intelligent Tutoring System for geometry.
Keywords: quadratic algebraic extension, representation of rational,
real, algebraic, and constructible numbers, cooperation between solvers
for mixed constraints.

1 Introduction

Constraint Logic Programming (CLP) is based on extensions of Prolog incorpo-
rating constraint solving algorithms tailored to specific domains such as trees,
booleans, finite domains or real numbers. For example, in the domain of arith-
metic constraints over rational numbers, Linear Programming algorithms have
been incorporated to CLP languages such as Prolog ITII, CHIP, and CLP(R) see
[Col90, Din88, Jaf92] respectively. The expressive power and flexibility gained
by combining Linear Programming, Logic Programming, and Constraint Pro-
gramming allows one to express systems of pseudo-linear! constraints that can
be solved using linear constraint solvers. This is particularly true in the case of

! equations which become linear after solving some other equations

geometrical configuration defined by points and lines, often used in geometry
courses. Moreover in practical issues in the domain of Intelligent Tutoring Sys-
tems in geometry, coordinates of objects defining geometrical configurations are
directly obtained from the screen and correspond to rational numbers. When an
exact representation of rational numbers is used by the solver, solutions given
by the linear constraints solver are exact rational numbers not approximate.
In this case, as a consequence that linear constraint systems solver over ratio-
nal numbers algorithms are correct and complete, overconstraints resulting from
geometrical overspecifications can be verified.

Unfortunately, Euclidean geometry is not based on lines and points, ruler
and square only. Euclidean geometry is based on ruler, square and compass. An
other point, rational numbers are not sufficient, algebraic numbers are needed
to express some geometrical constructions. For example, a equilateral triangle
necessarily has one coordinate in an algebraic extension of Q with /3. In con-
sequence of the introduction of the compass, geometrical configurations deal
quadratic constraints (second degree equations) which cannot be solved using
linear programming algorithms over rational numbers. On the other hand, the
numbers introduced to express coordinates of all constructible configurations
occuring in Euclidean geometry do not belong to the numerical domain of ra-
tional numbers where the linear algorithms are complete and correct. Two main
problems arise with quadratic constraints and real numbers of geometry :

1. The first problem, namely how to solve set of mixed constraints i.e. lin-
ear constraints combined with quadratic constraints, may be solved for cer-
tain geometrical configurations. For the particular geometrical configura-
tions called ”constructive” in [Chou92], we present an algorithm which is
complete. See [Pes95] for complementary approach.

2. The second problem which will be essentially addressed in this paper is how
to represent real numbers, called constructible numbers (a special class of al-
gebraic numbers, cf. [Leb92]), involved in the resolution of mixed constraints,
and in Euclidean geometry.

We propose in this paper one exact representation for constructible numbers
compatible with the linear constraint solvers used in CLP. On the practical side,
this representation aims at avoiding numerical errors due to the lack of preci-
sion with representations of real numbers with floating point arithmetic. On the
theoretical side, this representation preserves the correctness and completeness
of the linear constraint solvers over rational numbers. These are two essential
perspectives in the application domain of Teaching Geometry in which we are
concerned, cf. [Al193, Lab95].

The paper is organized as follows. Section 2 sketches the resolution of geo-
metrical constraints with the help of the linear solver of Prolog III. Section 3
introduces a basic algorithm for solving mixed constraints. Sections 4 and 5 are
concerned with the representation of constructible numbers. Section 6 provides
examples of solution and includes details about the complexity of geometrical

configurations arising in practice : a survey of about 512 geometrical configura-
tions from [Chou88] is exposed. A short conclusion ends the paper.

2 Geometric Configuration and Linear Constraint Solvers

Let’s take one configuration from the 170 theorems without circles among the

512 theorems given by Chou? in [Chou88]. For example, let us consider theorem
82 page 143 :

Theorem 82 In triangle ABC, let F be the midpoint of the side BC, D and E
the feet of the altitudes on AB and AC respectively, FG is perpendicular to DE
at G. Show that G is the midpoint of DE.

Fig. 1. Configuration 82

The configuration observed in theorem 82 can be specified in Prolog III in the
following way :

Collinear(<A_x,A_y>,<B_x,B_y>,<C_x,C_y>) ->

{ (A_x-B_x)*(B_y-C_y)-(A_y-B_y)*(B_x-C_x)=0 };
Perpendicular(<A_x,A_y>,<B_x,B_y>,<C_x,C_y>,<D_x,D_y>) ->

{ (A_x-B_x)*(C_x-D_x)+(A_y-B_y)*(C_y-D_y)=0 };
Midpoint (<A_x,A_y>,<B_x,B_y>,<C_x,C_y>) ->

{ 2*B_x-A_x-C_x=0, 2*B_y-A_y-C_y=0 };

Configuration82(A,B,C,D,E,F,G) —>

2 Numerous examples can be also found among theorems in Projective Geometry.

Midpoint (B,F,C)
Perpendicular(D,C,A,B)
Collinear(D,A,B)
Perpendicular(E,B,A,C)
Collinear(E,A,C)
Perpendicular(G,F,E,D)
Collinear(G,E,D);

Theorem82(A,B,C) ->
Configuration82(A,B,C,D,E,F,G)
Midpoint (D,G,E);

The representation of the configuration using Prolog predicates is straightfor-
ward, and elegant. Within the same formalism, the theorem can be expressed as
well. The solution of the linear constraint system gives complete configuration.

> Configuration82(<3,0>,<6,8>,<12,5>,D,E,F,G);
{D = <420/73,536/73>, E = <921/106,335/106>, F = <9,13/2>,
G = <111753/15476,81271/15476>%}

Since the linear constraint solver of Prolog IIT computes exact solution of lin-
ear system over rational numbers, the overconstraint Midpoint (D, G,E) resulting
from geometry in the theorem 82 is numerically verified :

> Theorem82(<3,0>,<6,8>,<12,5>);
{3

The method informally introduced in this section provides sound results when
the constraints introduced are pseudo-linear, see [Col93]. For the class of con-
structive configuration, the linear constraint solver approach is complete and
correct.

3 Solution of Mixed Constraint Systems

This section is devoted to the solution of mixed constraint systems obtained when
geometrical properties about circles are introduced. In [Chou88], 342 theorems
out of 512 correspond to configurations with circles. For example let us consider
theorem 110 on page 156 :

Theorem 110 Let D, E be two points on sides AC and BC of a triangle ABC such
that AD=BE, F the intersection of DE and AB. Show that FD.AC=EF.BC.

The configuration in theorem 110 can be specified in Prolog III as follows :

Collinear(<A_x,A_y>,<B_x,B_y>,<C_x,C_y>) ->
{ (A_x-B_x)*(B_y-C_y)-(A_y-B_y) *(B_x-C_x)=0 };

EquiDist(<A_x,A_y>,<B_x,B_y>,<C_x,C_y>,<D_x,D_y>) ->
{ (A_x-B_x) " 2+(A_y-B_y) "2-(C_x-D_x) "2-(C_y-D_y) "2=0 };

Fig. 2. Configuration 110

Configuration110(4,B,C,D,E,F) ->
Collinear(A,C,D)
EquiDist(E,B,A,D)
Collinear(E,C,B)
Collinear(F,E,D)
Collinear(F,A,B);

The constraint system obtained here cannot be solved directly with linear
constraint solvers. So we used the interaction between the linear constraint solver
of Prolog IT and a quadratic constraint solver. Each linear geometric constraint
is given to the linear constraint solver. Pseudo-linear constraints are “frozen”
until they become linear and then given to the linear constraint solver (as it is
done automatically in Prolog III). Quadratic constraints are handled by a special
program whose purpose is to transform them symbolically by interacting with
the linear solver.

The quadratic constraint solver operates as follows : Let (E) aX? + bX +
cXY +dY? +eY + f = 0 be a symbolic constraint

1. if it is found that Y = mX + p, then (E) is transformed into (E’) o’ X? +
b'XTc =0, and equation (E’) is solved in a classical way, i.e. X = (=b' £
Vb2 —4a'c)/(2d').

2. else if (E) becomes linear this result is passed on to the linear constraints
solver.

3. else the process is dis-activated until a new activation.

The naive algorithm presented here is complete for geometric configuration of
constructive type. Assuming that the square root computed in step 1. is correct,
the algorithm is correct.

4 Exact representation of constructible numbers

The algorithm given in the previous section introduces true real numbers during
square root calculations. This does not involve an approximate representation
with floating point arithmetic. An exact representation of square root numbers
can be obtained through a symbolic representation. This section is devoted to the
definition of one representation for constructible numbers and to the definition
of the arithmetic used with this representation.

In subsection 4.1 a representation for constructible numbers is defined; in
subsection 4.2 and 4.3 known algorithms are given for the four basic arithmetic
operations. In subsection 4.4 a trivial square root operation is presented. In sub-
section 4.5 an original definition of nullity and positivity are given. In subsec-
tion 4.6 examples are given showing the appropriateness of this representation
for exact calculations Some limitations are also point out.

4.1 Representation of constructible numbers

Suppose we have a sequence of square root calculation, then numbers belong to
the following quadratic extension of Q :

- k0=Q7

— k1 = ko[\/ag] where ag € ko, a9 > 0, g is the first square root introduced
during the calculations.

— kn = kn—1[y/an—1) where ap_1 € kn_1,ap—1 > 0, a1 is the last square
root introduced during the calculations .

Let A € k,,, we write A : (a1, a2) where aj,as € k,—1 when A = a1 +as%,/0,_1.

For example, in Q[v/2][v/1 + v/2], the real number eq : ((5,2),(3,1)) repre-
sents the value : eg = 5 + 2v2 + (3 4+ 1v/2)V1 + V2

In the following paragraphs, rational numbers will be represented as simple nu-
merical values; constructive numbers, like eq : ((5,2), (3, 1)), will be represented
as a Prolog binary trees, like [[5, 2], [3, 1]]. The current field used for calculation, Q
will be represented as [], and sequence of quadratic extension Q[v/2][v/1 + 11/2]
is represented by a Prolog list of constructible numbers, here [[1, 1]|[2]].

4.2 Addition and Subtraction

Given A, B € ky, with A : (a1,a2)r, = a1 + a2 /an—1 and B : (b1, bo)g, =
bl + bg\/(m Then (A+ B) : ((11 + bl,az + bg) since A+ B = ay + bl + (0,2 +
b2)y/an_1. Let us distinguish additions between elements of k, and additions
between elements of k,_1, we have: A +" B : (a; +" ' by,a2 +""! by). The
operation +° denote the usual addition in Q.

We could define (A — B) : (a1 — b1, a2 — b2), but this definition is superfluous :
unification between (A — B) and (a1 — b1, as — b2) is equivalent to the unification
of A with (A — B) + B. This definition stands with CLP, thanks to logic pro-
gramming with linear constraints, as the constraints involved for the unification
of A with (A — B) + B are all linear constraints.

The predicate ng_plus(E,A,B,C), true if C is equal to A+B in the extension E
and predicate ng minus (E,A,B,C) true if C is equal to A-B are described by :

ng_plus([],A,B,A+B).

ng_plus([E|L], [A1,A2], [B1,B2],[C1,C2]) :-
ng_plus(L,A1,B1,C1),
ng_plus(L,A2,B2,C2).

ng_minus(L,A,B,C) :-
ng_plus(L,B,C,A).

4.3 Multiplication and Division

Given A,B € k, where A : (a1,a2)r, = a1 + a2\/an_1 and B : (by,b2), =
bi+b2y/an—1. Then (AxB) : (a1%by+ag*by*a,_1,ar%ba+azxby). Distinguishing
operations in k,, and operations in k,_1, we get : A*" B : (a;*" by +" tay "1
by *" Loy, _1,a; x" 1 by +7 1 ay ¥ 1 by), where the operation x° denotes usual
multiplication in Q.

We may define (A/B) = A B! where B™! : (b /(b? — b3a,—1), —ba/ (b3 —
b2a,—1)), but this definition is superfluous too. Unification between (4/B) and
AxB~!is equivalent to the unification between A with (A/B)*B. This definition
stands with CLP since the system of constraints, on the coordinates of A, B and
(A/B), equivalent to the unification A = (A/B) % B is a linear system.

The predicate ng mult(E,A,B,C), true if C is equal to A*B in the extension E
and predicate ng div(E,A,B,C) true if C is equal to A/B can be described by :

ng_mult(<>,A,B,A*B).

ng_mult(<E>.L,<A1,A2>,<B1,B2>,<C1,C2>) :-
ng_mult(L,A1,B1,T1),
ng_mult(L,A1,B2,T2),
ng_mult(L,A2,B1,T3),
ng_mult(L,A2,B2,T4),
ng_mult (L,E,T4,T5),
ng_plus(L,T1,T5,C1),
ng_plus(L,T2,T3,C2).

ng_div(L,A,B,C) :-
ng_mult(L,B,C,A).

4.4 Square root

Given A € k,. We define VA by (0,1),,, where kny1 = k,[VA].

The predicate ng_sqrt(L,A,L’,S), true if Sin L’ is equal to v/ A when A is
in the extension L, can be described by :

ng_sqrt(L,A,[AIL],[Z,0]) :-
zero(L,Z)
one(L,0).

4.5 Positivity and Nullity

Given A € k,, with A : (a1,a2)r, = a1 + a2 /ap_1. Number A is positive in the
following cases :

— if a1 and ay are positive because (a; > 0,a2 > 0 — a1 + a2 /an—1 > 0)
— if a1 is positive, ay is negative and a3 — a2a,,_1 is positive, because (a; >
2 2
0,a2 <0) = (a1 + as/an—1 >0 < ai > a3a,_1)
— if ay is positive, a; is negative and a3a,_1 — a3 is positive.

4.6 Examples

The representation and arithmetic given in section 4.1, through,4.5 may be used
to set mixed constraint system over constructible numbers. The linear constraint
solver and the quadratic solver are obviously correct over constructible number
in this representation, that is a first important step compared to the linear con-
straint solvers over real represented as floating point number which is not correct
nor complete. But the algorithms are not complete as multiple representations
of one number are possible. For example the following system fails : 3 = sqrt(9)

We consider in this section two examples on symbolic manipulation involving
constructible numbers. The first example shows the advantages of the symbolic
representation, the second example shows some limitations which can be elimi-
nated.

First Example Consider the series :

Up=1,U,=2,Us =2
Un =Up—1* Un—2 + Un—3

This series is defined in Q[v/2]
The predicate series(U,N), true if U is the element N of the series is given
by :

series(U,N) :-
ng_series(E,N,U,V,W).

ng_series([[2]],3,[0,1],[2,0],[1,0]).

ng_series(E,N,U,V,W) :-
ng_series(E,N-1,V,W,X),
ng_mult(E,V,W,Z),
ng_plus(E,X,Z,0).

Calculation of the U, series, with our representation gives :

Uy : (1,0)

Ui : (2,0)

U2 : (0,].)

U3 : (1,2)

Uy : (6, 1)

Us : (10,14)

Us : (89, 96)

Us @ (3584,2207)

Us : (742730, 540501)

Uy : (5047715823, 3576360790)

Uio : (7615143139931954, 5384565899606230)

Ui1 ¢ (76953379230890022173294272, 54414257827318720194601451)

Uiz @ (1172005312243417792577922713561480518962771
,828732903874311492000197638627684580540604)

Significant growth of the coefficients is observed. This growth is common in
symbolic calculation. The calculations have been executed in less than 0.1 second
with a Mac II SI and Prolog III.

Let us compare the basic manipulations of algebraic numbers with those of a
symbolic processor like Mathematica or Maple; the calculation of the U, series
using Mathematica yields :

Us = 2v/2+1
Uy = V2(2v2+1) +2
Us = (V2(2v24+ 1) +2)(2vV2 + 1) + V2

Us = (vV22v2+1) +2)(2v2+ 1) + V2)(V2(2v2 + 1) + 2) + 2V2 + 1

Some limitations become apparent. They depend on the strategy used for
calculation. When simplification are privileged, computing time becomes im-
portant, when efficiency is desirable memory consumption is neglected. In both
cases, the calculation of the U, series fails to compute Usg on a Mac II SI in less
than 30 minutes.

Second example How is represented A = v/2+ /3 and B = \/ 5 4+ 21/6 taken
from [Bor85] 7 We calculate successively :

£(0,1) in Q[v2]

=2
:((0,0), (1,0)) in Q[v2][V3]

=3

Ry E}(_O ,0),(0,0)), ((1,0),(0,0))) in Q[v2][v3][V6]

=6
- (((5,0),(0,0)),((2,0), (0,0))) in Q[V2][V3][V6]
=5+2V6

And then, Rs : ((((0,0), (0,0)), ((0,0), (0,0))), (((1,0), (0,0)), ((0,0), (0,0))))

in Q[V2][vV3][V6][V/5 + 2V6]

=B =+5+2V6
and, R : ((((0,1),(1,0)), ((0,0), (0, 0))) (((0,0), (0,0)), ((0,0), (0,0))))

in QIV2|[V3][VEI[V5 +2v6
=A \/‘+\/‘

One can observe the following limitations :

— an exponential growth of the representation size with the number of square
root extractions.

— a significant difficulty to prove equality between expressions (A = B in-
deed !). As a consequence an additional algorithm would be necessary to
verify overconstraints.

In fact, this section defined the constraints system (D,0,R), where D is the
domain of fixed size binary trees representing constructible numbers, O is the
set of operators (+,—,*, /) on these trees, and R is the set of relational predi-
cates (=,>). The definition of this constraint systems is only partially correct
because equality is not equivalent to unification. The next section considers the
constraints system (D’,0’,R’) where D’ is the domain of fixed minimum size bi-
nary trees representing constructible numbers, O=0’, and R’=(>). In (D’,0’,R’)
trees representing real numbers are compacted, and as a consequence, unification
is equivalent to =.

Note that the problem of equality of expression is difficult to solve. Math-
ematica and Maple have identical behavior with expressions A and B : both
of them numerically evaluate (A4 — B) to 0 with floating point arithmetic, but
evaluate the boolean (A — B == 0) to false.

5 Normal representation for constructible numbers

The representation proposed in section 4 may be definitely improved if quadratic
extensions are only introduced when necessary. This is the principal and original
part of this work.

Suppose we have a sequence of quadratic extensions of Q :

- kOIQa

— k1 = ko[\/ao] where ag € ko, \/ao & ko. We suppose that the introduction
of \/ap has been necessary to express the square root of an element Ag of kg
which is not a square in ko . Note that in this condition (1, /ag) constitutes
a basis of the vector space k; over kg.

— we set kp, = kn_1[\/@,—1] where a,_1 € kn_1, \/O—1 & kn—1. We suppose
that the introduction of ,/a;, 1 has been necessary to express the square
root of an element A,_; of k,_1 which is not a square in k,_;. Note that
in this condition (1,,/a;,—1) constitutes a basis of the vector space k, over
kn—1.

Let A € k,. Since k, is a vector space over k,_1 and that (1,,/a,—1) is a
basis of that vector space, then there are unique elements aq,as € k,_1 such
that A = a1 + a2 * \/a,_1. The representation of A is unique. It is a normal
representation.

The first improvement in this new definition concerns the uniqueness of the
representation. This establishes a correspondence between equality defined for
constructible numbers and unification defined for Prolog binary trees and ratio-
nal numbers representing constructible numbers. So, overconstraint systems on
constructible numbers are verified without supplementary work as overconstraint
systems on rational numbers and binary trees are. As a consequence, complete-
ness and correctness of the linear constraint solver over constructible numbers
are preserved in this normal representation. An other direct consequence of this
normal representation is provided by the following predicate ng null (E,N), true
if value of N is zero in the sequence of extension E, defined by :

ng_null([],0)

ng_null([E|L],[A,B]) :-
ng_null(L,A),
ng_null(L,B).

5.1 Square root

The normal definition of the quadratic extension of k, needs to change the
algorithm given in subsection 4.4 with the following :

Let A € ky,, we want to calculate the square root of A4, i.e. VA.

If Ais a square in ky, i.e. A = a® with a € ky,, then VA = a (we show below
how a square root of A can be find in k).

If A is not a square in ky, the calculation of v/A introduces a new quadratic
extension : kni1 = kn[\/an] where a,, = A and we get VA : (0,1), ;-

We have now to show how to compute a square root in k,. This is the par-

ticularity of constructible number : explicit square root can be obtained, if one
exists.

Let A € ky, is there a € k, such that a®> = A ? Consider the following cases :

n=0k,=ko=0Q .
Then A is rational, i.e. A = X/Y with XY integer and ged(X,Y) = 1,
X>0,Y>0.
Then a square root of A exists if and only if X and Y have a square root in
N. Thus, if X = 22, Y = y? then A = a® with a = z/y, (we always choose
the positive root). Calculation of integer square root can be found in [Rol87].
n>0.
Then a = a; + az * \/a,—1 with a1, a2 € kn—1.
A is a square in k,, if and only if there are x,y € k,,_1 such that :

A= (@tyxya)® ()

Rewriting this equation as an equation in vector space k,, over k,_, we get :

a1 =22 + y2an_1 1)
ay = 2zy

We have to consider different cases in order to solve this non-linear system
of equations.
as = 0.
Then A is a square in k,, if and only if z =0 or y = 0.
Assume x = 0 then A is a square in k, if and only if A/«a,_1 is a square
in kn—l .
Assume y = 0 then A is a square in k,, if and only if A is square in k,_1.
az 7é 0.
Then we have to solve the following equation, obtained from (1) by
substitution of x :

yvian_ 1 —ay® + (a2)?/4=0 (2)
We note Y = ¢2. This leads to the second degree equation :
Yian_1 —a1Y + (a2)*/4=0 (3)

whose discriminant is : A = (a1)? — (a2)?a,_1.
A must be a square in k,_;. [proof : Actually, (1) has solution for the
variable y in k,,_1, is equivalent to (3) has solutions for the variable ¥
in ky_1. As A = (£20,_1Y — a1)?, with +20, 1Y —a; € k,_1, (1)
has solution implies that A has roots in k,_1. Conversely, if A has no
root in k,_; then (3) has no solution for Y in &, _1; therefore (1) has no
solution in k)
If, by recurrence, a root § of A is found in k,_1, then solutions for Y
are :

Y1 = (a1 +6)/2an_1, andYs = (a1 —0)/20,—1

Then square root y; et yo, of Y7 et Y5 in k,_q are calculated by recur-
rence. If square roots exist for Y7 or Y5 then y; and ys are solutions of
(1) in k,—1. If Y7 and Y5 are not squares in k,,_; then (1) has no solution
and A is not a square in k.

5.2 Examples with normal representation

Uniqueness of the representation Let us consider A and B defined in 4.6
with the new representation model. We compute successively :

Ro : (0, Dgrva = V2

Ry : ((0,0),(L,0)grmva = V3

Rz :((0,1),(1,0)grayys = V2+V3
R3: ((0,0),(0,D))grvmva = V6
Ry:((5,0),(0,2)opmvs = 5+2V6
Rs: ((0,1),(1,0))gvayva = B = V5 +2V6
Rs:((0,1),(1,0) grvzpvs = A= V2+V3

First we observe a diminution in the size of the representation. Secondly,
A = B is now quite trivial to check. The overconstraint A = B is reduced
without any extra algorithm.

Survey of 512 theorems in Euclidean geometry Two evaluations conclude
this article. First we have tested whether Euclidean configurations are really hard
or not. If they need too many quadratic extensions the exponential growth of the
representation of the constructible numbers will be a difficult task to cope with.
The second evaluation will test time needed for calculation with constructible
numbers in normal representation.

A survey over the 512 theorems of Euclidean geometry proved in [Chou88],
shows that :

— at least 479 theorems concern geometrical configurations where all coordi-
nates may be rational numbers,

— at most 29 theorems concern geometrical configurations where coordinates
need one quadratic extension,

— only 4 theorems need two quadratic extensions to represent coordinates of
all the elements.

Therefore, most of the geometrical configuration do not require quadratic
extension, just rational numbers. Almost all square root calculations done in
geometrical configuration, do not introduce quadratic extension, but remain ra-
tional numbers. But in few cases, an exact representation, with quadratic exten-
sion is required, for example with equilateral triangle (1 quadratic extensions),
or regular pentagon (2 quadratic extensions).

From a performance point of view, we have expressed and solved 30 config-
urations found in [Chou88] grouped in 3 sets. The first group contains the 10
configurations where Chou’s demonstrator spends the least time to prove the
corresponding theorem. The second group corresponds to the 10 times between
the 250 and the 260 time for Chou’s demonstrator. And last group corresponds
to the hardest theorems.

We obtain the following tables, where “Ex.” stands for the number given
in [Chou88] for the problem, “Tms” is the time needed for the calculation, and
“Ext.” is the number of quadratic extensions involved.

Group 1. Group 2. Group 3.
|Ex.|Tms|Ext.||Ex.| Tms|Ext.||Ex.| Tms|Ext.|
173|13 ms| 0 [[260] 5 ms| O ||440| 24 ms| O
86 [3ms| 0 ({90 6ms| 0 ||80 | 28 ms| O
141|6 ms| 0 |[{110{350 ms| 1 {|393|330 ms| 1
1405 ms| 0 ||339| 11 ms| O ({17 | 23 ms| O
193|7 ms| 0 ||116] 12 ms| O ({144 30 ms| O
92 |6 ms| 0 ||336] 10 ms| O ({347 31 ms| O
121|4 ms| O |({434| 13 ms| 0 ||401| 28 ms| O
181|7 ms| 0 |(82 6 ms| 0 ||396| 35 ms| O
31 |6 ms| 0 ||330] 13 ms| O |[{453] 18 ms| 1
37 |6 ms| 0 ||506| 15 ms| O ([316/ 40 ms| O

In group 1. the times to compute the configuration and to check numerically
the theorem are 100 times faster than Chou’s prover times. In the second group
times are 1000 times faster except for 110 which is only 10 times faster. In the
last group, speed-up are even more important. For 316, Chou’s prover needs
20058s.

Comparisons between numerical evaluations and proving times may seem a
bit tricky. But it is worth to recall that “Given a geometric proposition, we can
easily present a concrete numerical example such that in order to determine
whether the proposition is generally true, one need only to try this example”
from [Hon86]. Within the perspective of an Euclidean prover based on numerical
evaluations, the proposed comparison is worth considering.

From both theoretical and experimental point of view, the representation seems
appropriate.

6 Conclusion and further works

We have proposed a normal representation for constructible number occuring
in Euclidean geometry. This normal representation is compatible with linear
constraint solver and preserves correctness and completeness over constructible
numbers. The normal representation is also compatible with the quadratic con-
straint solver presented briefly in section 3. We have shown on 512 examples
that the complexity of the representation is not too high in general cases. We
have shown on 30 runtime examples that times consuming are closer to floating
point representation times, than to symbolic representation prover times. In con-
sequence, this approach seems appropriate. It is already used in one Intelligent
Tutoring System for geometry, see [A1193].

Our next goal is to introduce this exact arithmetic over constructible num-
ber in a Euclidean Prover based on numerical evaluations, cf. [Hon86, Dav77,

Chou92]. In future work we also plan to define a notion of constructible numbers
and a normal representation over finite fields, cf. [Nau85]

Open problem The main result of this paper relies on the possibility to find
explicit square root in algebraic extension of Q with square roots. Can this be
extended to root of arbitrary degree 7

References

[Al193] Allen, R., Idt, J., Trilling, L., Constrained based automatic construction and
manipulation of geometric figures, Proceedings of the 13th IJCAI Conference, Cham-
bery, Morgan Kaufmann Publishers, Los Altos, 1993.

[Bor85] Borodin, A., Fagin, R., Hopcroft, J.E., Tompa, M., Decreasing the nested depth
of expression involving square Toots, Journal of Symbolic Computation, no. 1 page
169-188, 1985.

[Chou92] S.C. Chou and X.S. Gao, Proving Geometry Statement of Constructive Type,
CADE, LNCS 607, D. Kapur Eds, 1992.

[Chou88] S.C. Chou, Mechanical Geometry Theorem Proving, D. Reidel Publishing
Company, 1988.

[Col90] A. Colmerauer, An Introduction to Prolog III, Commun. ACM, 28(4):412-
418,1990.

[Col93] A. Colmerauer, Naive Solving of Non-linear Constraints, Constraint Logic Pro-
gramming : Selected Research, F. Benhamou and A. Colmerauer eds, The MIT
Press, page 89-112, 1993.

[Dav77] Davis, P.J., Proof, Completeness, Transcendental, and Sampling. Journal of
the ACM, Vol. 24, no. 2, pages 298-310, 1977.

[Din88] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F.
Berthier. The Constraint Logic Programming Language CHIP, In Proceedings of
the Internationnal Conference on 5 Fifth Generation Computer Systems, Tokyo,
Japan, December 1988.

[Jaf92] J. Jaffar, S. Michaylov, P-J. Stuckey, , and R. Yap, The CLP(R) Language and
System. ACM Trans. on Programming Languages and Systems, 14(3):339-395,1992.

[Hon86] J. Hong, Proving by Ezample and Gap Theorems 27th An. Symp. on Founda-
tions of Computer Science, Toronto, Ontario, Canada, IEEE press, p107-116, Oct
1986.

[Lab95] J.M. Laborde, Des connaissances abstraites aux réalités artificielles, le concept
de micromonde Cabri, IVE™®® journées EIAO de Cachan, ed Eyrolles, 1995.

[Lan92] Landau, S., Simplification of nested radicals, SIAM Journal of Computing Vol
21, no.1 page 85-110, February 1992.

[Leb92] Lebesgue, H., Le¢ons sur les constructions géométriques, réédition, Gauthier-
Villard, Paris, 1989.

[Nau85] Naudin, P., Quitté, C. Algorithmique algébrique Collection Logique mathéma-
tiques informatique, édition Masson, pages 312-324, 1985.

[Pes95] Pesant, G., Une approche géométrique auz contraintes arithmétiques quadra-
tiques en programmation logique avec contraintes These de I’Universite de Montréal,
1995.

[Rol87] Rolfe, T., On a fast integer square root algorithm. ACM SIGNUM Newsletter,
Vol. 22, no. 4, pages 6-11, 1987.

This article was processed using the BTEX macro package with LLNCS style

