N

N

An Application of CLP: Checking the Correctness of
Theorems in Geometry

Denis Bouhineau, Laurent Trilling, Jacques Cohen

» To cite this version:

Denis Bouhineau, Laurent Trilling, Jacques Cohen. An Application of CLP: Checking the Correctness
of Theorems in Geometry. Constraints, 1999, 4 (4), pp.383—405. hal-00961981

HAL Id: hal-00961981
https://hal.science/hal-00961981
Submitted on 25 Mar 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-00961981
https://hal.archives-ouvertes.fr

1-24 ()
’)
© Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

An Application of CLP:
Checking the Correctness of Theorems
in Geometry

DENIS BOUHINEAU denis.bouhineau@irin.univ-nantes.fr
IRIN, University of Nantes, France

LAURENT TRILLING laurent.trilling@imag.fr
LSR-IMAG University of Grenoble, France

AND JACQUES COHEN jcQcs.brandeis.edu
Brandeis University, Waltham, Massachusetts, USA

Keywords: constraints, planar Euclidean geometry, theorem verification, symbolic representation
of radicals using rationals, unification.

Abstract. Constraint Logic Programming can be advantageously used to deal with quadratic
constraints stemming from the verification of planar geometry theorems. A hybrid symbolic—
numeric representation involving radicals and multiple precision rationals is used to denote the
results of quadratic equations. A unification-like algorithm tests for the equality of two expres-
sions using that representation. The proposed approach also utilizes geometric transformations to
reduce the number of quadratic equations defining geometric constructions involving circles and
straight lines. A large number (512) of geometry theorems has been verified using the proposed
approach. Those theorems had been proven correct using a significant more complex (exponential)
approach in a treatise authored by Chou in 1988. Even though the proposed approach is based
on verification -rather than strict correctness utilized by Chou- the efficiency attained is polyno-
mial thus making the approach useful in classroom situations where a construction attempted by
student has to be quickly validated or refuted.

1. Introduction

This paper describes a novel application of Constraint Logic Programming (CLP)
languages: verifying the correctness of theorems in two dimensional geometry in-
volving straight lines and circles. The well known Constraint Logic Programming
Languages (e.g., Prolog Il and IV, CLP(R), Chip) can handle the test of satifi-
ability of systems of linear equations describing straight lines. However, the case
of circles can only be handled in particular cases where linearization of quadratic
equations becomes feasible by resorting to lazy evaluation techniques (freeze.)
Furthermore, in the case of theorem verification, it is essential to utilize multi-
ple precision to avoid floating point representations for which equality cannot be
resolved without specifying approximations. From the above mentioned CLP lan-
guages, Prolog III and IV feature multiple precision rational solutions of systems of
linear equations and are therefore appropriate for checking equality of linear terms.

However, in handling quadratic equations generated by the specification of circles,
general solutions can only be expressed in terms of square roots, and that mode of
expression is unavailable in Prolog III or IV. In Prolog IV one may resort to the
use of numeric intervals but again the problem of equality of expressions cannot, in
general, be resolved using intervals without approximations.

From a CLP point of view, one of the contributions of this paper is to extend the
capabilities of a constraint language using multiple precision and linear equations
to the case of the numeric determination of equality between expressions containing
radicals (square roots.) Note that the radicals may themselves contain embedded
radicals.

What is needed is a “unification-like” algorithm capable of solving quadratic equa-
tions and determining if two expressions containing radicals are exactly equal. In
this work this is accomplished using a hybrid numerical-symbolic form by express-
ing radicals in terms of square roots of certain integers. A unification-like recursive
algorithm is then used to solve quadratic equations and check precisely the equality
of expressions.

Another contribution of this paper is the reformulation of the checking of satis-
fiability of mixed systems of linear and quadratic equations. By reformulation it
is meant the careful generation of quadratic equations and linear equations rep-
resenting a given theorem. It is shown that — in the case of geometry theorem
verification — the checking of correctness using the proposed approach is applicable
to all the 512 theorems considered in a classic treatise authored by Shang-Ching
Chou [Chou-88] and the vast majority can be handled using only linear equation
solving.

Those theorems had been proved “valid” using strictly symbolic manipulation,
which is much costlier time-wise than the approach described in this paper. It
should be remarked that the purely-symbolic approach used by Chou may yield
results that are only valid in a complex domain; on the other hand the approach in
this paper only checks the correctness of theorems that are specified using arbitrary
numerical values representing the positions of lines and circles.

Presently, there are three approaches for solving problems involving quadratic
constraints. These approaches are considered below in decreasing order of com-
plexity and generality.

a. The Grobner bases method [Kutzler-88]. This approach is the most
general, and the most costly computationally. It can handle any poly-
nomial constraints. Its inconvenient is that it may respond affirmatively
to the validity of a theorem whose geometrical construction is only well-
founded in the imaginary domain.

b. G. Pesant’s method [Pesant-95]. This approach is the most general
for processing quadratic constraints. It classifies a system of quadratic
constraints into several classes including those for which there exist only
complex solutions. Nevertheless, there are cases in which one has to
resort to the use of approximations and specify a small value establish-
ing the allowable difference between two real numbers that should be
equal. In those cases, the equality of two expressions involving radicals
can only be done approximately.

c. The proposed method. It can deal with a fairly large class of problems
involving a mixture of quadratic and linear constraints. It succeeds in
practically all cases in which the lazy evaluation method (used in CLP
languages) leads to a failure due to its inability to express radicals. The
method’s only inconvenient is that, in certain (rare) cases, it may result
in an exponential explosion of the number of nested radicals needed to
represent a real number.

It is an often the case that one should not use a powerful but costly general algo-
rithm to solve instances of a particular problem for which simpler algorithms exist.
That premise is satisfied by adopting approaches b. and c. However, Pesant’s
method cannot avoid handling approximations. Furthermore, the existence of CLP
languages, and the ease of implementation to verify theorems in geometry, amply
justifies adopting the proposed approach.

Also notice that, in proving theorems in geometry, it is often assumed that some
of the objects can be placed at fixed positions without loss of generality. (Say, one
of the circles has its center at coordinates (0,0)) Such procedure is valid even when
using the Grobner basis approach.

The present authors also want to make it very clear that, the verification of the
validity of a theorem — bypassing an actual formal proof —is an important topic that
is often informally used in a classroom setting. Assume that a student proposes
a new construction aiming to prove a given theorem. A quick counter-example
usually suffices to redirect the student towards trying another construction. It is in
that context that the proposed approach is of greatest value. Also, in that context,
it is appropriate to verify a geometric property on a figure before proceeding to a
formal proof of that property.

2. Comparison with Existing Approaches

In [Chou-88], a treatise on the automatic proofs of planar geometry theorems,
Shang-Ching Chou used exponential algorithmic methods to assert the validity of
512 theorems in that area of geometry.

Chou’s approach is based on Wu’s methods [Wu-94] that are applicable to combi-
nations of quadratic and linear equations with symbolic coefficients. Chou’s method
insures that the geometric constructions expressed by those equations result in an
equation expressing the property that one wishes to prove. In other words, the
equation stating the main property desired in the proof is redundant vis-a-vis the

equations specifying the constructions needed to state the theorem. Basically, the
proof corresponds to determining the equality of two formulas containing the vari-
ables of the problem. Equivalently, one can replace that problem by one in which
the difference of two formulas (a polynomial) is shown to be always equal to zero.

The algorithms used by Chou are purely symbolic (i.e., based on Wu’s algorithm)
and very likely have worst-case exponential complexity. This is not unusual in alge-
braic theorem proving, where algorithms may have doubly exponential complexity
[Dubé, Yap-94].

The constraints expressing circles and lines are based on those objects being
placed in arbitrary positions. Therefore, even straight lines are expressed by quad-
ratic constraints since the variables a and z in the equation y = ax+b are unknown.
These equations are referred to as pseudo-linear. Note however that quadratic con-
straints representing circles do not result in cubic equations because the coefficients
of squares are equal to one.

A first step in reducing the complexity of the proof is to assume that circles and
straight lines which are used in the construction are placed in positions defined by
numeric coordinates. We call this approach geometric theorem checking. It implies
that, in some cases, the arbitrary choice of numeric coefficients might result in
proving special instead of general cases of a theorem. In other cases the verification
of a theorem using a carefully selected numeric example can yield a general proof
[Hong-86], and [Deng, Zhang, Yang-90].

Note also that even in the case of using arbitrary numeric coefficients, a resulting
failure in proving a theorem corresponds to determining a contradiction which is
always useful in detecting the falsity of a conjectured theorem. Such approach is
particularly advantageous when using CLP (Intervals) [Benhamou-94].

In the teaching of geometry one can also conveniently use numeric —instead of
symbolic— values for the positions of objects in a proof [Allen, Idt, Trilling-93]. In
that context both student and teacher are entitled to use numeric coefficients in
outlining the constructions pertaining to a proof. The teacher has to insure the
correctness of the constructions utilized by students who may use different numeri-
cal values. This implies solving numerous sets of possibly redundant quadratic and
linear equations with some (but not all) numeric coefficients.

The goal of this paper is to show that, by using carefully designed hybrid numeric-
symbolic algorithms, one can escape the curse of exponentiality in checking quad-
ratic constraints of most geometric problems. Of the 512 problems suggested by
Chou, the vast majority (487 problems) can be handled using strictly linear equa-
tion solving in the realm of rationals. That processing by Gauss-like methods has
polynomial complexity. The remaining 25 problems can be solved using the repre-
sentation detailed in the next section.

The following sections describe: (1) the number representation proposed in this
work, (2) a classification of the geometric problems being considered, (3) the pro-

posed algorithm which was implemented using Prolog III as the CLP language
of choice, and (4) the strategies for generating the constraints. Examples are in-
terspersed among the various sections. The final sections present the results and
include the final remarks.

The reader is referred to the Appendices that contain two illustrative examples.
Appendix A illustrates the inadequacy of using a symbolic package, like Maple,
in testing for the equality of two expressions containing radicals. Appendix B
illustrates the approach utilized by Chou in proving a theorem that is verified
using the proposed approach (Section 6.4)

3. Number Representation
3.1. An example

The following example illustrates the problems of using floating point operations
to compute values of variables. Consider the expression, [Dubé, Yap-94] :

f =333.750% + a®(11a®b* — b® — 1210* — 2) + 5.50° + a/2b
where a = 77617 and b = 33096

The value of f is computed to be:
e 1.172603 in the case of an IBM 370,
e -1.18059e+21 using IEEE double precision,

e -.99999...999998827e+17 using Maple with 20 significant dig-
its,

e -0.83 using Mathematica with a 2 digits accuracy, while oper-
ations are performed with 40 digits

The true value of f using the first 20 significant digits is:
—0.827396059946821368141165095479816291999

Obviously, there are great discrepancies among the above representations. There-
fore, the problem of checking the equality of two arithmetic terms cannot be done
accurately without using some approximation that may well distort the meaning of
equality.

The above examples show the inadequacy of floating point representations in ac-
curately testing the equality of two expressions. This problem is particularly accute
when attempting to refute a proof of a theorem in geometry. If the equality of two
expressions can only be made with a certain degree of precision, then a construc-
tion cannot be proved false, especially in the case where substantial rounding errors
creep into the computations.

In this work we are interested in representations for arithmetic expressions con-
taining radicals so that the equality between expressions can be determined exactly
with a boolean answer “yes”, or “no”.

3.2. Number representation

The above problem of determining the equality and disequality of square roots of
rational numbers is by no means trivial [Landau-92]. It amounts to checking, using
a computer, if two numbers are identical. Equality on rationals can be checked if
the numbers are expressed with multiple precision. However, when square roots are
performed, the resulting floating point representations prevent checking for exact
equality. Therefore, an important problem to be dealt with is finding representa-
tions of real numbers involving square roots that insure a correct testing for equality
or disequality.

Real numbers belonging to the algebraic extension of the rationals Q using a
single square root can be expressed by:

p+qVr

where p and ¢ are rationals and r is not a square. The equality of the real numbers
whose representations have the same square roots can therefore be expressed by:

pravr=p +dVvr

implying that p =p', ¢ = ¢'.
Unfortunately, one cannot fully escape exponentiality using this notation. For
example, the real number with double square roots will be expressed by:

P+ avr)+ @ +dVr)vr

containing the four numeric rational coefficients p, ¢, p’, ¢'. If nested multiple square
roots are required, the complexity for storing and processing equality or disequality
becomes exponential with the number of square root operations [Bouhineau-97].

So, we have to compute in the quadratic extension Ko = Q, K1 = Q[\/ao] , .-,
K, = Kn,l[\/m] where K, is an algebraic extension over K, _; and a,_; is a
positive element of K,, 1 and has no square root in K,, 1. Let us denote by SR-var
a variable of K, i.e., of the form: p+ ¢/r where p, ¢, and r are either rationals or
SR-var’s. The acronym SR stands for Square roots involving Rationals.

Note that SR-variables are bound to real constant numbers expressed in a hybrid
form of sums and products of rationals which can be “symbolically” multiplied by
the square root of an SR number. Therefore, SR-variables are bound to constants,
i.e., hybrid representations of rational numbers defined by the following syntax:

<SR-number> = <SR-number> <op> <SR-number> /< SR-number >
<SR-number> ::= rational number
<op> n=4 | =

This representation parallels that of complex numbers.

3.8. Arithmetic Operations Involving SR-variables

Operations on K, are defined recursively from operations in K,_;(proofs appear
in [Bouhineau-97].)

3.8.1. Addition

p+avr)+ @ +dVr)=@+p)+ @+ d)Vr

3.3.2. Multiplication

(p+aVr)p' +q'Vr)= (' +ad'r) + (pd + ' O)Vr

3.3.8. Negation
—(p+avr) = (=p) + (—)v/T

3.3.4. Inverse

1 p q
prosi F-rE oY

3.3.5. Sign
Sign(p + q\/r) = Sign(p) when (pg > 0)

or else

= Sign(p(p” — rq®)) when (pg < 0)

3.3.6. Square Root

Vpt+avr=z+yJr

when A = p? — r¢? has a square root § in K,,_; and Y = (p + §)/2r has a square
root y in K,,_; and then z = ¢q/2y,

or else
Vp+a/r=0+1Vr

with ' = p+ g7 in K1 = Ku[Vr']

3.3.7. Ezamples with a =2+ 35 and b =6+ 2v/5 in Q[V/5]

e a+b=8+5/5

o ab=42+225

e —a=-2-3/5

o 1/a=—-2/41+3/41\/5
e Sign(a) = positive

e Sign(b) = positive

e Ja = V2 +3vV5 in Q[\/g, \/2+3\/E_)] because a is not a
square in Q[v/5]

e Vb=1+5

Note that when multiplying two SR-vars one has to perform 5 multiplications.
That introduces a 5™ component where m is the number of nested square roots; m
should be small, otherwise the computation is becomes too costly. This implies that
it is possible to construct unusual examples that require exponential complexity.
It will be seen in Section 7 and 8 that these cases do not occur in any of the 512
examples considered by Chou, when processed according to the strategies described
in this work.

4. Nature of Geometric Problems

The geometric problems considered in this paper can be classified according to the
nature of the objects involved in geometric constructions. Among the two dozen
constructions utilized by Chou, there are five that yield quadratic constraints whose
number can be reduced by transformations. These five cases are subdivided into
two classes.

4.1. Intersection of objects

a. A point belongs to the intersection of a line S and a circle C'.

b. A point belongs to the intersection of two circles C; and Cs.

Notice that case (4.1.b) of the intersection of two circles can be reduced to the
case of the intersection of a line and a circle (4.1.a) by considering the line passing
through the intersection of the two circles.

4.2. Other constructions

a. Consider an arbitrary point belonging to a circle C'.

b. Construct the bisectrix of an angle specified by the intersection of
two lines S; and Ss.

c. Given a point P and a circle C, construct the so called inverse point
P’ (the notion of inverse will be detailed in Section 6).

Many of Chou’s problems can be specified using the above classes and result
in algebraic representations having a significantly reduced number of quadratic
constraints. The above cases could be scrutinized by a transformation algorithm
whose goal is to reduce the number of quadratic constraints by replacing, as much
as possible, the quadratic constraints by linear ones.

In view of the above, one can describe a geometric problem in terms of a triplet
< Q,L,V > where @ is a set of quadratic constraints on many variables including
those that represent arbitrary positions of objects (i.e., points, lines and circles);
L is a set of pseudo-linear equations in the sense that some of the coefficients of a
linear equation defining a straight line may still be unknown; finally, V' is a set of
numeric values chosen by the user to specify actual values for the variables defining
the position of arbitrary values for the objects considered in the problem.

In the next sections, we use the following abbreviations in dealing with the above
subcases:

Subcase la. Intersection line-circle.
Subcase 1b. Intersection circle-circle.
Subcase 2a. Arbitrary point on a circle.
Subcase 2b. Bisectrix.

Subcase 2c. Inverse point.

5. The Algorithm for Constraint Solving

Note that it is important to use a strategy that postpones (freezes) as much as
possible the processing of the quadratic constraints with the hope that their number
is reduced by assignments of variables to numeric values using the numeric data
supplied by the user and the linear constraints.

This strategy is similar to that used in languages with linear constraints solver
such as Prolog III and CLP(R) [Colmerauer-93], [Jaffar, Michaylov, Stuckey, and
Yap-92]. However, there is an important difference: the processors for those lan-
guages will not be able to handle strictly quadratic constraints that cannot be
linearized, whereas those constraints can be handled by the present approach.

10

The algorithm proper consists of two juxtaposed while statements embedded
within an external while statement that stops the iteration if a final solution has
been obtained. The first embedded while deals with pseudo-linear equations, the
second with quadratic constraints. The algorithm can be described by:

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

1
2
3
4.
9.
6
7
8
9

while a solution is not found do
beginloop0

replace the values of V' in @) and L
(this step may modify @ and L dynamically)
while there are elements in L do
beginloopl
check if an element [of L is of the form of a linear constraint
E?:l m;x; + p = 0 where p and the m;’s are SR-vars
if that is the case then
replace 21 by (—p— Y./, m;z;)/my in Q and L
(Gaussian elimination)
update L by removing [, and
postpone adding x; to V'
until all z;’s (2 <i < n) arein V;
exit by going back to loop0
endif
endloopl;
while there are elements in) do
beginloop?2
check if an element g of Q is of the form n; X2+nsX+ns =0
where the n;’s are SR-vars
if that is the case then
begin
solve for X computing X = p, + qu\/7 ;
(X now becomes an SR-var)
update @ by removing ¢, and adding X to V;
exit by going back to loop0
endif
endloop2

endloop0

Notice that in the case of checking redundant constraints, termination takes place
with the last constraint in @) or L being of the type U = U in which U is an SR-var.
The proofs of correctness for the verification of the equality appear in [Bouhineau-
97]. The proof of completeness of this algorithm is insured when V' is properly

11

initialized, because at least one element of) or L is found within the execution
of loop0. An additional test can be incorporated to stop the computation if an
SR-var has a large specified number of square-root embeddings.

Also notice that a crucial “filtering algorithm”, detailed in Section 6, is needed to
obtain the triplet < @, L,V > using the two cases (and subcases) described in the
previous section. Recall that the screening is needed to reduce as much as possible
the number of elements in Q.

A rough estimate of the complexity disregarding the multiple precision component
is as follows. Let m be the number of elements in @) , p the number of elements
in L. So the complexity would be roughly of the order of (m?p?) assuming that a
single SR-var is determined in each execution of loop0. The factor m? corresponds
to the elimination of quadratic constraints in loop2. This term corresponds to
the worst-case scenario in which a single quadratic equation is the last one to be
eliminated each time the loop2 is executed. In that case the complexity consists of
executing the loop: m + (m — 1) + ...1 = O(m?) times. The factor p* corresponds
to Gaussian elimination.

In what follows we provide the practical details of using a CLP language (Prolog
III) to verify a given theorem. The initial triplet < @, L,V > is input in the form
of a list containing sublists that specify the symbolic equations for the quadratic,
linear and bound variables pertaining to a given theorem. The above described
algorithm is then executed by “asserting” the values of L and V' so that the built-in
Gaussian elimination algorithm of Prolog III can compute the updated values for
V (lines 7 to 14 in loopl.)

The loop2 is executed by inspecting the contents of the sublist) and adding
whenever feasible the new semi-symbolic values for the X’s (lines 24 to 26.)

In the remainder of this section we present an example of the input and output of
the algorithm in processing a simple theorem. That example is followed by a short
subsection providing the arguments for a proof of correctness of the algorithm.

5.1. An Ezample

Consider the following theorem: Let M and M' be points on a circle C of center I
and radius R. Show that D, the perpendicular bisector of [M, M'] passes through
I

5.1.1. Direct translation A direct translation of the theorem statement yields
the following equations:

C:I1=(0,0,R=1

M = (X, 1/3) where (1) X2 + (1/3)2 =1

M' = (X,n,3/4) where (2) X2, +(3/4)* =1
D:Y = MyX + Py where (3) Mg = (X — X)/(3/4—1/3)

12

> M’

Figure 1 : Perpendicular bisector

and (4) Py = 1/2(1/3 + 3/4 — Mg(Xn + Xon'))
One wishes to insure that: (5) P; =0
The triplet < @, L,V > becomes: < {(1),(2)},{(3),(4)}, {(5)} >

Note that the coefficients 0,1,1/3,3/4 .. were arbitrarily chosen to facilitate the
reader’s understanding of the formulas.

5.1.2. Reformulation The proposed reformulation (see 6.1) of the above theorem
results in the triplet:

C:I=(1,0),R=

M = (X, Yn) where (1) Y, = 4/5X,,

and (2) 25/4 =Y, +5/4Xn,

M' = (er,Ym/) where (3) Ymr = 3/2Xm/

and (4) 2x2/3 =Y, +2/3X,,

D:Y = MyX + Py where (5) My = (Xp — X))V — Vi)

and (6) Py = 1/Q(Ym + Yo — Md(Xm + Xm’))

One wishes to insure that: (7) My = —Py

<Q,LV>: <{}{(1),(2),3),4),(5),(6), (7} {} >

The successive values for the triplets according to the proposed algorithm are:
<Q,L,V>— <{}{(2),3),4),(5),(6),(N},{} >

<@LV >—=<{}{(3),4 (6), (1)}, {Xm—i?,Y >
<Q7L7V>_><{}a{(4)7(5 7()} {X _41’ _41}>
<Q,L,V>—=<{}{(5),(6 },{Xm_41,Y —41,X b= V=21 >

)

); (5),
), (6)
,(6),(7)

2<3Q7L7V > =< {}7{(6)5(7)}7{Xm = %7Ym = i_(l)aX’m’ == Y’m’ =2 Md =
-3} >

<Q7L7V>_><{}7{(7)}7{Xm:%7Ym:i_(1)7Xm’ :iYm’ :QMd:
_ 23 P :§}>

2714 = 2

and (7) becomes the identity 23/2
are found.

23/2 thus checking that no inconsistencies

5.2. An Informal Proof of Correctness

The following arguments summarize the proof provided in [Bouhineau-97]:

1. The number of constraints processed within the main loop always
decreases.

2. The meaning of the transformed equations is always preserved.

3. The two basic geometrical constructions (intersection line-line, line-
circle) are correctly solved.

As a consequence, if there exists a geometrical construction applicable to a given
theorem statement that can be directly established using the two basic constructions
from that statement, the proposed theorem checker is guaranteed to find it.

6. Strategies for Generating the Constraints

As mentioned above, the strategy is to obtain the smallest number of constraints
in (). As seen in Section 4, the statement of a geometric problem may contain
the constructions la, 1b, 2a, 2b, 2c that introduce quadratic constraints. This
section presents geometric figure transformations allowing to statically reduce the
number of quadratic constraints. Let |S| indicate the number of elements in a set S.
The transformations allow |@| to be further reduced dynamically by the algorithm
in Section 5. It will be seen in Section 7 that the number of quadratic constraints
introducing square roots is significantly reduced in the case of Chou’s 512 problems.

The strategies corresponding to the cases and subcases of Section 4 can be de-
scribed by showing the transformation of an original triplet < @, L,V > into
< Q',L',V' > the latter being the one used by the algorithm of Section 5. There-
fore, |Q'| < |Q| and there are no constraints on the sizes of the other elements of
the triplets. In general though, it is likely that |L'| > |L|, and |V'| > |V].

Four transformations are presented in the sequel. The first two are called local
and the last two global. Local transformations are easily automated whereas global
are not. Local transformations are those which follow the original order of the
statement of a problem for generating the elements in Q, L and V. In contrast, global
transformations are those which have to alter the order of generation to fullfill the
goal of reducing |Q|. The global transformations are harder to automatize and may

14

require a shuffling of the order in which statements in Chou’s text are considered.
They will be described by specific examples.

A word about the potential for automating the global transformations is in order.
In that context, one should recall Daniel Bobrow’s seminal thesis [Bobrow-68] in
which a program reads the statements of simple algebra problems — using a natural
language pre-processor — and then translates them into a system of equations. The
transformations proposed herein could, in principle, be detected by a pre-processor
of natural language which would then generate the corresponding versions of the
equations minimizing the number of quadratic components. This, however, is in
itself a sizable project beyond the objectives of the present paper.

There is of course a relationship between a given geometric figure F' generating
the triplet < @, L,V > and its counterpart F' generating < Q', L', V' > . In this
presentation we have chosen to depict the figures and the triplets corresponding to
the case 2a of Section 4 : arbitrary point on a circle. For the subcase 2c : inverse
point, only F' and F' are presented; for the remaining cases only F' is presented.
The reader should have no difficulty in reconstructing the corresponding triplets.

6.1. Arbitrary Point on a Circle

The figures representing F' and F’ for the subcase 2a namely, —“Consider an arbi-
trary point M on a circle C”— are presented below with their corresponding triplets.
In the figure depicting F', a point having an arbitrary abcissa x is considered and
the corresponding value of y is expressed in terms of square roots of . In contrast,
the construction in the figure representing F’ considers an arbitrary line D passing
through the point R. R’ is the symmetric of R with respect to the center of the
circle. The projection of R’ on D defines the point M on the circle that can be
represented by rational numbers.

6.1.1. Figure F for the Subcase 2a : Arbitrary point on a Clircle
Coordinates of the objects :

C : (Xc,YO),
R:(XR,YR),
M: (X,Y)

Triplet < @, L,V > :

Q: (Xo—X)*+ (Yo ~Y)*=(Xc — Xg)* + (Yo — Yr)®

L : empty

V:iXe=..,.Yo=.,Xp=.,Yp=.,X = ...

where the ellipses denote a rational number, or in general, an SR-number

6.1.2. Figure F' Arbitrary point on a Circle
Coordinates of the objects :
C: (Xc,YO),

15

Figure 2 : Arbitrary point on a circle

R:(XR,YR),
R": (Xp,Yr),
M : (X,Y),

D : (MD,PD),
DI . (MD/,PD/)

Triplet < Q', L', V' > :

Q' : empty

L' : Xp+Xp =2X¢

Yr +Yr =2Y¢

Yr = XgrMp + Pp

MpMp = —1 (perpendicular)

Yr = Xp Mp + Pp

Y =XMp+ Pp

Y =XMp + Pp

V': Xe = ...,Yc = ..,Xgr =Yg = ..., Pp = ... where the ellipses are SR-
numbers.

In this case the previous quadratic constraint is simply eliminated.

Remark that in two cases (2b and 1a) the constructions contain the same objects
but those in F' are considered in an ordering that is guaranteed to decrease |Q’|
when the algorithm of Section 5 is executed.

16

L - >
Figure 3 : Arbitrary point on a circle using rational numbers

6.2. Inverse points

This case involves the construction of the inverse of a point N with respect to a
circle C. That point is denoted by M and is obtained as follows (Figure 4.) If N
is inside the circle C', construct the line D passing through N and the center of the
circle. The perpendicular to D from N intersects the circle at the point P. The
tangent T' to the circle from P intersects D at the desired inverse point M. It can
be shown that this construction involves processing square roots.

A
|
| T

- - =

Figure 4 : Construction of the inverse of a point with respect to a circle

17

The alternate construction representing F' is as follows (Figure 5): consider a
horizontal axis H passing through the center of the circle. The inverse point M is
obtained by an algebraic computation defined by:

R2
oNz (1)
where R is the radius of the circle and C'N is the length of the segment C'IV.
This computation involves only rationals. Y}, is determined as the point on the
line C'N having X, as abcissa.
Proof:
Let us introduce a horizontal line H passing through the center of the circle and
consider the angle a = (NCH), cos(a) = X8=Xe (ON = Xx=Xc and OM =

CN cos(a)
XCI‘;’;(D)(()C (see Figure 5.)

N and M are inverse with respect to C when :

XM :Xc+(XN—Xc)

CN xCM = R?
that is
Xy —Xeo Xu—Xc _ R
cos(a) cos(a)
since cos(a) = %,
CN
Xy —Xo)(Xy — Xo)(=——=—)*=R?
(Xn — Xe)(Xnm C)(XN_XC) R
then NV and M are inverse with respect to C when
R2
Xy —Xeo=(Xn— Xc)m

which is equivalent to (1)

6.3. Bisectrices

This subcase appears, for example, in the following theorem [Chou-88] :
Theorem 111: Let D be the intersection of the bisectrix of the angle A in the
triangle ABC with the side BC; let E be the intersection of the circle passing
through A,B, and C' and the line passing through AD. Show that AB.AC =
AD.AE (i.e., the ratio of the lenghts AB and AD equals the ratio of the lengths
AFE and AC)

In the theorem, subcase 2b corresponds to the construction of the bisectrix of the
angle A in the triangle ABC'. The construction proposed by Chou is quadratic and

18

i
|
|

- - =
Figure 5 : Construction of the inverse of a point with respect to a circle using
rational numbers

follows the constructions enunciated in the theorem. A linear rational version of
the theorem is as follows:

Let A, B, and E be three arbitrary points. Construct the line AC' symmetrical
to AB with respect to AE. One should point out that C' is at the intersection of
the circle passing through the points A, B, and E, and the line symmetrical to
AB with respect to AE. D is the intersection of the lines passing through BC and
AE. All these constructions involve linear equations. Remark that the construction
assigns, as desired, rational coordinates to C provided that those of the initially
given points A, B and E are rational.

Figure 6 : Construction corresponding to Theorem 111.

19

6.4. Intersection line-circle

This subcase appears, for example, in the following theorem (see Figure 7):
Theorem 108: Let C' be the middle of the arc AB of a circle with center O. D
is a point on the circle. (AB) meets (C'D) at E. Show that CA? = CE . CD.

Subcase 1la corresponds to the construction of C' which is the intersection of a
circle with center O and the perpendicular bisector of AB. The quadratic solution
proposed by Chou consists of considering two arbitrary points A and B, and de-
termining the midpoint M of AB. The perpendicular to AB through M contains
a selected point O which is the center of the circle. The point C' is the intersection
of the circle with the perpendicular.

The linear solution is:

Let A and B be arbitrary points and determine as before the middle point M of
AB. Select a point C in the perpendicular to AB passing through M. The point
O can then be determined by the intersection of the perpendicular bisectors of the
segments AC and CB.

Figure 7: Constructing the middle of an arc (Theorem 108)

7. Results

The results of applying the preprocessing —based on the classification given in Sec-
tion 4— and the described algorithm are shown in Table A. The contents of the table
indicate the nature and the number of problems considered by Chou. The various
columns (a total of 12) in that table correspond to the actual number of embeddings
in the multiple square root representation of rational numbers. The maximum value
12 is difficult to process in reasonable time due to the space and time complexity
involving up to 2'2 = 4, 096 rational numbers for a single SR-variable.

20

| n o 1 2 3 4 5 6 7 8 9 10 11 12|
Q(n) 202 28 8 8 55 35 11 2 8 5 5 0 1
Maz(n) 334 96 42 15 2 2 1
Loc(n) 441 57 11 3

Glob + Loc(n) | 487 25

Table A

Notation:

Q(n) the number of cases (among the 512 problems) that re-
quire the solution of n quadratic constraints without using the
transformations in Section 6.

Mazx(n) the number of cases that require the introduction of n
nested square roots without using the transformations in Sec-
tion 6.

Loc(n) the number of cases that require the introduction of n
nested square roots using local transformation for cases 2a:
arbitrary point on a circle and 2c: inverse point described in
Section 6.

Glob(n) the number of cases that require the introduction of n
nested square roots and that benefit from global transforma-
tions described in Section 6.

The reduction in complexity due to the preprocessing using the subsets of the
cases in Section 4 are shown in the rows of table A. The final row shows that the
combined usage of all cases in Section 6 results in reducing the vast majority of
the problems proposed by Chou to solving linear equations where the complexity
is cubic. The remaining problems are handled using the un-nested square root
representation which also results in a polynomial complexity. In 10 of the above 25
problems, /7 turns out to be /3.

8. Final Remarks

One should first notice that the proposed method has two advantages over the
method used by Chou. The first is efficiency, and the second is the capability of
the present approach to detect complex solutions when square roots of negative
rationals are encountered. Chou’s solution checks for the existence of solutions
disregarding the fact that some of them are only true in the domain of complex
numbers. On the other hand it should be remarked that Chou solves a harder class
of problems by considering that objects are placed in arbitrary positions.

Although one cannot in principle extrapolate the results obtained in this work
to more complex cases, say of cubics, we feel that a case has been made for using

21

carefully applied classification rules, described in Section 4, that can be used to
reduce the complexity of an exponential problem.

Finally, it should be mentioned that Chou’s theorems were originally proposed
by humans who can make use of clever constructions to “manually” prove difficult
theorems. This may explain why non-exponential solutions are possible. This
situation parallels the one that happens when using the simplex method. Even
though the worst-case complexity of that method is exponential, most real practical
problems are solved in almost linear time.

Appendices

Appendix A presents a short account of an interaction with the Maple symbolic
package in trying to establish the validity of an equality involving expressions con-
taining radicals. The results clearly indicate that Maple even provides incorrect
results (false) when asked to check for the equality of two symbolic formulas. Nev-
ertheless, when asked to evaluate the two formulas in the case where all the variables
are bound to numbers, Maple indicates that the corresponding values are very close
to each other. These tests clearly indicate the need for representations like the one
proposed in this work.

Appendix B illustrates an example of Chou’s approach for the theorem that has
been verified using the proposed approach (Section 6.4.) We reiterate that these
two approaches are essentially different in the sense that the former attempts to
symbolically prove the validity of a theorem, whereas the latter verifies if a given
representation of the theorem, using constraints, is satisfiable or not. The former
is complex and time consuming, whereas the latter can quickly indicate, for a
vast majority of cases, if the constraints are unsatisfiable, thus revealing a false
hypothesis or construction by humans —typically students— in attempting to prove
a theorem.

Appendiz A

The following examples illustrate the inconsistencies of using Maple to check the
equality of two symbolic formulas containing radicals (from [Zippel-85]), namely:

V22 +2V5+ V5 and V11 +2v29 + \/16— 229 + 21/55 — 10v/29

The purpose of the built-in function ewvalb is to force evaluation of expressions
involving relational operators, using a three-valued logic system. The returns are
true, false, and FAIL. If evaluation is not possible, an unevaluated expression is
returned.

The query:

evalb(0=sqrt (22+2*sqrt (5)) +sqrt (5)
-sqrt (11+2*sqrt(29))
-sqrt (16-2*sqrt (29) +2*sqrt (565-10*sqrt (29))));

22

yields the erroneous value false. The correct result would be true or may be even

FAIL, the latter admitting the incapacity of Maple to make a decision.
Nevertheless, an attempt to evaluate the difference between the two formulas

utilizing purely numerical values (Maple’s eval f) yields a very small number :

evalf (sqrt (22+2*sqrt(5)) +sqrt(5)
-sqrt (11+2*sqrt(29))
-sqrt (16-2*sqrt (29) +2*sqrt (55-10*sqrt (29))),20);

-18
Result .1%10

Even if a higher accuracy is requested, Maple still finds that the two expressions
differ by a minuscule quantity.

evalf (sqrt (22+2*sqrt(5)) +sqrt(5)
-sqrt (11+2*sqrt (29))
-sqrt (16-2*sqrt (29) +2*sqrt (65-10*sqrt (29))) ,146) ;

-144
Result -.1%10

(It should be remarked that our version of Maple behaved erratically when asked
to further increase the accuracy of the quantity representing the difference between
the two given expressions, whose variables were bound to numeric values. We
noticed that, in certain cases, an increased specified accuracy would sometimes
-but not always- yield the value zero.)

Appendiz B

One of the theorems considered by Chou is transcribed below with the generation
of the polynomial equations needed to assert its validity.

Theorem 108: Let C be the midpoint of the arc AB of circle center O (see Figure
7.) D is a point on the circle. E = AB inter CD. Show that CA* = CE.CD

Points A, B are arbitrarily chosen. Points O, M, C, D, E are constructed (in order)
as follows: OA = OB; M is the midpoint of A and B; CO = OA; C is on line OM;
DO = OA; Eison line AB; E is on line CD. The conclusion is CA.CA = CE.CD

Let A = (0,0), B = (u1,0), O = (21,u2), M = (22,0), C = (z4,23), D = (25,u3),
E = (1‘6,0)

The reader should notice that the coordinates of the circle were taken to be
(0,0) without loss of generality. B is considered with a single arbitrary coordinate.

23

Therefore, Chou introduces the minimal number of symbolic parameters needed
to describe a general initial configuration needed to generate the equations whose
satisfiability constitutes the proof.

This is also the case of the proposed approach, except that those parameters are
given numerical values. This is consistent with our objectives of quickly verifying
the validity of constructions proposed by students attempting to prove theorems in
geometry.

The circle has to satisfy :
2t +ui = (21 —w)® + uj, (1)

The point M has to satisfy :

The point C' has to satisfy :

(21 — 24)” + (23 — u2)® = 27 + u3, (3)

T2T3 + Talz = T1T3 + TaUz, (4)
The point D has to satisfy :
(1 — 25)° + (uz — u3)? = ¥ + u3, (5)
The point E has to satisfy :
Tyuz + T4T6 = T5T3 + TeUs, (6)
The theorem is given by the equation :
(@3 +27)% = (23 —ua)® + (24 — 25)*) (24 — w6)” + 73), (7)
And the proof corresponds to the elimination of variables g, ..., z; in equation

(7) using the equations (6), ..., (1). If the resulting expression of (7) is of the form
0 = 0 then the theorem is valid.

References

[Allen, Idt, Trilling-93] Richard Allen, Jeanne Idt and Laurent Trilling, Constrained based au-
tomatic construction and manipulation of geometric figures, Proceedings of the 13th IJCAI
Conference, Chambery, Morgan Kaufmann Publishers, Los Altos, August 1993.

[Benhamou-94] Frédéric Benhamou, Interval Constraint Logic Programming, Constraint Program-
ming : Basics and Trends, pp 1-21, May , 1994.

24

[Bobrow-68] Daniel G. Bobrow Natural Language Input for a Computer Problem Solving System,
Semantic Information Processing, Marvin Minsky, ed., MIT Press, Cambridge, MA, 1968.

[Bobrow-68] Daniel G. Bobrow A Question-Answerer for Algebra Word Problems, Semantic In-
formation Processing, Marvin Minsky, ed., MIT Press, Cambridge, MA, 1968.

[Bouhineau-97] Denis Bouhineau, Construction automatique de figures géométriques & Program-
mation Logique avec Contraintes, Thése de ’Université J. Fourier de Grenoble, France, Juin
1997.

[Chou-88] Schang-Ching Chou, Large Mechanical Geometry Theorem Proving, Reidel Publishing,
Norwell, 1988.

[Colmerauer-93] Alain Colmerauer, Naive Solving of Non-linear Constraints, Constraint Logic
Programming : Selected Research, The MIT Press, Frédéric Benhamou et Alain Colmerauer
editors, pp 89-112, 1993.

[Deng, Zhang, Yang-90] Mike Deng, Jingzhong Zhang and Lu Yang, The parallel numerical method
of mechanical theorem proving Theoretical Computer Science No.74 pp. 253-271, 1990.

[Dube, Yap-94] Thomas Dubé and Chee Yap, Computing in Euclidean Geometry, The ezact
computation paradigm, World Scientific Press, editors D.Z. Du, F.K. Hwang, 7 [Jaffar, Michaylov,
Stuckey, Yap-92] J. Jaffar, S. Michaylov, P-J. Stuckey, and R. Yap, The CLP(R) Language and
System, ACM Trans. on Programming Languages and Systems, Vol. 14, No. 3, pp 339-395,
1992.

[Kutzler-88] Kutzler, Bernhard, Algebraic approaches to automated geometry theorem proving,
Ph. D thesis, RISC-LINZ, Johannes Kepler Univ., Austria, 1988.

[Landau-92] Susan Landau, Simplification of nested radicals, SIAM Journal of Computing Vol
21,Nol pp85-110, Feb 1992.

[Hong-86] Jiawei Hong, Proving by Example and Gap Theorems, 107-116, 27th Annual Symposium
on Foundations of Computer Science, Toronto, Ontario, Canada, IEEE, Oct. 1986.

[Pesant, Boyer-94] Gilles Pesant and Michel Boyer, Quad- Clp(R) : Adding the Power of Quadratic
Constraints, Proceedings of the Second Workshop on Principles and Practice of Constraint
Programming (PPCP’94), 1994.

[Pesant-95] Gilles Pesant, Une approche géométrique auz contraintes arithmétiques quadratiques
en programmation logique avec contraintes, These de 1’Université de Montréal, 1995.

[Wu-94] Wen-Tsun Wu, Mechanical Theorem Proving in Geometries, Springer-Verlag Wien New-
York, 1994.

[Zippel-85] Richard Zippel, Simplification of Ezpressions Involving Radicals, J. Symbolic Compu-
tation 1, 1985.

