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Recursive and Symbolic Calculation of the
Stiffness and Mass Matrices of Parallel Robots

Sébastien Briot and Wisama Khalil

Abstract This paper presents a symbolic and recursive calculation ofthe stiffness
and mass matrices of parallel robots. In order to reduce the computational time
required for simulating the elastodynamic behavior of robots, it is necessary to min-
imize the number of operators in the symbolic model expression. Some algorithms
have been proposed for the rigid case or for parallel robots with lumped springs. In
this paper, we extend the previous works to parallel robots with distributed flexibil-
ities. The proposed algorithm, that takes advantage of recursive calculations for the
computation of the Jacobian matrices defining the kinematicconstraints, is used to
compute the natural frequencies of a robot developed at IRCCyN: the NaVARo.

Key words: Parallel robots, Flexibilities, Natural frequencies.

1 Introduction

The large computational time required for calculating the natural frequencies of a
robot prevents to use them in many applications, such as real-time control, design
optimization process, etc. To decrease the computational cost, this paper focuses on
the efficient symbolic computation for the stiffness and mass matrices of flexible
parallel robots. This approach could be combined with modelreduction methods [6,
9,10], but this is not the main goal of that paper.

For the computation of the robot natural frequencies, two main approaches
are generally proposed (see [11] for a large literature review): (i) lumped mod-
eling [13, 18] and (ii) modeling using distributed flexibilities [2, 3, 7, 16, 17]. The
lumped modeling is generally simpler to use by non-experts in finite element meth-
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Fig. 1 A general parallel robot composed of flexible elements.

ods but, to obtain a correct model accuracy, higher number ofelements is required,
thus increasing the computational time.

Contrary to lumped modeling, using distributed flexibilities allows the improve-
ment of the model accuracy. However, such methods require highly-skilled users.
In [2, 16, 17], some general methodologies are proposed. In the case of closed-loop
mechanisms, some Jacobian matrices are computed that allowtaking into account
the kinematic dependencies. However, such general methodologies are not specifi-
cally designed for parallel robots and they do not guaranteethe minimization of the
number of operators for the symbolic computation of the model. To the best of our
knowledge, a systematic procedure to compute the mass and stiffness matrices (us-
ing distributed flexibilities) of parallel robots with a minimal numbers of operators
has never been proposed.

The present work aims at filling this gap. In order to minimizethe number of op-
erations, the Jacobian matrices defined in the principle of virtual powers (PVP) are
computed using recursive algorithms. For computing the stiffness and mass matrices
of parallel robots, the approach proposed in [5] is adapted.It proposes to (1) convert
the parallel robot into a virtual system defined by a tree-structure robot composed
of the kinematic chains of the actual robot for which all joints (passive and active)
are considered actuated and a free body (the platform which is considered as rigid)
(Fig. 1), (2) compute the elastodynamic model of this new virtual system, and (3)
finally, close the loops by using thePVP.

This method is effective, systematic, can be applied to any parallel robot.

2 Stiffness and Mass Matrices for the Virtual System

Let us consider a parallel robot composed of one rigid fixed base (denoted as el-
ement 0), one rigid moving platform andn legs, each leg being a serial kinematic
chain composed of(mi − 1) elements1 connected bymi joints of coordinatesqik

1 Note that each robot link can be composed of one element or severalelements.
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(revolute, prismatic or fixed joints –i = 1, ...,n) located at pointsAik (k = 1, ...,mi

- Fig. 1(a)). Thej-th element of thei-th leg is denoted byi j and its displacement
can be parameterized by the coordinatesi jti j

2 which represents the twist of the body
i j at the origin of the local frameFi j (Fig. 1(c)) andq̇ei j that are the generalized
velocities characterizing the elastic displacement of thebodyi j

i jtei j(Mi j) = Φi j(M0i j)q̇ei j (1)

wherei jtei j(Mi j) is the deformation twist due to the body elasticity that can be pa-
rameterized using truncated series of Rayleigh-Ritz shapefunctionsΦi j [4].

The vector of generalized coordinates of the tree-structure is given byqt =
[

qT
t1 · · · qT

tn

]T
, whereqti regroups all joint variables (denoted asqT

pi
= [qi1 . . . qimi ])

and elastic generalized coordinatesqT
ei
=
[

qT
ei1

. . . qT
ei,mi

]

for the reali-th leg.

The Lagrangian of the tree structure system can be expressedas:

Lt =
1
2 ∑

i, j

(

[

i jtT
i j q̇T

ei j

]

Mi j

[

i jti j

q̇ei j

]

−qT
ei j

Ki jqei j

)

(2)

whereMi j and Ki j are the mass and stiffness matrices of the linki j whose full
expressions in the most compact form are given in [4,15]. To express the Lagrangian
as a function ofqt andq̇t , let us express the displacement of the elementi j frame
located atAi j using the following equations obtained by a recursive algorithm [4]

i jti j = Jti j q̇t with Jti j =
i jTi( j−1)Jti( j−1)

+Φqei j +Ai j and (3)

Φqei j =
[

0 · · · i jRi( j−1)Φi( j−1)(Ai j) · · · 0
]

, Ai j =
[

0 · · · i jai j · · · 0
]

(4)

whereai j is the unit twist describing the jointi j axis [4] and, inΦqei j (Ai j, resp.),
the termi jRi( j−1)Φi( j−1)(Ai j) (i jai j, resp.) is located at the columns corresponding
to the variableṡqei( j−1)

(q̇i j, resp.). Moreover, in the previous expressions,

i jRi( j−1) =

[i jRi( j−1) 0
0 i jRi( j−1)

]

, i jTi( j−1) =
i jRi( j−1)

[

I3 −i( j−1)r̂i( j−1)(Ai j)
0 I3

]

(5)

where I3 is the (3× 3) identity matrix, i jRi( j−1) is the rotation matrix between

framesFi j and Fi( j−1),
i( j−1)r̂i( j−1)(Ai j) is the cross-product matrix associated

with the vectori( j−1)ri( j−1)(Ai j), i.e the position of pointAi j ≡ Bi( j−1) in Fi( j−1)
(Fig. 1(c)).

Finally, a global Jacobian matrixJi j defined such as
[

i jtT
i j q̇T

ei j

]T
= Ji jq̇t can be

computed asJT
i j =

[

JT
ti j

OT
qei j

]

whereOqei j is defined such thaṫqei j = Oqei j q̇t .

Introducing
[

i jtT
i j q̇T

ei j

]T
= Ji jq̇t into (2) leads to

2 In what follows, the preceeding superscript “i j” denotes that the vector is given in the frameFi j.
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Lt =
1
2 ∑

i, j

(

q̇T
t JT

i jMi jJi jq̇t −qT
t OT

qei j
Ki jOqei j qt

)

=
1
2

(

q̇T
t Mt q̇t −qT

t Ktqt
)

(6)

whereMt andKt are the mass and stiffness matrices of the tree structure.
Adding the contribution of the rigid platform into (6), the Lagrangian of the total

system can be written as:

L =
1
2

(

[

q̇t

tp

]T [Mt 0
0 Mp

][

q̇t

tp

]

−

[

qt

xp

]T [Kt 0
0 0

][

qt

xp

]

)

=
1
2

(

q̇T
g Mgq̇g −qT

g Kgqg
)

(7)
Mp is the mass matrix of the rigid platform andxp represents the platform displace-
ment (tp its twist).Mg andKg are the total mass and stiffness matrices of the virtual
system.qT

g =
[

qT
t xT

p

]

is its vector of generalized coordinates.

3 Stiffness and Mass Matrices for the Parallel Robot

It is now necessary to determine one possible subset of generalized coordinates for
the parallel robot. Using (3) for computing the twisti,miti,mi of the tip of legi:

i,miti,mi = Ji
ti,mi

q̇ti (8)

whereJi
ti,mi

can be obtained fromJti,mi
by extracting the columns corresponding to

the vectorq̇T
ti =

[

q̇T
pi
, q̇T

ei

]

, i.e. the vector stacking all variables of the legi.
As the leg extremity is also linked to the rigid platform, itstwist can be related

to the platform twisttp via the rigid body displacement relation:

i,miti,mi = Ji
ptp , whereJi

p =
i,miR0

[

I3 −0p̂i

0 I3

]

(9)

in which 0p̂i is the cross product matrix of vector0pi that characterizes the position
of the attachment pointAi,mi wrt the platform center (Fig. 1(a)) andi,miR0 is the
(6×6) rotation matrix between the global frame and the local frameFi,mi .

Thus, the following set of equations can be obtained:







J1
t1,m1

· · · 0
...

. ..
...

0 · · · Jn
tn,mn













q̇t1
...

q̇tn






−







J1
p
...

Jn
p






tp = 0 ⇔ Jt q̇t −Jptp =

[

Jt −Jp
]

[

q̇t

tp

]

= Jgq̇g = 0

(10)
whereJg is a (r n× nqg) matrix, nqg > r n (r = 6 for a spatial robot,r = 3 for a
planar robot). This means that a subsetq̇d of r n variables in vectoṙqg is linked to
the others. This subset is not unique. As most of parallel robots have identical legs,
an idea is to put iṅqd the lastr componentṡq f

ti of each vectoṙqti which can be

decomposed into two partṡqT
ti =

[

q̇0T
ti q̇ f T

ti

]

:
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−









J f 1
t1,m1

· · · 0
...

.. .
...

0 · · · J f n
tn,mn















q̇ f
t1
...

q̇ f
tn






=







J01
t1,m1

· · · 0 −J1
p

...
. ..

...
...

0 · · · J0n
tn,mn

−Jn
p

















q̇0
t1
...

q̇0
tn

tp











⇔ J f
t q̇ f

t = Jt pq̇ (11)

This can be rewritten as

q̇ f
t =

(

J f
t

)−1
Jt pq̇ =







Jd1,1 · · · Jd1,n Jd1,n+1
...

.. .
...

...
Jdn,1 · · · Jdn,n Jdn,n+1






q̇ = Jd q̇ (12)

If the coordinateṡq f
ti are those of the last elastic element of the leg (which is mostof-

ten the case), thek-th column of matrixJ f i
til corresponds to a unit twist that describes

the displacement of the leg extremity due to thek-th coordinate ofq f
ti , i.e. [12]

J f i
til =

[

i,miRil −
i,miRil

il p̂il

0 i,miRil

]

(13)

wherei,miRil is the rotation matrix between the local frame linked at element i,mi

and the local frame linked at elementil and il p̂il is the cross product matrix of the
vector ilpil that characterizes the position of the leg extremity with respect to the
frame linked at elementil. Thus its inverse is equal to

(

J f i
til

)−1
=

[

i,miRT
il p̂il

i,miRT
il

0 i,miRT
il

]

(14)

which does not require much calculation. Finally, from (12)and the definition of
q̇T

g =
[

q̇T
t1, . . . , q̇T

tn , tT
p

]T
, the matrixJ defined such thaṫqg = Jq̇ can be computed.

Introducingq̇g = Jq̇ into (7) leads to:

L =
1
2

(

q̇T JT MgJq̇−qT JT KgJq
)

=
1
2

(

q̇T Mq̇−qT Kq
)

(15)

from which the natural frequenciesfi (i= 1, . . . ,nqg −r n) of the parallel robot can be

computed asfi =
√

eig(M−1K)/(2π). It should be noticed that obviously, matrices
M andK depend on the robot configuration.

To automatize the calculation of the mass and stiffness matrices of the robot,
for each computation, the elements of a vector or a matrix containing at least one
mathematical operation are replaced by an intermediate variable. This variable is
written in an output file which contains the model. The elements that do not contain
any operations are not modified. The obtained vectors and matrices are propagated
in the subsequent equations. Consequently, at the end, the model is obtained as a
set of intermediate variables. Those that have no effect on the desired output can be
eliminated. This algorithm has been successfully implemented with Mathematica.
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(a) Prototype of the NaVARo
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Fig. 2 The NaVARo

4 Case Study: the NaVARo

The NaVARo is a 3-dof planar parallel manipulator developed at IRCCyN (Fig. 2(a))
and composed of 3 identical legs and one moving platform madeup of 3 segments
E1P, E2P andE3P rigidly linked at pointP. The i-th leg contains four links con-
nected with five revolute joints in such a way thatAiBiCiDi is a parallelogram link-
age,i = 1,2,3. The base frameFb (O,x0,y0,z0) (not shown in Fig. 2(b)) is defined
such as pointO is located at the geometric centre of the equilateral triangle A1A2A3.
FrameFp (P,xp,yp,zp) is attached to the moving platform. In the home configu-
ration shown in Fig. 2,Fb andFp (P,xp,yp,zp) (attached to the moving platform)
coincide.(xp,yp) are the Cartesian coordinates of pointP expressed in frameFb

andθp is the orientation angle of the platform (the angle betweenx0 andxp).
Three double clutches are mounted to the base at pointsAi, i = 1,2,3, in order

to actuate either angleq1i or angleq2i. As a consequence, the NaVARo has 8 actua-
tion modes [1,14]. Therefore, the platform can be moved throughout the workspace
without reaching any parallel singularity thanks to a judicious actuation scheme.
The kinematics of thei-th leg is described by the modified Denavit-Hartenberg pa-
rameters (MDH) [12] given in Table 1, in whichγi = π/2 if i = 1, γi = −5π/6 if
i = 2 andγi = −π/6 if i = 3. Besides, the circumradius of the moving-platform is
equal to 0.2027 m, i.e.,l5i = 0.2027 m. Each link, of rectangular cross-section, is
made up of duraluminum alloy. Table 1 gives their cross-section area and inertia.

In the experimental setup, the rotation of links 1i and 2i about pointAi, i = 1,2,3,
is locked thanks to the double clutch mechanisms. A single 3Dbeam element is used
to model links 1i, 2i, 3i and 5i while two 3D beam elements of equal lengths are used
to model links 4i, the latter being twice longer than the former.

Thus, the NaVARo is modelled as a spatial mechanism and its model contains
144 generalized coordinates, among which only 90 are independent (see Sect. 3).
The model has been calculated using the proposed procedure and compiled into C
code to obtain the robot natural frequencies. The computation involve the use of
36183 ‘+’ or ‘-’ and 37341 ‘*’ or ‘/’ operators, while 21383 variables are defined.
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Table 1 MDH parameters of thei-th leg and characteristics of the beam cross-sections

ji a( ji) σ ji γ ji b ji α ji d ji θ ji r ji

1i 0 0 γi 0 0 d1 = 0.4041mq1i − γi 0
2i 0 0 γi 0 0 d1 = 0.4041mq2i − γi 0
3i 2i 0 0 0 0 d3 = 0.2100m q3i 0
4i 3i 0 0 0 0 d4 = 0.2100m q4i 0
5i 4i 0 0 0 0 d5 = 0.4200m q5i 0

link Ai j (m2) Iyi j (m4) Izi j (m4) Ipi j (m4) I0i j (m4)
1i, 2i, 3i, 4i 2.4·10−4 1.152·10−8 2.000·10−9 1.352·10−8 5.902·10−9

5i 4·10−4 3.333·10−8 5.333·10−8 8.666·10−8 1.123·10−8
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Fig. 3 The four test poses{xp,yp,θp} (positions in meters, orientation in radian)

To the best of our knowledge, there exist no works that try to minimize the num-
ber of operators in the elastodynamic models of parallel robots. Therefore, the ef-
ficiency of the proposed solution may be difficult to analyze.However, for reasons
of comparison, the obtained frequencies were validated by means of an equivalent
model developed using Cast3M software [8]. For the simulations, Cast3M gives the
result after around 6 sec. of computation while our model send the results in around
0.01 sec. (for a Pentium 4 2.70GHz, 8Go of RAM). Both models give the same
values for the first 90 natural frequencies of the NaVARo. Table 2 gives the first 5
natural frequencies of the NaVARo for the 4 robot postures shown in Fig. 3.

5 Conclusions

The paper has presented a symbolic and recursive calculation of the stiffness and
mass matrices of parallel robots. The proposed algorithm, that takes advantage of re-
cursive calculations for the computation of the Jacobian matrices defining the kine-
matic constraints, is used to compute the natural frequencies of a robot developed
at IRCCyN: the NaVARo. Results have shown that the proposed model was able to
give the same values as a FEA software for the first 90 natural frequencies of the
NaVARo but in a considerably reduces computational time (around 0.01 sec. for our
model while FEA results were obtained in several sec.).
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Table 2 Comparison of the natural frequencies obtained with Cast3M andMatlab.

(Hz) f1 f2 f3 f4 f5
Cast3M Matlab Cast3M Matlab Cast3M Matlab Cast3M Matlab Cast3M Matlab

Pose (a) 44.10 44.10 44.10 44.10 53.98 53.98 60.63 60.63 95.6295.62
Pose (b) 45.71 45.71 45.71 45.71 54.58 54.58 65.35 65.35 97.9297.92
Pose (c) 36.98 36.98 49.31 49.31 53.37 53.37 67.28 67.28 91.8091.80
Pose (d) 40.17 40.17 50.32 50.32 52.99 52.99 67.36 67.36 91.5291.52
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