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Abstra
t. Constraint Logi
 Programming 
an be advantageously used to deal with quadrati



onstraints stemming from the veri�
ation of planar geometry theorems. A hybrid symboli
{

numeri
 representation involving radi
als and multiple pre
ision rationals is used to denote the

results of quadrati
 equations. A uni�
ation{like algorithm tests for the equality of two expres-

sions using that representation. The proposed approa
h also utilizes geometri
 transformations to

redu
e the number of quadrati
 equations de�ning geometri
 
onstru
tions involving 
ir
les and

straight lines. A large number (512) of geometry theorems has been veri�ed using the proposed

approa
h. Those theorems had been proven 
orre
t using a signi�
ant more 
omplex (exponential)
approa
h in a treatise authored by Chou in 1988. Even though the proposed approa
h is based

on veri�
ation -rather than stri
t 
orre
tness utilized by Chou- the eÆ
ien
y attained is polyno-

mial thus making the approa
h useful in 
lassroom situations where a 
onstru
tion attempted by

student has to be qui
kly validated or refuted.

1. Introdu
tion

This paper des
ribes a novel appli
ation of Constraint Logi
 Programming (CLP)

languages: verifying the 
orre
tness of theorems in two dimensional geometry in-

volving straight lines and 
ir
les. The well known Constraint Logi
 Programming

Languages (e.g., Prolog III and IV, CLP(R), Chip) 
an handle the test of sati�-

ability of systems of linear equations des
ribing straight lines. However, the 
ase

of 
ir
les 
an only be handled in parti
ular 
ases where linearization of quadrati


equations be
omes feasible by resorting to lazy evaluation te
hniques (freeze.)

Furthermore, in the 
ase of theorem veri�
ation, it is essential to utilize multi-

ple pre
ision to avoid 
oating point representations for whi
h equality 
annot be

resolved without spe
ifying approximations. From the above mentioned CLP lan-

guages, Prolog III and IV feature multiple pre
ision rational solutions of systems of

linear equations and are therefore appropriate for 
he
king equality of linear terms.
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However, in handling quadrati
 equations generated by the spe
i�
ation of 
ir
les,

general solutions 
an only be expressed in terms of square roots, and that mode of

expression is unavailable in Prolog III or IV. In Prolog IV one may resort to the

use of numeri
 intervals but again the problem of equality of expressions 
annot, in

general, be resolved using intervals without approximations.

From a CLP point of view, one of the 
ontributions of this paper is to extend the


apabilities of a 
onstraint language using multiple pre
ision and linear equations

to the 
ase of the numeri
 determination of equality between expressions 
ontaining

radi
als (square roots.) Note that the radi
als may themselves 
ontain embedded

radi
als.

What is needed is a \uni�
ation-like" algorithm 
apable of solving quadrati
 equa-

tions and determining if two expressions 
ontaining radi
als are exa
tly equal. In

this work this is a

omplished using a hybrid numeri
al-symboli
 form by express-

ing radi
als in terms of square roots of 
ertain integers. A uni�
ation-like re
ursive

algorithm is then used to solve quadrati
 equations and 
he
k pre
isely the equality

of expressions.

Another 
ontribution of this paper is the reformulation of the 
he
king of satis-

�ability of mixed systems of linear and quadrati
 equations. By reformulation it

is meant the 
areful generation of quadrati
 equations and linear equations rep-

resenting a given theorem. It is shown that { in the 
ase of geometry theorem

veri�
ation { the 
he
king of 
orre
tness using the proposed approa
h is appli
able

to all the 512 theorems 
onsidered in a 
lassi
 treatise authored by Shang-Ching

Chou [Chou-88℄ and the vast majority 
an be handled using only linear equation

solving.

Those theorems had been proved \valid" using stri
tly symboli
 manipulation,

whi
h is mu
h 
ostlier time-wise than the approa
h des
ribed in this paper. It

should be remarked that the purely-symboli
 approa
h used by Chou may yield

results that are only valid in a 
omplex domain; on the other hand the approa
h in

this paper only 
he
ks the 
orre
tness of theorems that are spe
i�ed using arbitrary

numeri
al values representing the positions of lines and 
ir
les.

Presently, there are three approa
hes for solving problems involving quadrati



onstraints. These approa
hes are 
onsidered below in de
reasing order of 
om-

plexity and generality.

a. The Gr�obner bases method [Kutzler-88℄. This approa
h is the most

general, and the most 
ostly 
omputationally. It 
an handle any poly-

nomial 
onstraints. Its in
onvenient is that it may respond aÆrmatively

to the validity of a theorem whose geometri
al 
onstru
tion is only well-

founded in the imaginary domain.



3

b. G. Pesant's method [Pesant-95℄. This approa
h is the most general

for pro
essing quadrati
 
onstraints. It 
lassi�es a system of quadrati



onstraints into several 
lasses in
luding those for whi
h there exist only


omplex solutions. Nevertheless, there are 
ases in whi
h one has to

resort to the use of approximations and spe
ify a small value establish-

ing the allowable di�eren
e between two real numbers that should be

equal. In those 
ases, the equality of two expressions involving radi
als


an only be done approximately.


. The proposed method. It 
an deal with a fairly large 
lass of problems

involving a mixture of quadrati
 and linear 
onstraints. It su

eeds in

pra
ti
ally all 
ases in whi
h the lazy evaluation method (used in CLP

languages) leads to a failure due to its inability to express radi
als. The

method's only in
onvenient is that, in 
ertain (rare) 
ases, it may result

in an exponential explosion of the number of nested radi
als needed to

represent a real number.

It is an often the 
ase that one should not use a powerful but 
ostly general algo-

rithm to solve instan
es of a parti
ular problem for whi
h simpler algorithms exist.

That premise is satis�ed by adopting approa
hes b. and 
. However, Pesant's

method 
annot avoid handling approximations. Furthermore, the existen
e of CLP

languages, and the ease of implementation to verify theorems in geometry, amply

justi�es adopting the proposed approa
h.

Also noti
e that, in proving theorems in geometry, it is often assumed that some

of the obje
ts 
an be pla
ed at �xed positions without loss of generality. (Say, one

of the 
ir
les has its 
enter at 
oordinates (0,0)) Su
h pro
edure is valid even when

using the Gr�obner basis approa
h.

The present authors also want to make it very 
lear that, the veri�
ation of the

validity of a theorem { bypassing an a
tual formal proof { is an important topi
 that

is often informally used in a 
lassroom setting. Assume that a student proposes

a new 
onstru
tion aiming to prove a given theorem. A qui
k 
ounter-example

usually suÆ
es to redire
t the student towards trying another 
onstru
tion. It is in

that 
ontext that the proposed approa
h is of greatest value. Also, in that 
ontext,

it is appropriate to verify a geometri
 property on a �gure before pro
eeding to a

formal proof of that property.

2. Comparison with Existing Approa
hes

In [Chou-88℄, a treatise on the automati
 proofs of planar geometry theorems,

Shang-Ching Chou used exponential algorithmi
 methods to assert the validity of

512 theorems in that area of geometry.

Chou's approa
h is based on Wu's methods [Wu-94℄ that are appli
able to 
ombi-

nations of quadrati
 and linear equations with symboli
 
oeÆ
ients. Chou's method

insures that the geometri
 
onstru
tions expressed by those equations result in an

equation expressing the property that one wishes to prove. In other words, the

equation stating the main property desired in the proof is redundant vis-�a-vis the
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equations spe
ifying the 
onstru
tions needed to state the theorem. Basi
ally, the

proof 
orresponds to determining the equality of two formulas 
ontaining the vari-

ables of the problem. Equivalently, one 
an repla
e that problem by one in whi
h

the di�eren
e of two formulas (a polynomial) is shown to be always equal to zero.

The algorithms used by Chou are purely symboli
 (i.e., based on Wu's algorithm)

and very likely have worst-
ase exponential 
omplexity. This is not unusual in alge-

brai
 theorem proving, where algorithms may have doubly exponential 
omplexity

[Dub�e, Yap-94℄.

The 
onstraints expressing 
ir
les and lines are based on those obje
ts being

pla
ed in arbitrary positions. Therefore, even straight lines are expressed by quad-

rati
 
onstraints sin
e the variables a and x in the equation y = ax+b are unknown.

These equations are referred to as pseudo-linear. Note however that quadrati
 
on-

straints representing 
ir
les do not result in 
ubi
 equations be
ause the 
oeÆ
ients

of squares are equal to one.

A �rst step in redu
ing the 
omplexity of the proof is to assume that 
ir
les and

straight lines whi
h are used in the 
onstru
tion are pla
ed in positions de�ned by

numeri
 
oordinates. We 
all this approa
h geometri
 theorem 
he
king. It implies

that, in some 
ases, the arbitrary 
hoi
e of numeri
 
oeÆ
ients might result in

proving spe
ial instead of general 
ases of a theorem. In other 
ases the veri�
ation

of a theorem using a 
arefully sele
ted numeri
 example 
an yield a general proof

[Hong-86℄, and [Deng, Zhang, Yang-90℄.

Note also that even in the 
ase of using arbitrary numeri
 
oeÆ
ients, a resulting

failure in proving a theorem 
orresponds to determining a 
ontradi
tion whi
h is

always useful in dete
ting the falsity of a 
onje
tured theorem. Su
h approa
h is

parti
ularly advantageous when using CLP (Intervals) [Benhamou-94℄.

In the tea
hing of geometry one 
an also 
onveniently use numeri
 {instead of

symboli
{ values for the positions of obje
ts in a proof [Allen, Idt, Trilling-93℄. In

that 
ontext both student and tea
her are entitled to use numeri
 
oeÆ
ients in

outlining the 
onstru
tions pertaining to a proof. The tea
her has to insure the


orre
tness of the 
onstru
tions utilized by students who may use di�erent numeri-


al values. This implies solving numerous sets of possibly redundant quadrati
 and

linear equations with some (but not all) numeri
 
oeÆ
ients.

The goal of this paper is to show that, by using 
arefully designed hybrid numeri
-

symboli
 algorithms, one 
an es
ape the 
urse of exponentiality in 
he
king quad-

rati
 
onstraints of most geometri
 problems. Of the 512 problems suggested by

Chou, the vast majority (487 problems) 
an be handled using stri
tly linear equa-

tion solving in the realm of rationals. That pro
essing by Gauss-like methods has

polynomial 
omplexity. The remaining 25 problems 
an be solved using the repre-

sentation detailed in the next se
tion.

The following se
tions des
ribe: (1) the number representation proposed in this

work, (2) a 
lassi�
ation of the geometri
 problems being 
onsidered, (3) the pro-
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posed algorithm whi
h was implemented using Prolog III as the CLP language

of 
hoi
e, and (4) the strategies for generating the 
onstraints. Examples are in-

terspersed among the various se
tions. The �nal se
tions present the results and

in
lude the �nal remarks.

The reader is referred to the Appendi
es that 
ontain two illustrative examples.

Appendix A illustrates the inadequa
y of using a symboli
 pa
kage, like Maple,

in testing for the equality of two expressions 
ontaining radi
als. Appendix B

illustrates the approa
h utilized by Chou in proving a theorem that is veri�ed

using the proposed approa
h (Se
tion 6.4)

3. Number Representation

3.1. An example

The following example illustrates the problems of using 
oating point operations

to 
ompute values of variables. Consider the expression, [Dub�e, Yap-94℄ :

f = 333:75b6 + a
2(11a2b2 � b

6 � 121b4 � 2) + 5:5b8 + a=2b

where a = 77617 and b = 33096

The value of f is 
omputed to be:

� 1.172603 in the 
ase of an IBM 370,

� -1.18059e+21 using IEEE double pre
ision,

� -.99999...999998827e+17 using Maple with 20 signi�
ant dig-

its,

� -0.83 using Mathemati
a with a 2 digits a

ura
y, while oper-

ations are performed with 40 digits

The true value of f using the �rst 20 signi�
ant digits is:

�0:827396059946821368141165095479816291999

Obviously, there are great dis
repan
ies among the above representations. There-

fore, the problem of 
he
king the equality of two arithmeti
 terms 
annot be done

a

urately without using some approximation that may well distort the meaning of

equality.

The above examples show the inadequa
y of 
oating point representations in a
-


urately testing the equality of two expressions. This problem is parti
ularly a

ute

when attempting to refute a proof of a theorem in geometry. If the equality of two

expressions 
an only be made with a 
ertain degree of pre
ision, then a 
onstru
-

tion 
annot be proved false, espe
ially in the 
ase where substantial rounding errors


reep into the 
omputations.
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In this work we are interested in representations for arithmeti
 expressions 
on-

taining radi
als so that the equality between expressions 
an be determined exa
tly

with a boolean answer \yes", or \no".

3.2. Number representation

The above problem of determining the equality and disequality of square roots of

rational numbers is by no means trivial [Landau-92℄. It amounts to 
he
king, using

a 
omputer, if two numbers are identi
al. Equality on rationals 
an be 
he
ked if

the numbers are expressed with multiple pre
ision. However, when square roots are

performed, the resulting 
oating point representations prevent 
he
king for exa
t

equality. Therefore, an important problem to be dealt with is �nding representa-

tions of real numbers involving square roots that insure a 
orre
t testing for equality

or disequality.

Real numbers belonging to the algebrai
 extension of the rationals Q using a

single square root 
an be expressed by:

p+ q
p
r

where p and q are rationals and r is not a square. The equality of the real numbers

whose representations have the same square roots 
an therefore be expressed by:

p+ q
p
r = p

0 + q
0
p
r

implying that p = p
0, q = q

0.

Unfortunately, one 
annot fully es
ape exponentiality using this notation. For

example, the real number with double square roots will be expressed by:

(p+ q
p
r) + (p0 + q

0
p
r)
p
r0


ontaining the four numeri
 rational 
oeÆ
ients p, q, p0, q0. If nested multiple square

roots are required, the 
omplexity for storing and pro
essing equality or disequality

be
omes exponential with the number of square root operations [Bouhineau-97℄.

So, we have to 
ompute in the quadrati
 extension K0 = Q, K1 = Q[
p
a0℄ , ...,

Kn = Kn�1[
p
an�1℄ where Kn is an algebrai
 extension over Kn�1 and an�1 is a

positive element of Kn�1 and has no square root in Kn�1. Let us denote by SR-var

a variable of Kn, i.e., of the form: p+ q
p
r where p, q, and r are either rationals or

SR-var's. The a
ronym SR stands for Square roots involving Rationals.

Note that SR-variables are bound to real 
onstant numbers expressed in a hybrid

form of sums and produ
ts of rationals whi
h 
an be \symboli
ally" multiplied by

the square root of an SR number. Therefore, SR-variables are bound to 
onstants,

i.e., hybrid representations of rational numbers de�ned by the following syntax:

<SR-number> ::= <SR-number> <op> <SR-number>
p
< SR-number >

<SR-number> ::= rational number

<op> ::= + j �
This representation parallels that of 
omplex numbers.
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3.3. Arithmeti
 Operations Involving SR-variables

Operations on Kn are de�ned re
ursively from operations in Kn�1(proofs appear

in [Bouhineau-97℄.)

3.3.1. Addition

(p+ q
p
r) + (p0 + q

0
p
r) = (p+ p

0) + (q + q
0)
p
r

3.3.2. Multipli
ation

(p+ q
p
r)(p0 + q

0
p
r) = (pp0 + qq

0
r) + (pq0 + p

0
q)
p
r

3.3.3. Negation

�(p+ q
p
r) = (�p) + (�q)

p
r

3.3.4. Inverse

1

p+ q
p
r
=

p

p2 � rq2
�

q

p2 � rq2

p
r

3.3.5. Sign

Sign(p+ q
p
r) = Sign(p) when (pq > 0)

or else

= Sign(p(p2 � rq
2)) when (pq < 0)

3.3.6. Square Root q
p+ q

p
r = x+ y

p
r

when � = p
2 � rq

2 has a square root Æ in Kn�1 and Y = (p+ Æ)=2r has a square

root y in Kn�1 and then x = q=2y,

or else q
p+ q

p
r = 0 + 1

p
r0

with r
0 = p+ q

p
r in Kn+1 = Kn[

p
r0℄

3.3.7. Examples with a = 2 + 3
p
5 and b = 6 + 2

p
5 in Q[

p
5℄
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� a+ b = 8 + 5
p
5

� ab = 42 + 22
p
5

� �a = �2� 3
p
5

� 1=a = �2=41+ 3=41
p
5

� Sign(a) = positive

� Sign(b) = positive

�
p
a =

p
2 + 3

p
5 in Q[

p
5;
p

2 + 3
p
5℄ be
ause a is not a

square in Q[
p
5℄

�
p
b = 1 +

p
5

Note that when multiplying two SR-vars one has to perform 5 multipli
ations.

That introdu
es a 5m 
omponent where m is the number of nested square roots; m

should be small, otherwise the 
omputation is be
omes too 
ostly. This implies that

it is possible to 
onstru
t unusual examples that require exponential 
omplexity.

It will be seen in Se
tion 7 and 8 that these 
ases do not o

ur in any of the 512

examples 
onsidered by Chou, when pro
essed a

ording to the strategies des
ribed

in this work.

4. Nature of Geometri
 Problems

The geometri
 problems 
onsidered in this paper 
an be 
lassi�ed a

ording to the

nature of the obje
ts involved in geometri
 
onstru
tions. Among the two dozen


onstru
tions utilized by Chou, there are �ve that yield quadrati
 
onstraints whose

number 
an be redu
ed by transformations. These �ve 
ases are subdivided into

two 
lasses.

4.1. Interse
tion of obje
ts

a. A point belongs to the interse
tion of a line S and a 
ir
le C.

b. A point belongs to the interse
tion of two 
ir
les C1 and C2.

Noti
e that 
ase (4.1.b) of the interse
tion of two 
ir
les 
an be redu
ed to the


ase of the interse
tion of a line and a 
ir
le (4.1.a) by 
onsidering the line passing

through the interse
tion of the two 
ir
les.
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4.2. Other 
onstru
tions

a. Consider an arbitrary point belonging to a 
ir
le C.

b. Constru
t the bise
trix of an angle spe
i�ed by the interse
tion of

two lines S1 and S2.


. Given a point P and a 
ir
le C, 
onstru
t the so 
alled inverse point

P
0 (the notion of inverse will be detailed in Se
tion 6).

Many of Chou's problems 
an be spe
i�ed using the above 
lasses and result

in algebrai
 representations having a signi�
antly redu
ed number of quadrati



onstraints. The above 
ases 
ould be s
rutinized by a transformation algorithm

whose goal is to redu
e the number of quadrati
 
onstraints by repla
ing, as mu
h

as possible, the quadrati
 
onstraints by linear ones.

In view of the above, one 
an des
ribe a geometri
 problem in terms of a triplet

< Q;L; V > where Q is a set of quadrati
 
onstraints on many variables in
luding

those that represent arbitrary positions of obje
ts (i.e., points, lines and 
ir
les);

L is a set of pseudo-linear equations in the sense that some of the 
oeÆ
ients of a

linear equation de�ning a straight line may still be unknown; �nally, V is a set of

numeri
 values 
hosen by the user to spe
ify a
tual values for the variables de�ning

the position of arbitrary values for the obje
ts 
onsidered in the problem.

In the next se
tions, we use the following abbreviations in dealing with the above

sub
ases:

Sub
ase 1a. Interse
tion line-
ir
le.

Sub
ase 1b. Interse
tion 
ir
le-
ir
le.

Sub
ase 2a. Arbitrary point on a 
ir
le.

Sub
ase 2b. Bise
trix.

Sub
ase 2
. Inverse point.

5. The Algorithm for Constraint Solving

Note that it is important to use a strategy that postpones (freezes) as mu
h as

possible the pro
essing of the quadrati
 
onstraints with the hope that their number

is redu
ed by assignments of variables to numeri
 values using the numeri
 data

supplied by the user and the linear 
onstraints.

This strategy is similar to that used in languages with linear 
onstraints solver

su
h as Prolog III and CLP(R) [Colmerauer-93℄, [Ja�ar, Mi
haylov, Stu
key, and

Yap-92℄. However, there is an important di�eren
e: the pro
essors for those lan-

guages will not be able to handle stri
tly quadrati
 
onstraints that 
annot be

linearized, whereas those 
onstraints 
an be handled by the present approa
h.
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The algorithm proper 
onsists of two juxtaposed while statements embedded

within an external while statement that stops the iteration if a �nal solution has

been obtained. The �rst embedded while deals with pseudo-linear equations, the

se
ond with quadrati
 
onstraints. The algorithm 
an be des
ribed by:

1. while a solution is not found do

2. beginloop0

3. repla
e the values of V in Q and L

4. (this step may modify Q and L dynami
ally)

5. while there are elements in L do

6. beginloop1

7. 
he
k if an element l of L is of the form of a linear 
onstraint

8.
P

n

i=1
mixi + p = 0 where p and the mi's are SR-vars

9. if that is the 
ase then

10. repla
e x1 by (�p�
P

n

i=2
mixi)=m1 in Q and L

11. (Gaussian elimination)

12. update L by removing l, and

13. postpone adding x1 to V

14. until all xi's (2 � i � n) are in V ;

15. exit by going ba
k to loop0

16. endif

17. endloop1;

18. while there are elements in Q do

19. beginloop2

20. 
he
k if an element q ofQ is of the form n1X
2+n2X+n3 = 0

21. where the ni's are SR-vars

22. if that is the 
ase then

23. begin

24. solve for X 
omputing X = px + qx
p
r ;

25. (X now be
omes an SR-var)

26. update Q by removing q, and adding X to V ;

27. exit by going ba
k to loop0

28. endif

29. endloop2

30. endloop0

Noti
e that in the 
ase of 
he
king redundant 
onstraints, termination takes pla
e

with the last 
onstraint in Q or L being of the type U = U in whi
h U is an SR-var.

The proofs of 
orre
tness for the veri�
ation of the equality appear in [Bouhineau-

97℄. The proof of 
ompleteness of this algorithm is insured when V is properly
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initialized, be
ause at least one element of Q or L is found within the exe
ution

of loop0. An additional test 
an be in
orporated to stop the 
omputation if an

SR-var has a large spe
i�ed number of square-root embeddings.

Also noti
e that a 
ru
ial \�ltering algorithm", detailed in Se
tion 6, is needed to

obtain the triplet < Q;L; V > using the two 
ases (and sub
ases) des
ribed in the

previous se
tion. Re
all that the s
reening is needed to redu
e as mu
h as possible

the number of elements in Q.

A rough estimate of the 
omplexity disregarding the multiple pre
ision 
omponent

is as follows. Let m be the number of elements in Q , p the number of elements

in L. So the 
omplexity would be roughly of the order of (m2
p
3) assuming that a

single SR-var is determined in ea
h exe
ution of loop0. The fa
tor m2 
orresponds

to the elimination of quadrati
 
onstraints in loop2. This term 
orresponds to

the worst-
ase s
enario in whi
h a single quadrati
 equation is the last one to be

eliminated ea
h time the loop2 is exe
uted. In that 
ase the 
omplexity 
onsists of

exe
uting the loop: m+ (m� 1) + :::1 = O(m2) times. The fa
tor p3 
orresponds

to Gaussian elimination.

In what follows we provide the pra
ti
al details of using a CLP language (Prolog

III) to verify a given theorem. The initial triplet < Q;L; V > is input in the form

of a list 
ontaining sublists that spe
ify the symboli
 equations for the quadrati
,

linear and bound variables pertaining to a given theorem. The above des
ribed

algorithm is then exe
uted by \asserting" the values of L and V so that the built-in

Gaussian elimination algorithm of Prolog III 
an 
ompute the updated values for

V (lines 7 to 14 in loop1.)

The loop2 is exe
uted by inspe
ting the 
ontents of the sublist Q and adding

whenever feasible the new semi-symboli
 values for the X 's (lines 24 to 26.)

In the remainder of this se
tion we present an example of the input and output of

the algorithm in pro
essing a simple theorem. That example is followed by a short

subse
tion providing the arguments for a proof of 
orre
tness of the algorithm.

5.1. An Example

Consider the following theorem: Let M and M 0 be points on a 
ir
le C of 
enter I

and radius R. Show that D, the perpendi
ular bise
tor of [M;M
0℄ passes through

I .

5.1.1. Dire
t translation A dire
t translation of the theorem statement yields

the following equations:

C : I = (0; 0); R = 1

M = (Xm; 1=3) where (1) X2
m
+ (1=3)2 = 1

M
0 = (Xm0 ; 3=4) where (2) X2

m
0 + (3=4)2 = 1

D : Y =MdX + Pd where (3) Md = (Xm �Xm0)=(3=4� 1=3)
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C
M

M’

I
D

Figure 1 : Perpendi
ular bise
tor

and (4) Pd = 1=2(1=3+ 3=4�Md(Xm +Xm0))

One wishes to insure that: (5) Pd = 0

The triplet < Q;L; V > be
omes: < f(1); (2)g; f(3); (4)g; f(5)g >

Note that the 
oeÆ
ients 0; 1; 1=3; 3=4 .. were arbitrarily 
hosen to fa
ilitate the

reader's understanding of the formulas.

5.1.2. Reformulation The proposed reformulation (see 6.1) of the above theorem

results in the triplet:

C : I = (1; 0); R = 1

M = (Xm; Ym) where (1) Ym = 4=5Xm
and (2) 25=4 = Ym + 5=4Xm
M

0 = (Xm0 ; Ym0) where (3) Ym0 = 3=2Xm0

and (4) 2� 2=3 = Ym0 + 2=3Xm0

D : Y =MdX + Pd where (5) Md = (Xm �Xm0)=(Ym0 � Ym)
and (6) Pd = 1=2(Ym + Ym0 �Md(Xm +Xm0))

One wishes to insure that: (7) Md = �Pd

< Q;L; V > : < fg; f(1); (2); (3); (4); (5); (6); (7)g; fg >

The su

essive values for the triplets a

ording to the proposed algorithm are:

< Q;L; V >! < fg; f(2); (3); (4); (5); (6); (7)g; fg >
< Q;L; V >! < fg; f(3); (4); (5); (6); (7)g; fXm = 50

41
; Ym = 40

41
g >

< Q;L; V >! < fg; f(4); (5); (6); (7)g; fXm = 50

41
; Ym = 40

41
g >

< Q;L; V >! < fg; f(5); (6); (7)g; fXm = 50

41
; Ym = 40

41
; Xm0 = 8

13
; Ym0 = 12

13
g >
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< Q;L; V > ! < fg; f(6); (7)g; fXm = 50

41
; Ym = 40

41
; Xm0 = 8

13
; Ym0 = 12

13
;Md =

� 23

2
g >

< Q;L; V > ! < fg; f(7)g; fXm = 50

41
; Ym = 40

41
; Xm0 = 8

13
; Ym0 = 12

13
;Md =

� 23

2
; Pd =

23

2
g >

and (7) be
omes the identity 23=2 = 23=2 thus 
he
king that no in
onsisten
ies

are found.

5.2. An Informal Proof of Corre
tness

The following arguments summarize the proof provided in [Bouhineau-97℄:

1. The number of 
onstraints pro
essed within the main loop always

de
reases.

2. The meaning of the transformed equations is always preserved.

3. The two basi
 geometri
al 
onstru
tions (interse
tion line-line, line-


ir
le) are 
orre
tly solved.

As a 
onsequen
e, if there exists a geometri
al 
onstru
tion appli
able to a given

theorem statement that 
an be dire
tly established using the two basi
 
onstru
tions

from that statement, the proposed theorem 
he
ker is guaranteed to �nd it.

6. Strategies for Generating the Constraints

As mentioned above, the strategy is to obtain the smallest number of 
onstraints

in Q. As seen in Se
tion 4, the statement of a geometri
 problem may 
ontain

the 
onstru
tions 1a, 1b, 2a, 2b, 2
 that introdu
e quadrati
 
onstraints. This

se
tion presents geometri
 �gure transformations allowing to stati
ally redu
e the

number of quadrati
 
onstraints. Let jSj indi
ate the number of elements in a set S.

The transformations allow jQj to be further redu
ed dynami
ally by the algorithm

in Se
tion 5. It will be seen in Se
tion 7 that the number of quadrati
 
onstraints

introdu
ing square roots is signi�
antly redu
ed in the 
ase of Chou's 512 problems.

The strategies 
orresponding to the 
ases and sub
ases of Se
tion 4 
an be de-

s
ribed by showing the transformation of an original triplet < Q;L; V > into

< Q
0
; L

0
; V

0
> the latter being the one used by the algorithm of Se
tion 5. There-

fore, jQ0j � jQj and there are no 
onstraints on the sizes of the other elements of

the triplets. In general though, it is likely that jL0j � jLj, and jV 0j � jV j.

Four transformations are presented in the sequel. The �rst two are 
alled lo
al

and the last two global. Lo
al transformations are easily automated whereas global

are not. Lo
al transformations are those whi
h follow the original order of the

statement of a problem for generating the elements in Q, L and V. In 
ontrast, global

transformations are those whi
h have to alter the order of generation to full�ll the

goal of redu
ing jQj. The global transformations are harder to automatize and may
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require a shu�ing of the order in whi
h statements in Chou's text are 
onsidered.

They will be des
ribed by spe
i�
 examples.

A word about the potential for automating the global transformations is in order.

In that 
ontext, one should re
all Daniel Bobrow's seminal thesis [Bobrow-68℄ in

whi
h a program reads the statements of simple algebra problems { using a natural

language pre-pro
essor { and then translates them into a system of equations. The

transformations proposed herein 
ould, in prin
iple, be dete
ted by a pre-pro
essor

of natural language whi
h would then generate the 
orresponding versions of the

equations minimizing the number of quadrati
 
omponents. This, however, is in

itself a sizable proje
t beyond the obje
tives of the present paper.

There is of 
ourse a relationship between a given geometri
 �gure F generating

the triplet < Q;L; V > and its 
ounterpart F 0 generating < Q
0
; L

0
; V

0
> . In this

presentation we have 
hosen to depi
t the �gures and the triplets 
orresponding to

the 
ase 2a of Se
tion 4 : arbitrary point on a 
ir
le. For the sub
ase 2
 : inverse

point, only F and F 0 are presented; for the remaining 
ases only F is presented.

The reader should have no diÆ
ulty in re
onstru
ting the 
orresponding triplets.

6.1. Arbitrary Point on a Cir
le

The �gures representing F and F 0 for the sub
ase 2a namely, {\Consider an arbi-

trary pointM on a 
ir
le C"{ are presented below with their 
orresponding triplets.

In the �gure depi
ting F , a point having an arbitrary ab
issa x is 
onsidered and

the 
orresponding value of y is expressed in terms of square roots of x. In 
ontrast,

the 
onstru
tion in the �gure representing F 0 
onsiders an arbitrary line D passing

through the point R. R0 is the symmetri
 of R with respe
t to the 
enter of the


ir
le. The proje
tion of R0 on D de�nes the point M on the 
ir
le that 
an be

represented by rational numbers.

6.1.1. Figure F for the Sub
ase 2a : Arbitrary point on a Cir
le

Coordinates of the obje
ts :

C : (XC ; YC),

R : (XR; YR),

M : (X;Y )

Triplet < Q;L; V > :

Q : (XC �X)2 + (YC � Y )2 = (XC �XR)2 + (YC � YR)2

L : empty

V : XC = :::; YC = :::; XR = :::; YR = :::; X = :::

where the ellipses denote a rational number, or in general, an SR-number

6.1.2. Figure F 0 Arbitrary point on a Cir
le

Coordinates of the obje
ts :

C : (XC ; YC),
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M

C

x
Figure 2 : Arbitrary point on a 
ir
le

R : (XR; YR),

R
0 : (XR0 ; YR0),

M : (X;Y ),

D : (MD; PD),

D
0 : (MD

0 ; PD0)

Triplet < Q
0
; L

0
; V

0
> :

Q
0 : empty

L
0 : XR +XR0 = 2XC

YR + YR0 = 2YC

YR = XRMD + PD

MDMD
0 = �1 (perpendi
ular)

YR0 = XR0MD
0 + PD0

Y = XMD + PD

Y = XMD
0 + PD0

V
0 : XC = :::; YC = :::; XR = :::; YR = :::; PD = ::: where the ellipses are SR-

numbers.

In this 
ase the previous quadrati
 
onstraint is simply eliminated.

Remark that in two 
ases (2b and 1a) the 
onstru
tions 
ontain the same obje
ts

but those in F 0 are 
onsidered in an ordering that is guaranteed to de
rease jQ0j
when the algorithm of Se
tion 5 is exe
uted.



16

D’

C

M

R

R’

D

Figure 3 : Arbitrary point on a 
ir
le using rational numbers

6.2. Inverse points

This 
ase involves the 
onstru
tion of the inverse of a point N with respe
t to a


ir
le C. That point is denoted by M and is obtained as follows (Figure 4.) If N

is inside the 
ir
le C, 
onstru
t the line D passing through N and the 
enter of the


ir
le. The perpendi
ular to D from N interse
ts the 
ir
le at the point P . The

tangent T to the 
ir
le from P interse
ts D at the desired inverse point M . It 
an

be shown that this 
onstru
tion involves pro
essing square roots.

D C

MN

P

T

Figure 4 : Constru
tion of the inverse of a point with respe
t to a 
ir
le
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The alternate 
onstru
tion representing F 0 is as follows (Figure 5): 
onsider a

horizontal axis H passing through the 
enter of the 
ir
le. The inverse point M is

obtained by an algebrai
 
omputation de�ned by:

XM = XC + (XN �XC)
R

2

CN2
(1)

where R is the radius of the 
ir
le and CN is the length of the segment CN .

This 
omputation involves only rationals. YM is determined as the point on the

line CN having XM as ab
issa.

Proof:

Let us introdu
e a horizontal line H passing through the 
enter of the 
ir
le and


onsider the angle � = (NCH), 
os(�) = XN�XC
CN

, CN = XN�XC

os(�)

and CM =
XM�XC

os(�)

(see Figure 5.)

N and M are inverse with respe
t to C when :

CN � CM = R
2

that is

XN �XC

os(�)

�
XM �XC

os(�)

= R
2

sin
e 
os(�) = XN�XC
CN

,

(XN �XC)(XM �XC)(
CN

XN �XC
)2 = R

2

then N and M are inverse with respe
t to C when

XM �XC = (XN �XC)
R

2

CN2

whi
h is equivalent to (1)

6.3. Bise
tri
es

This sub
ase appears, for example, in the following theorem [Chou-88℄ :

Theorem 111: Let D be the interse
tion of the bise
trix of the angle A in the

triangle ABC with the side BC; let E be the interse
tion of the 
ir
le passing

through A,B, and C and the line passing through AD. Show that AB.AC =

AD.AE (i.e., the ratio of the lenghts AB and AD equals the ratio of the lengths

AE and AC)

In the theorem, sub
ase 2b 
orresponds to the 
onstru
tion of the bise
trix of the

angle A in the triangle ABC. The 
onstru
tion proposed by Chou is quadrati
 and
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H
C

MN

Figure 5 : Constru
tion of the inverse of a point with respe
t to a 
ir
le using

rational numbers

follows the 
onstru
tions enun
iated in the theorem. A linear rational version of

the theorem is as follows:

Let A, B, and E be three arbitrary points. Constru
t the line AC symmetri
al

to AB with respe
t to AE. One should point out that C is at the interse
tion of

the 
ir
le passing through the points A, B, and E, and the line symmetri
al to

AB with respe
t to AE. D is the interse
tion of the lines passing through BC and

AE. All these 
onstru
tions involve linear equations. Remark that the 
onstru
tion

assigns, as desired, rational 
oordinates to C provided that those of the initially

given points A, B and E are rational.

B
E

C

D

A

Figure 6 : Constru
tion 
orresponding to Theorem 111.
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6.4. Interse
tion line-
ir
le

This sub
ase appears, for example, in the following theorem (see Figure 7):

Theorem 108: Let C be the middle of the ar
 AB of a 
ir
le with 
enter O. D

is a point on the 
ir
le. (AB) meets (CD) at E. Show that CA2 = CE . CD.

Sub
ase 1a 
orresponds to the 
onstru
tion of C whi
h is the interse
tion of a


ir
le with 
enter O and the perpendi
ular bise
tor of AB. The quadrati
 solution

proposed by Chou 
onsists of 
onsidering two arbitrary points A and B, and de-

termining the midpoint M of AB. The perpendi
ular to AB through M 
ontains

a sele
ted point O whi
h is the 
enter of the 
ir
le. The point C is the interse
tion

of the 
ir
le with the perpendi
ular.

The linear solution is:

Let A and B be arbitrary points and determine as before the middle point M of

AB. Sele
t a point C in the perpendi
ular to AB passing through M . The point

O 
an then be determined by the interse
tion of the perpendi
ular bise
tors of the

segments AC and CB.

O

E

A

M

C
B

D

Figure 7: Constru
ting the middle of an ar
 (Theorem 108)

7. Results

The results of applying the prepro
essing {based on the 
lassi�
ation given in Se
-

tion 4{ and the des
ribed algorithm are shown in Table A. The 
ontents of the table

indi
ate the nature and the number of problems 
onsidered by Chou. The various


olumns (a total of 12) in that table 
orrespond to the a
tual number of embeddings

in the multiple square root representation of rational numbers. The maximum value

12 is diÆ
ult to pro
ess in reasonable time due to the spa
e and time 
omplexity

involving up to 212 = 4; 096 rational numbers for a single SR-variable.
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n 0 1 2 3 4 5 6 7 8 9 10 11 12

Q(n) 202 28 80 80 55 35 11 2 8 5 5 0 1

Max(n) 354 96 42 15 2 2 1

Lo
(n) 441 57 11 3

Glob+ Lo
(n) 487 25

Table A

Notation:

Q(n) the number of 
ases (among the 512 problems) that re-

quire the solution of n quadrati
 
onstraints without using the

transformations in Se
tion 6.

Max(n) the number of 
ases that require the introdu
tion of n

nested square roots without using the transformations in Se
-

tion 6.

Lo
(n) the number of 
ases that require the introdu
tion of n

nested square roots using lo
al transformation for 
ases 2a:

arbitrary point on a 
ir
le and 2
: inverse point des
ribed in

Se
tion 6.

Glob(n) the number of 
ases that require the introdu
tion of n

nested square roots and that bene�t from global transforma-

tions des
ribed in Se
tion 6.

The redu
tion in 
omplexity due to the prepro
essing using the subsets of the


ases in Se
tion 4 are shown in the rows of table A. The �nal row shows that the


ombined usage of all 
ases in Se
tion 6 results in redu
ing the vast majority of

the problems proposed by Chou to solving linear equations where the 
omplexity

is 
ubi
. The remaining problems are handled using the un-nested square root

representation whi
h also results in a polynomial 
omplexity. In 10 of the above 25

problems,
p
r turns out to be

p
3.

8. Final Remarks

One should �rst noti
e that the proposed method has two advantages over the

method used by Chou. The �rst is eÆ
ien
y, and the se
ond is the 
apability of

the present approa
h to dete
t 
omplex solutions when square roots of negative

rationals are en
ountered. Chou's solution 
he
ks for the existen
e of solutions

disregarding the fa
t that some of them are only true in the domain of 
omplex

numbers. On the other hand it should be remarked that Chou solves a harder 
lass

of problems by 
onsidering that obje
ts are pla
ed in arbitrary positions.

Although one 
annot in prin
iple extrapolate the results obtained in this work

to more 
omplex 
ases, say of 
ubi
s, we feel that a 
ase has been made for using
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arefully applied 
lassi�
ation rules, des
ribed in Se
tion 4, that 
an be used to

redu
e the 
omplexity of an exponential problem.

Finally, it should be mentioned that Chou's theorems were originally proposed

by humans who 
an make use of 
lever 
onstru
tions to \manually" prove diÆ
ult

theorems. This may explain why non-exponential solutions are possible. This

situation parallels the one that happens when using the simplex method. Even

though the worst-
ase 
omplexity of that method is exponential, most real pra
ti
al

problems are solved in almost linear time.

Appendi
es

Appendix A presents a short a

ount of an intera
tion with the Maple symboli


pa
kage in trying to establish the validity of an equality involving expressions 
on-

taining radi
als. The results 
learly indi
ate that Maple even provides in
orre
t

results (false) when asked to 
he
k for the equality of two symboli
 formulas. Nev-

ertheless, when asked to evaluate the two formulas in the 
ase where all the variables

are bound to numbers, Maple indi
ates that the 
orresponding values are very 
lose

to ea
h other. These tests 
learly indi
ate the need for representations like the one

proposed in this work.

Appendix B illustrates an example of Chou's approa
h for the theorem that has

been veri�ed using the proposed approa
h (Se
tion 6.4.) We reiterate that these

two approa
hes are essentially di�erent in the sense that the former attempts to

symboli
ally prove the validity of a theorem, whereas the latter veri�es if a given

representation of the theorem, using 
onstraints, is satis�able or not. The former

is 
omplex and time 
onsuming, whereas the latter 
an qui
kly indi
ate, for a

vast majority of 
ases, if the 
onstraints are unsatis�able, thus revealing a false

hypothesis or 
onstru
tion by humans {typi
ally students{ in attempting to prove

a theorem.

Appendix A

The following examples illustrate the in
onsisten
ies of using Maple to 
he
k the

equality of two symboli
 formulas 
ontaining radi
als (from [Zippel-85℄), namely:p
22 + 2

p
5 +

p
5 and

p
11 + 2

p
29 +

q
16� 2

p
29 + 2

p
55� 10

p
29

The purpose of the built-in fun
tion evalb is to for
e evaluation of expressions

involving relational operators, using a three-valued logi
 system. The returns are

true, false, and FAIL. If evaluation is not possible, an unevaluated expression is

returned.

The query:

evalb(0=sqrt(22+2*sqrt(5))+sqrt(5)

-sqrt(11+2*sqrt(29))

-sqrt(16-2*sqrt(29)+2*sqrt(55-10*sqrt(29))));
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yields the erroneous value false. The 
orre
t result would be true or may be even

FAIL, the latter admitting the in
apa
ity of Maple to make a de
ision.

Nevertheless, an attempt to evaluate the di�eren
e between the two formulas

utilizing purely numeri
al values (Maple's evalf) yields a very small number :

evalf(sqrt(22+2*sqrt(5))+sqrt(5)

-sqrt(11+2*sqrt(29))

-sqrt(16-2*sqrt(29)+2*sqrt(55-10*sqrt(29))),20);

-18

Result .1*10

Even if a higher a

ura
y is requested, Maple still �nds that the two expressions

di�er by a minus
ule quantity.

evalf(sqrt(22+2*sqrt(5))+sqrt(5)

-sqrt(11+2*sqrt(29))

-sqrt(16-2*sqrt(29)+2*sqrt(55-10*sqrt(29))),146);

-144

Result -.1*10

(It should be remarked that our version of Maple behaved errati
ally when asked

to further in
rease the a

ura
y of the quantity representing the di�eren
e between

the two given expressions, whose variables were bound to numeri
 values. We

noti
ed that, in 
ertain 
ases, an in
reased spe
i�ed a

ura
y would sometimes

-but not always- yield the value zero.)

Appendix B

One of the theorems 
onsidered by Chou is trans
ribed below with the generation

of the polynomial equations needed to assert its validity.

Theorem 108: Let C be the midpoint of the ar
AB of 
ir
le 
enter O (see Figure

7.) D is a point on the 
ir
le. E = AB inter CD. Show that CA2 = CE:CD

PointsA;B are arbitrarily 
hosen. PointsO;M;C;D;E are 
onstru
ted (in order)

as follows: OA = OB; M is the midpoint of A and B; CO = OA; C is on line OM ;

DO = OA; E is on line AB; E is on line CD. The 
on
lusion is CA:CA = CE:CD

Let A = (0; 0), B = (u1; 0), O = (x1; u2),M = (x2; 0), C = (x4; x3), D = (x5; u3),

E = (x6; 0)

The reader should noti
e that the 
oordinates of the 
ir
le were taken to be

(0; 0) without loss of generality. B is 
onsidered with a single arbitrary 
oordinate.
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Therefore, Chou introdu
es the minimal number of symboli
 parameters needed

to des
ribe a general initial 
on�guration needed to generate the equations whose

satis�ability 
onstitutes the proof.

This is also the 
ase of the proposed approa
h, ex
ept that those parameters are

given numeri
al values. This is 
onsistent with our obje
tives of qui
kly verifying

the validity of 
onstru
tions proposed by students attempting to prove theorems in

geometry.

The 
ir
le has to satisfy :

x
2

1 + u
2

2
= (x1 � u1)

2 + u
2

2
; (1)

The point M has to satisfy :

x2 =
u1

2
; (2)

The point C has to satisfy :

(x1 � x4)
2 + (x3 � u2)

2 = x
2

1 + u
2

2; (3)

x2x3 + x4u2 = x1x3 + x2u2; (4)

The point D has to satisfy :

(x1 � x5)
2 + (u2 � u3)

2 = x
2

1 + u
2

2; (5)

The point E has to satisfy :

x4u3 + x4x6 = x5x3 + x6u3; (6)

The theorem is given by the equation :

(x2
3
+ x

2

4
)2 = ((x3 � u3)

2 + (x4 � x5)
2)((x4 � x6)

2 + x
2

3
); (7)

And the proof 
orresponds to the elimination of variables x6; :::; x1 in equation

(7) using the equations (6); :::; (1). If the resulting expression of (7) is of the form

0 = 0 then the theorem is valid.
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