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In this letter, we propose the calibration procedure for a Snow Water Equivalent
(SWE) forecasting model, using Moderate-Resolution Imaging Spectroradiometer
(MODIS) multi-temporal snow cover maps and in situ measurements. The presented
study refers to one of the largest artificial lakes in the Western Europe - the Serre-
Ponçon reservoir, on the Durance river, in the region of the French Alps. The SWE
model, an integral part of the MORDOR hydrological model (MOdèle à Réservoirs
de Détermination Objective du Ruissellement), provides the SWE as a function of
the local precipitation and temperature, as well as of the accumulation and melting
correction coefficients. The principal motivation for the proposed calibration method
comes from the significant model sensitivity with respect to these two coefficients,
which, given that they account for the influences of topology and mountain winds,
ought to vary spatially. Three different optimization procedures are compared using
the set of in situ measurements acquired by the EDF cosmic-ray snow sensors for
four out of thirty-six ground stations in the regions of interest. The appropriate opti-
mization method is selected and the corresponding representative optimal coefficients
are derived for these four stations. Further, by combining the selected optimization
algorithm and the continuous activation function, we are proposing a new method for
deriving the spatially varying coefficients characterizing the entire region, using multi-
temporal MODIS snow cover binary maps. When analyzed with respect to the Mean
Square Error (MSE) criterion, the SWE model, calibrated in this manner, appears
to be significantly more accurate than the original version (using a priori estimated,
spatially fixed coefficients). Furthermore, the calibration procedure based on MODIS
data is comparable and, for some ground stations, it exhibits even better performances
than the one based on the in situ measurements.

1. Introduction

Snow Water Equivalent (SWE), a function of snow density and depth, is defined
as the depth of the layer of liquid water that would be produced if all the ice
in the snow pack were melted [Rees (2006)]. The estimation of SWE in moun-
tainous regions appears very important for the hydroelectric power supply, since
it allows anticipating the water resources available during the snow melting sea-
son [Tourasse (1995)]. The main French hydro-power company EDF (Eléctricité
de France) uses the internally developed hydrological model MORDOR (MOdèle
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à Réservoirs de Détermination Objective du Ruissellement) [Garcon (1996)] and
local in situ measurements, in order to properly estimate the contribution of the
melted snow to their water accumulations. Using thirty-six meteorological stations
distributed around the accumulation reservoir of the Serre-Ponçon dam, the MOR-
DOR forecasting hydrological model currently provides, among other parameters,
the SWE used to evaluate the potential intakes to this reservoir and to optimize the
operation of the corresponding power plant. The sub-model, providing the SWE,
uses the available precipitation and air temperature measurements as input pa-
rameters. Aside from those, each station is supposed to be characterized with the
appropriate accumulation (cp) and melting (kf) correction coefficients.

In this letter, we present the calibration of the SWE sub-model of MORDOR
using in situ measurements and we propose a novel calibration strategy based on a
multi-temporal set of Moderate-Resolution Imaging Spectroradiometer (MODIS)
snow cover binary maps [Vasile et al. (2013)]. In fact, we are deriving a mean to
properly establish the spatially varying accumulation and melting correction coef-
ficients, required by the MORDOR model. These parameters represent a mean to
account for the strong influence of the topology and mountain winds on the hy-
drological model [Bloschl et al. (1991a,b)]. The MODIS data were already, despite
the ever-present issue with the cloud coverage, successfully used in calibrating and
validating hydrological models [Parajka and Bloschl (2008, 2012)]. In this article
we propose a suitable calibration procedure, reduced to the estimation of the spa-
tially varying correction coefficients and, by comparing it with the one performed
using in situ measurements, we demonstrate the utility of the remote sensing data
in the context of the calibration of distributed hydrological models.

As a case study for the derivation and the demonstration of the proposed method,
we use the formerly introduced Serre-Ponçon dam. Out of the existing thirty-six
stations, local in situ measurements are available for four of them. These data sets
are initially used for comparative optimization aiming both to derive representa-
tive coefficients (cp,kf) at these four locations and to select the most appropriate
optimization method. Still being restricted to these four stations, we employ the
formerly selected method in defining the parameters of the continuous activation
function. Further, we derive the spatially varying coefficients characterizing the
entire region, including the remaining stations, by rather relying on the MODIS
multi-temporal set of snow cover maps. This is done through the optimization
of the continuously thresholded (by means of the continuous activation function)
SWE model, using the available remote sensing data acquired over the entire re-
gion. The final comparison with the in situ measurements indicates significantly
increased accuracy with respect to the initial case, where the cp and the kf are
considered as fixed for the entire region. Moreover, the proposed method based on
the MODIS data, eventually appears to be superior with respect to the calibration
using in situ measurements.

2. MORDOR hydrological model

The MORDOR model principally covers five hydrological processes [Paquet
(2004)]: evapotranspiration, surface runoff, infiltration, dewatering and snow ac-
cumulation and melting. Basically, it assumes five different reservoirs and models
their mutual exchange. They represent: snowpack, surface supply (absorption),
stock of water which transforms to vapour, intermediary supply and deep supply
(rivers).

Our particular interest is the sub-model dealing with the snow accumulation and
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Figure 1. SWE measurements during the season 2001-2002.

melting. Namely, based on the precipitation and the air temperature measurements,
this sub-model estimates the quantity of water contained in the snowpack (one
of the assumed reservoirs). Aside from these meteorological parameters, the two
coefficients characterizing the accumulation and the melting processes cp and kf),
define the SWE as well.

The accumulation during one day is estimated rather commonly, using both
precipitation and air temperature, where the later one defines the ice fraction in the
former. However, the melting estimation, being more sophisticated, is performed
by simultaneously assessing the superficial melting, melting due to the rain and
the one caused by the geothermal flux. The first of them is modelled using a degree
day model which relies on both the air temperature and the temperature of the
snow. Only this summand is corrected by the coefficient kf.

Unlike the precipitation and the air temperature, which can be measured [Got-
tardi and Gailhard (2009)] at the distributed meteorological ground stations and
then interpolated [Goovaerts (2000)], the coefficients cp and kf have to be either
assumed or determined based on some reliable measurements. The later is the topic
of this article - proposing a method which exploits remote sensing measurements
in order to derive the snow accumulation and melting correction coefficients.

3. Calibration using in situ measurements

The in situ measurements are acquired at some ground meteorological stations
by cosmic-ray snow gauges. Conventionally used in the characterization of the soil
moisture [Zreda et al. (2012)], this technique proved to be an efficient method for
the SWE estimation, as well [Paquet and Laval (2006)].

These, available in situ measurements, were used both to determine the represen-
tative optimal coefficients at the corresponding sites and to select the most appro-
priate optimization method. Firstly, we were identifying the characteristic periods
(accumulation and melting) over one year. Later, we performed the comparative
analyses by applying simultaneously three different optimization algorithms.

In order to identify the accumulation and the melting periods, we had to deter-
mine three dates: accumulation start date, melting start and melting end dates.

This was done using the smoothed gradient operator: positive gradient values
correspond to snow accumulation, while negative indicate melting. Therefore, the
radical change in gradient value points to the melting start. The other two dates
are related to the first and the last non-zero values during the year of study (1
October 2000 to 30 September 2001).

3
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We used the Mean Square Error (MSE) as optimization criterion. The goal was to
find the values of the accumulation (cp) and the melting (kf) coefficients which lead
to the smallest difference between the model output (given the local meteorological
data) and the measurements. Actually, it is the minimum of the MSE function we
were searching for:

[cp, kf] = fopt

(
MSE{g(cp, kf, t),m(t)},

[
c0

p, k
0
f

])
. (1)

with fopt signifying the function of optimization, g being the model output as a
function of time (t) and m representing the acquired in situ measurements. c0

p

and k0
f are the fixed values of the coefficients used in the original model, derived

statistically using several meteorological stations.
Three unconstrained non-linear optimization algorithms [Dennis and Schnabe

(1983)] were compared using the available measurements:

• M1 - fmin search: the Nelder-Mead simplex function minimization. The algo-
rithm creates a simplex around the initial guesses (c0

p and k0
f ) which is further

modified in the iterative process. [Lagarias et al. (1998)]
• M2 - pattern search: the generalized pattern search (GPS). It relies on posi-

tive spanning directions by assuming the treated function (model output) is
continuously differentiable [Charles and Dennis (2003)].

• M3 - genetic algorithm: natural selection process that mimics biological evo-
lution. The only of the three used algorithms that doesn’t require any initial
guess, but rather creates random solutions, which are evolving toward the
optimal ones [Michalewicz (1995)].

By relying on previously derived characteristic periods, the optimization proce-
dure was performed using the values acquired during:

• the whole year (all),
• the accumulation (A) and melting (M) period (winter+spring),
• the accumulation period (winter),
• the melting period (spring).

At the end of this section, we had both the most suitable optimization method
and the representative optimal coefficients, which were due to be considered as the
reference in analysing the performances of the proposed method.
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Figure 2. The MODIS binary snow maps: (a) interpolated SWE binary curves (four stations with in situ
measurements); (b) comparison with the optimally binarized in situ measurements (station III).
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4. Calibration using MODIS remote sensing data

Due to its accuracy and daily availability, MODIS remote sensing data represent
a valuable tool in snow cover monitoring [Klein and Stroeve (2002)]. Despite the
necessity to perform spatial and temporal filtering in order to decrease cloud ob-
scuration, the overall accuracy of the derived snow cover maps stays above 90%
[Parajka and Bloschl (2008)].

Therefore, MODIS snow cover maps happen to be particularly useful in cali-
brating and validating semi-distributed hydrological models [Parajka and Bloschl
(1999)]. The standard procedure assumes comparing the SWE output of the hy-
drological model with the observed maps.

Obviously, the previously introduced calibration relying on the in situ measure-
ments cannot be applied to the entire region of interest, unless the measurements
are spatially interpolated. Even though both the air temperature and the precip-
itation are interpolated by means of kriging (Gaussian random regression), the
same type of spatial continuity cannot be expected in case of correction coeffi-
cients. Therefore, in order to account for their strong spatial variability, we have
developed a new strategy for exploiting the MODIS binary snow maps, instead.
This method allows the calibration of the distributed hydrological model.

The proposed method consists in the following three steps:

4.1 MODIS data preprocessing

The set of multitemporal MODIS snow maps was derived out of georeferenced
MODIS images, acquired in 2000/2001. The temporal binary curves derived for
each pixel were then linearly interpolated in order to compensate for the eventual
lack of the data during the year. Among them, four correspond to the meteorolog-
ical stations characterized with in situ measurements (Fig. 2(a)).

4.2 Continuous thresholding of the SWE sub-model

The conventional ”hard” thresholding with respect to the predefined threshold T
(values less than T labelled by ”0” and greater than T by ”1”), did not appear to
be appropriate, given that a non-continuous function does not suit any of the for-
merly introduced optimization methods. Therefore, we turned toward a continuous
thresholding strategy, based on the continuous activation function:

xb =
tanh (x−hσ ) + 1

2
, (2)

where σ reflects the uncertainty in the SWE sub-model, while h depends on the
value order of SWE, here called x. The later value was selected ad hoc, while
the derivation of the σ value assumed the optimization (algorithm M1) of the
binarized in situ measurements (mb(σ, h, t)) with respect to the corresponding
MODIS temporal binary curve (M(t)) (Fig. 2 (b)):

[σ] = fopt

(
MSE{mb(σ, h, t),M(t)},

[
σ0

])
, (3)

with σ0 being the initial, assumed value of σ.
The completely defined linear binarization function was further to be applied on

the SWE sub-model.
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4.3 The derivation of the correction coefficients

Finally, we derive the correction coefficients (cp and kf) by minimizing the mean
square error between: (1) the product of the binarized SWE sub-model output (gb)
with the model itself (g), and (2) the product of the smooth MODIS binary curves
M with the SWE sub-model.

Empirically, we established that the optimization at the ground stations charac-
terized by large SWE values, should be performed using the a priori assumed SWE
sub-model (based on the initially assumed coefficients) paired with the MODIS
measurements. Namely, in these cases, the SWE sub-model multiplying the smooth
MODIS binary curves, is not the subject of the optimization:

[cp, kf] = fopt

(
MSE{gb(cp, kf, t)g(cp, kf, t),M(t)g(c0

p, k
0
f , t)},

[
c0

p, k
0
f

])
. (4)

However, in other cases, where SWE values are not perceived as large (station IV),
the optimization is to be performed by considering all the (cp and kf) coefficients
as optimizable variables:

[cp, kf] = fopt

(
MSE{gb(cp, kf, t)g(cp, kf, t),M(t)g(cp, kf, t)},

[
c0

p, k
0
f

])
. (5)

5. Results

Firstly, we present the optimization results obtained using the in situ measure-
ments. The comparison between three optimization algorithms indicates the best
overall performances of the M1 method. This method is therefore adopted as the
standard optimization procedure in this article. Concerning the characteristic pe-
riods, it appears that the most suitable one is ”accumulation+melting (A+M )”
period (Fig. 3).

As expected, the SWE sub-model, optimized this way, exhibits significantly in-
creased accuracy with respect to the in situ ground measurements. This can be
noticed in Table 1.

Further, we present the optimization results obtained using the MODIS binary
snow maps (Fig. 4) for the four stations with the in situ measurements. Even
though this optimization appears to be slightly more time consuming, the over-
all results (Table 1) indicate far better performances with respect to the original
ones. Curiously, in case of two stations (I and IV) the obtained results are even
better than the ones achieved using in situ measurements, which are considered as

Table 1. Calibration results using both the in situ measurements and the MODIS snow cover binary
maps: MSEc/MSE0 - ratio between (1) the mean square error (MSE) of the calibrated model and the

measurements, and (2) the MSE of the model before calibration and the measurements.

Calibration method Station MSEc/MSE0 Time (s) cp kf

Calibration using
Station I 0.6476 18.678 1.4077 2.5994
Station II 0.2375 34.640 0.9581 6.0304

in situ Station III 0.2672 17.873 1.1898 2.3090

measurements
Station IV 0.0094 26.655 1.4345 8.0675
Average 0.2904 24.462

Calibration using
Station I 0.3578 52.116 1.3406 4.1960
Station II 0.9946 65.782 1.5492 6.2212

MODIS Station III 0.4071 48.683 1.3692 3.9532

data
Station IV 0.0067 123.87 0.7738 10.4578
Average 0.4415 72.613
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Figure 3. Qualitative and quantitive (MSE × 10−3) comparison of the calibrated SWE model (using in
situ measurements) with the measurements from: (a) station I, (b) station II, (c) station III, (d) station
IV. OM - optimization method, OI - optimization interval, M0 - non-calibrated model (based on the initial
values of the correction coefficients), A - the accumulation period, M - the melting period, all - the whole
year.

representative optimal solutions. This can be considered both as the validation of
the proposed calibration procedure and the demonstration of the utility of remote
sensing data in terms of calibration.

As anticipated, the proposed optimization in temporal domain results in spa-
tially optimized maps. It can be seen in Figure 5 that the newly obtained SWE
maps match far better the MODIS snow maps in terms of the presence/absence
of snow. This is particularly true for the melting season, where the proposed op-
timization exhibits better performances, which can be analogously deduced from
the comparison with the ground measurements (Fig. 4).
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Figure 4. Qualitative comparison with in situ ground measurements of the SWE model calibration scheme
based on MODIS data: (a) Station I, (b) Station II, (c) Station III, (d) Station IV.

6. Conclusion

Due to their role in introducing the influences of topology and mountain winds, the
SWE sub-model of the MORDOR hydrological model appears to be quite sensitive
with respect to the accumulation and melting correction coefficients. Due to the
spatial discontinuity of these coefficients, interpolating locally estimated values,
like it is the case with the air temperature or the precipitation, doesn’t appear as
a proper solution. Therefore, we proposed a new strategy for their derivation using
multi-temporal MODIS binary snow cover maps and in situ ground measurements.
Firstly, we compared several optimization methods in deducing the representative
optimal coefficients for each of the four stations with in situ measurements. Fur-
ther on, using the method which proved as the most appropriate, we presented the
strategy for deriving the accumulation and melting coefficients using the MODIS
binary snow maps. This method allows covering the entire region of interest, by
characterizing each spatial cell (pixel of the MODIS image) with a pair of coef-
ficients. In the same time, it assures better accuracy with respect to the original
SWE sub-model, which assumes global values for these two coefficients. Using only
MODIS data, the obtained optimized results are comparable to the representative
optimal coefficients, derived by the in situ data based optimization.

Future work aims to investigate the potential role of spaceborne multi-temporal
Synthetic Aperture Radar data in improving the accuracy of the SWE sub-model
of the MORDOR.
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Figure 5. Matching of the obtained SWE maps for: (a) the 26 October 2000, (b) the 4 February 2001,
(c) the 1 June 2001. Part (i) shows the MODIS map, part (ii) the SWE map before calibration, part
(iii) the SWE map after calibration and part (iv) the matching percentages. (d) The (spline) interpolated
matching curves covering the one year period (2000-2001). Geographical coordinates of the provided maps
are 44◦16’N, 06◦13’E (bottom-left corner).
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France (EDF). Therefore, authors would like to thank to EDF for the meteorolog-
ical data, the in situ measurements and the MODIS data.

9



the postprint for non-commercial use

References

Bloschl, G., Gutknecht, D. and Kirnbauer, R., 1991a, Distributed snowmelt sim-
ulations in an Alpine catchment. 1. Model Evaluation on the Basis of Snow Cover
Patterns.. Water Resources Research, 27, pp. 3171–3179.

Bloschl, G., Gutknecht, D. and Kirnbauer, R., 1991b, Distributed snowmelt sim-
ulations in an Alpine catchment. 2. Parameter study and model predictions.. Water
Resources Research, 27, pp. 3181–3188.

Charles, A. and Dennis, J., 2003, Analysis of generalized pattern searches. SIAM Jour-
nal on Optimization, 13, pp. 889–903.

Dennis, J.E. and Schnabe, R.B., 1983, Numerical Methods for Unconstrained Optimiza-
tion and Nonlinear Equations (SIAM).

Garcon, R., 1996, Operational forecast of supply from Durance to Serre-Ponon by means
of MORDOR model. Balance for the year 1994-1995. La Houille Blanche International
Water Journal, 5, pp. 71–76.

Goovaerts, P., 2000, Geostatistical approaches for incorporating elevation into the spa-
tial interpolation of rainfall. Journal of Hydrology, 228, pp. 113–129.

Gottardi, F. and Gailhard, J., 2009, Quantitative estimation of precipitation over the
French mountainous areas using snow measurements and weather patterns approach.
Geophysical Research Abstracts, EGU General Assembly.

Klein, A. and Stroeve, J., 2002, Development and validation of a snow albedo algorithm
for the MODIS instrument. Annals of Glaciology, 34, pp. 45–52.

Lagarias, J., Reeds, J.A., Wright, M.H. and Wright, P.E., 1998, Convergence
Properties of the Nelder-Mead Simplex Method in Low Dimensions. SIAM Journal
on Optimization, 9, pp. 112–147.

Michalewicz, Z., 1995, Genetic algorithms, numerical optimization and constraints. In
Proceedings of the 6th International Conference on Genetic Algorithms, Pittsburgh,
USA, pp. 151–158.

Paquet, E., 2004, A new version of the hydrological model MORDOR : snowpack model
at different elevations. La Houille Blanche International Water Journal, 2, pp. 75–81.

Paquet, E. and Laval, M., 2006, Operation feedback and prospects of EDF cosmic-ray
snow sensors. La Houille Blanche International Water Journal, 2, pp. 113–119.

Parajka, J. and Bloschl, G., 1999, Spatio-temporal combination of MODIS images
potential for snow cover mapping. Water Resources Research, 44.

Parajka, J. and Bloschl, G., 2008, The value of MODIS snow cover data in validating
and calibrating conceptual hydrologic models. Journal of Hydrology, 358, pp. 240–
258.

Parajka, J. and Bloschl, G., 2012, MODIS-based Snow Cover Products, Validation,
and Hydrologic Applications. In Multiscale Hydrologic Remote Sensing Perspectives
and Applications, pp. 185–212 (CRC Press).

Rees, W.G., 2006, Remote Sensing of Snow and Ice (Boca Raton, FL, USA: CRC Press,
Taylor and Francis Group).

Tourasse, P., 1995, The telenivometry and the prevision of filling supply for EDF reser-
voirs. La Houille Blanche International Water Journal, 5/6, pp. 92–97.

Vasile, G., Tudoroiu, A., Gottardi, F., Gailhard, J., Girard, A. and d’Urso,
G., 2013, Unconstrained Nonlinear Optimization Of A Distributed SWE Model Us-
ing Modis And In Situ Measurements Over The French Alps. In Proceedings of the
IGARSS, Melbourne, AUS, pp. 4859–4862.

Zreda, M., Shuttleworth, W., Zeng, X., Zweck, C., Desilets, D., Franz, T. and
Rosolem, R., 2012, COSMOS: The COsmic-ray Soil Moisture Observing System.
Hydrology and Earth System Science, 16, pp. 4079–4099.

10


