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Recursive and Symbolic Calculation of the
Stiffness and M ass Matrices of Parallel Robots

Sebastien Briot and Wisama Khalil

Abstract This paper presents a symbolic and recursive calculatidheo$tiffness
and mass matrices of parallel robots. In order to reduce ¢hepatational time
required for simulating the elastodynamic behavior of tepibis necessary to min-
imize the number of operators in the symbolic model expoesssome algorithms
have been proposed for the rigid case or for parallel robdtslamped springs. In
this paper, we extend the previous works to parallel robdts eistributed flexibil-
ities. The proposed algorithm, that takes advantage ofse®ucalculations for the
computation of the Jacobian matrices defining the kinenwatistraints, is used to
compute the natural frequencies of a robot developed at IRC@e NaVARo.

Key words. Parallel robots, Flexibilities, Natural frequencies.

1 Introduction

The large computational time required for calculating théural frequencies of a
robot prevents to use them in many applications, such agine@lcontrol, design
optimization process, etc. To decrease the computatiass| this paper focuses on
the efficient symbolic computation for the stiffness and snastrices of flexible
parallel robots. This approach could be combined with moetiiction methods [6,
9, 10], but this is not the main goal of that paper.

For the computation of the robot natural frequencies, twannapproaches
are generally proposed (see [11] for a large literatureewe)i (i) lumped mod-
eling [13, 18] and (ii) modeling using distributed flexiligis [2, 3, 7, 16, 17]. The
lumped modeling is generally simpler to use by non-experfiite element meth-
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Fig. 1 A general parallel robot composed of flexible elements.

ods but, to obtain a correct model accuracy, higher numbeleofients is required,
thus increasing the computational time.

Contrary to lumped modeling, using distributed flexibdgiallows the improve-
ment of the model accuracy. However, such methods requitdyhskilled users.
In[2,16,17], some general methodologies are proposethelicdse of closed-loop
mechanisms, some Jacobian matrices are computed thattalkovg into account
the kinematic dependencies. However, such general mdtigids are not specifi-
cally designed for parallel robots and they do not guaratiteeninimization of the
number of operators for the symbolic computation of the rhofiethe best of our
knowledge, a systematic procedure to compute the massiéndsgt matrices (us-
ing distributed flexibilities) of parallel robots with a nimal numbers of operators
has never been proposed.

The present work aims at filling this gap. In order to minimize number of op-
erations, the Jacobian matrices defined in the principlérafal powers PVP) are
computed using recursive algorithms. For computing thfmets and mass matrices
of parallel robots, the approach proposed in [5] is adapt@doposes to (1) convert
the parallel robot into a virtual system defined by a treaestre robot composed
of the kinematic chains of the actual robot for which all jsifpassive and active)
are considered actuated and a free body (the platform whicbrisidered as rigid)
(Fig. 1), (2) compute the elastodynamic model of this newuairsystem, and (3)
finally, close the loops by using th&/P.

This method is effective, systematic, can be applied to amglfel robot.

2 Stiffnessand Mass Matricesfor the Virtual System

Let us consider a parallel robot composed of one rigid fixesel@enoted as el-
ement 0), one rigid moving platform amdlegs, each leg being a serial kinematic
chain composed ofm; — 1) element$ connected bym; joints of coordinatesy

1 Note that each robot link can be composed of one element or selenagnts.
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(revolute, prismatic or fixed joints = 1,...,n) located at point$\k (k= 1,...,m

- Fig. 1(a@)). Thej-th element of the-th leg is denoted byj and its displacement

can be parameterized by the coordinc‘;ﬂtls;?2 which represents the twist of the body
ij at the origin of the local frame7ij (Fig. 1(c)) andge; that are the generalized
velocities characterizing the elastic displacement obibay i j

'te; (Mi}) = @i} (Moij)de, 1)

where'ltg (M;j) is the deformation twist due to the body elasticity that carph-
rameterized using truncated series of Rayleigh-Ritz shapetions®;; [4].
The vector of generalized coordinates of the tree-stractsirgiven byq; =

af - thn]T, whereqy regroups all joint variables (denoted @&$ = [di1 - .. Gim])
and elastic generalized coordinatgs= [qgl q;m} for the reali-th leg.
The Lagrangian of the tree structure system can be exprassed

S(allyaxe) o

whereM;; andKj; are the mass and stiffness matrices of the linkvhose full
expressions in the most compact form are given in [4, 15] Xpoess the Lagrangian
as a function ofy; andq, let us express the displacement of the elemgiftame
located a#j; using the following equations obtained by a recursive étlgor [4]

i t” *Jt”qt with Jt” T i(j— 1)Jt (i-1) +¢Qaj +A|J and (3)

Pg; = [0+ TRy Bij_1)(Aj) -~ O] ,Ajj=[0--- Haj - 0] (4)
whereg;; is the unit twist describing the join{ axis [4] and, in®q,; (Aij, resp.),

the term'IR;(;_1, ®y(j_1)(A;j) (Jaj, resp.) is located at the columns corresponding
to the variable%mn (Gij, resp.). Moreover, in the previous expressions,

N R 1 0 . I3 —10-Dp (Aj)
”Ri(jl):|: 0 )iiRi(j_ljv”Tu 1 ="Rij-y) {0 T ®)

where |3 is the (3 x 3) identity matrix, JR;(;_1) is the rotation matrix between
frames.7; and .7, (] 1), 'U7Y%i_1)(Aj) is the cross-product matrix associated
with the vector'(i— rI (j-1)(Aj), i.e the position of poinkj = Byj_1) in F(j_y)
(Fig. 1(c)).

Finally, a global Jacobian matrik; defined such a%”tT qa } = J;jjGt can be

computed as]; = {Jt” Ogaj} whereOyqy; is defined such thals; = Oqg; G-

Introducing {'JtT qq]} =Jij@ into (2) leads to

2 In what follows, the preceeding superscriptdenotes that the vector is given in the frarg.
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L= ('TJIM--J‘-' —q’O! K;:0 _ LM — oK 6
=3 » (G JjMijdijd — ¢ Ogg; KijOgq Gt —Z(qt G — o Kea)  (6)

]

whereM; andK; are the mass and stiffness matrices of the tree structure.
Adding the contribution of the rigid platform into (6), th@grangian of the total
system can be written as:

C1fra]" Me o] e Ja]" [Ke O] fael) 1ty s T
L_2<|:tp:| [O M| |tp]  [Xp| | O Of [Xp _E(nggqg_qug%)
(7
M is the mass matrix of the rigid platform amd represents the platform displace-

ment € its twist). M4 andK g are the total mass and stiffness matrices of the virtual
systemqg = [qf Xp] is its vector of generalized coordinates.

3 Stiffnessand Mass M atrices for the Parallel Robot

It is now necessary to determine one possible subset of glereat coordinates for
the parallel robot. Using (3) for computing the twistt; i, of the tip of legi:

" = i G 8)

WhereJ{i_m‘ can be obtained frorﬂtim by extracting the columns corresponding to
the vectorg] = [qy,.d4]. i.e. the vector stacking all variables of the leg

As the leg extremity is also linked to the rigid platform, fitgist can be related
to the platform twist, via the rigid body displacement relation:

i . . ims I3 70;’5_

"M i m :J'ptp,whereJ'p:'”‘Ro{o s '] 9)
in which 9p; is the cross product matrix of vect®p; that characterizes the position
of the attachment poind; i, wrt the platform center (Fig. 1(a)) and'Ro is the
(6 x 6) rotation matrix between the global frame and the local frafg, .

Thus, the following set of equations can be obtained:

Him 0 O T[] [ _
P Pl [ te =0 Jb—Jptp = [Jt —Jp] {?;]:Jg%zo
0 -3 | [ JB
(10)
whereJg is a(r nx ng,) matrix, ng, > r n (r = 6 for a spatial roboty = 3 for a
planar robot). This means that a sub§gof r n variables in vectogy is linked to

the others. This subset is not unique. As most of paralledtobave identical legs,
an idea is to put g the lastr components{qtfi of each vectol; which can be

decomposed into two partg = [qu qJT]:
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This can be rewritten as

‘]dl,l e Jag, ‘]dl‘n+l

. f AN . . . - :

G = (‘Jt) Jtpd = T : gq=Jaq (12)
‘]dn,l ‘Jdn.n ‘]dn.n+1

If the coordinates’;hfi are those of the last elastic element of the leg (which is st
ten the case), theth column of matrix]tf”' corresponds to a unit twist that describes

the displacement of the leg extremity due to khiln coordinate ofqtfi, i.e. [12]
fi i,m Ril _i,m R'I”f"l
= [ 0 | i,m éil I (13)

where'™R; is the rotation matrix between the local frame linked at elrti, m;
and the local frame linked at elemahtand’'p; is the cross product matrix of the
vector''p; that characterizes the position of the leg extremity witkpest to the
frame linked at element. Thus its inverse is equal to

N\ impT a4 LMmRT
(a8) "= [ - p:!m”;?*"} (14)

which does not require much calculation. Finally, from (&Rg the definition of
ag = [ag. -, G, tg]T, the matrixJ defined such thaiy = J§ can be computed.
Introducing@g = Jg into (7) leads to:

1, . 1,70
L=3(4""Mglg—0q"3"KgJq) = 5 (4"Ma—q"Kaq) (15)

from which the natural frequenciés(i = 1,.. ., nq, —r n) of the parallel robot can be

computed ag; = \/eig(M ~1K)/(2n). It should be noticed that obviously, matrices
M andK depend on the robot configuration.

To automatize the calculation of the mass and stiffnessiceatiof the robot,
for each computation, the elements of a vector or a matrixatoimg at least one
mathematical operation are replaced by an intermediaiablar This variable is
written in an output file which contains the model. The eletadimat do not contain
any operations are not modified. The obtained vectors anda@siare propagated
in the subsequent equations. Consequently, at the end,dbelns obtained as a
set of intermediate variables. Those that have no effedh@nésired output can be
eliminated. This algorithm has been successfully implaegwith Mathematica.
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Fig. 2 The NaVARo

4 Case Study: the NaVARo

The NaVAROo is a 3Hof planar parallel manipulator developed at IRCCyN (Fig. R(a)
and composed of 3 identical legs and one moving platform noadef 3 segments
E;P, ExP andE3P rigidly linked at pointP. Thei-th leg contains four links con-
nected with five revolute joints in such a way t#eB;C;D; is a parallelogram link-
age, = 1,2,3. The base fram&, (O, Xo, Yo, Zo) (not shown in Fig. 2(b)) is defined
such as poin® is located at the geometric centre of the equilateral tt@AgA2As.
Frame.Z, (P,Xp,Yp, Zp) is attached to the moving platform. In the home configu-
ration shown in Fig. 2.7, and.%, (P,Xp,Yp,Zp) (attached to the moving platform)
coincide.(xp,Yp) are the Cartesian coordinates of pdmexpressed in frame#y,
and@, is the orientation angle of the platform (the angle betwegandx,).

Three double clutches are mounted to the base at paints= 1,2,3, in order
to actuate either anglg; or angleqy;. As a consequence, the NaVARo has 8 actua-
tion modes [1,14]. Therefore, the platform can be movedutihout the workspace
without reaching any parallel singularity thanks to a jimolis actuation scheme.
The kinematics of théth leg is described by the modified Denavit-Hartenberg pa-
rameters IDH) [12] given in Table 1, in whichy = /2 if i =1, y = -5m/6 if
i =2 andy = —m/6 if i = 3. Besides, the circumradius of the moving-platform is
equal to 02027 m, i.e.ls; = 0.2027 m. Each link, of rectangular cross-section, is
made up of duraluminum alloy. Table 1 gives their crossigearea and inertia.

In the experimental setup, the rotation of linksthd 2 about point;, i =1,2,3,
is locked thanks to the double clutch mechanisms. A singlb&iin element is used
to model links 1, 2i, 3i and 5 while two 3D beam elements of equal lengths are used
to model links 4, the latter being twice longer than the former.

Thus, the NaVAROo is modelled as a spatial mechanism and ittehtontains
144 generalized coordinates, among which only 90 are imdbpd (see Sect. 3).
The model has been calculated using the proposed proceddireoanpiled into C
code to obtain the robot natural frequencies. The commutativolve the use of
36183 ‘+' or ‘-’ and 37341 *' or /" operators, while 21383 viables are defined.
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Table1l MDH parameters of theth leg and characteristics of the beam cross-sections

it a(ji) gji vii bji aji dj Bi i
i 0 0y 0 0 d=0404Imgy—y O
20 0y O 0 d=04041mag—y O
3 2 0 0 0 0d3=02100m gz O
4 3 000 0d=02100m g4 O
5. 4 0 0 0 0ds=04200m g5 O

link Aj (M%) Iy, (M%) 1 (M) 1, (m*) g, (M%)
1i, 2i, 3i, 4 2.4-107* 1.152-10°8 2.000- 10 ° 1.352-10°° 5.902.10~°
5 4.1043.333.10%5.333.10 ® 8.666-10°® 1.123-10°8

y (m) _ y(m) y (m) y (m)
06 o B 5
02 workspace, 02f— /1 0.2 A
0 0 L/l 1o 0 N
-02[— = 102 1-02 / -0.2 :
0.4 ~ | o401 1 -0.4 —0.4 7 ™
0806 02002 06 06 202002 06 %6 02002 06 %6 02002 06
x (m) x (m) x (m) x (m)
(a) {0,0,0} (b) {0,0,—1/3}  (c) {0.12,0.07,—71/3} (d) {0.18,0.11, —11/3}

Fig. 3 The four test posefxp, Yp, Op} (positions in meters, orientation in radian)

To the best of our knowledge, there exist no works that try tummize the num-
ber of operators in the elastodynamic models of parallebtmbrherefore, the ef-
ficiency of the proposed solution may be difficult to analydewever, for reasons
of comparison, the obtained frequencies were validated é&gns of an equivalent
model developed using Cast3M software [8]. For the simoeti Cast3M gives the
result after around 6 sec. of computation while our modetigka results in around
0.01 sec. (for a Pentium 4 2.70GHz, 8Go of RAM). Both model® dhe same
values for the first 90 natural frequencies of the NaVARo.l&&hgives the first 5
natural frequencies of the NaVARo for the 4 robot postureswshin Fig. 3.

5 Conclusions

The paper has presented a symbolic and recursive calaulatithe stiffness and
mass matrices of parallel robots. The proposed algorithat takes advantage of re-
cursive calculations for the computation of the Jacobiatrioes defining the kine-
matic constraints, is used to compute the natural freqesrafi a robot developed
at IRCCyN: the NaVARo. Results have shown that the proposedihwas able to
give the same values as a FEA software for the first 90 nattequéncies of the
NaVAROo but in a considerably reduces computational timet(ad 0.01 sec. for our
model while FEA results were obtained in several sec.).
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Table2 Comparison of the natural frequencies obtained with Cast3MMiatthb.

(HZ) f1 f2 f3 f4 f5
Cast3M Matlab Cast3M Matlab Cast3M Matlab Cast3M Matlab Cast3Midda

Pose (a) 44.10 44.10 44.10 44.10 53.98 53.98 60.63 60.63 92652
Pose (b) 45.71 4571 4571 4571 5458 5458 6535 65.35 97PID2
Pose (c) 36.98 36.98 49.31 49.31 53.37 53.37 67.28 67.28 91980
Pose (d) 40.17 40.17 50.32 50.32 52.99 5299 67.36 67.36 919352

R

1

11.

12.

13.

14.

15.

16.
17.

18.

eferences

. Arakelian, V., Briot, S., Glazunov, V.: Increase of singitlafree zones in the workspace
of parallel manipulators using mechanisms of variable structiechanism and Machine
Theory43(9), 1129-1140 (2008)
Bauchau, O.: Flexible multibody dynamics. Springer (2011)
Boyer, F., Khalil, W.: An efficient calculation of the fléoté manipulator inverse dynamics.
International Journal of Robotics Resealdli3), 282—-293 (1998)
Boyer, F., Khalil, W., Benosman, M., LeVey, G.: Robot Margiars. Modeling, Performance,
Analysis and Control, chap. 7: Modeling and Control of FléxiRobots, pp. 337-394. Control
Systems, Robotics and Manufacturing Series. ISTE (2007)
Briot, S., Khalil, W.: Recursive and symbolic calculatiortioé elastodynamic model of flex-
ible parallel robots. The International Journal of Roboties®&arch (2014). In press
Briot, S., Pashkevich, A., Chablat, D.: Reduced elastaaymenodelling of parallel robots for
the computation of their natural frequencies. In: World Cesgrin Mechanism and Machine
Science, 13 (2011)
Cammarata, A., Condorelli, D., Sinatra, R.: An algorithnstiady the elastodynamics of par-
allel kinematic machines with lower kinematic pairs. ASME Tranigems Journal of Mecha-
nisms and RoboticS(1) (2013)
Castem3000: The castem software webpage. www-cast3m.ceRlfrwidw-cast3m.cea.fr.
Webpage accessed November 2012
Craig, R.: Structural dynamics. Wiley (1981)

. Craig, R.R., Bampton, M.C.C.: Coupling of substructuresljmamic analysis. AIAA Journal
6(7) (1968)
Dwivedy, S., Eberhard, P.: Dynamic analysis of flexible rpalaitors, a litterature review.
Mechanism and Machine Theo#(7), 749-777 (2006)
Khalil, W., Dombre, E.: Modeling, Identification and Cmitof Robots. Hermes Penton
London (2002)
Khalil, W., Gautier, M.: Modeling of mechanical systems witmped elasticity. In: Proceed-
ings of the IEEE International Conference on Robotics antbation, pp. 3965-3970. San
Francisco, CA, USA (2000)
Rakotomanga, N., Chablat, D., Caro, S.: Kinetostaticoperdnce of a planar parallel mech-
anism with variable actuation. In: Advances in Robot Kinesgf2008)
Shabana, A.: Dynamics of flexible bodies using generaliggdon-euler equations. Journal
of Dynamic Systems, Measurement, and Cortid, 496-503 (1990)
Shabana, A.: Dynamics of Multibody Systems. Cambridge UsityelPress (2005)
Stachera, K., Schumacher, W.: Automation and Roboticg, dfsa Derivation and Calculation
of the Dynamics of Elastic Parallel Manipulators. I. Tech. E&®ublishing (2008)
Wittbrodt, E., Adamiec-\fcik, I., Wojciech, S.: Dynamics of Flexible Multibody Systs.

Springer-Verlag Berlin Heidelberg (2006)



