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Abstract

In the context of optimal control, we consider the inverse problem of Lagrangian

identification given system dynamics and optimal trajectories. Many of its theoret-

ical and practical aspects are still open. Potential applications are very broad as a

reliable solution to the problem would provide a powerful modeling tool in many

areas of experimental science. We propose to use the Hamilton-Jacobi-Bellman

sufficient optimality conditions for the direct problem as a tool for analyzing the

inverse problem and propose a general method that attempts at solving it numeri-

cally with techniques of polynomial optimization and linear matrix inequalities. The

relevance of the method is illustrated based on simulations on academic examples

under various settings.

1 INTRODUCTION

In brief the Inverse Optimal Control Problem (IOCP) can be stated as follows. Given a
system dynamics

ẋ(t) = f(x(t), u(t))

with possibly state and/or control constraints

x(t) ∈ X, u(t) ∈ U, t ∈ [0, T ]

and a set of trajectories
(x(t; x0), u(t; x0))t∈[0,T ], x0∈X

parametrized by time and initial states, and stored in a database, the goal is to find a
Lagrangian function

l : X × U → R
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2Université de Toulouse; LAAS, F-31400 Toulouse, France.
3Faculty of Electrical Engineering, Czech Technical University in Prague, Technická 2, CZ-16626
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such that all state and control trajectories in the database are optimal trajectories for the
direct Optimal Control Problem (OCP) with integral cost

∫ T

0

l(x(t), u(t))dt,

with fixed or free terminal time T .

Inverse problems in the context of calculus of variations and control are old topics that
arouse a renewal of interest in the context of optimal control, especially in humanoid
robotics. Actually, even the well-posedness of the IOCP is an issue and a matter of
debate between the robotics and computer science communities.

1.1 Context

The problem of variational formulation of differential equations (or the inverse problem
of the calculus of variations) dates back to the 19-th century. The one dimensional
case is found in [9], historical remarks are found in [10, 30]. Necessary and sufficient
conditions for the existence and the enumeration of solutions to this problem have been
investigated since, see also [28] for a survey about recent developments. Notice that
calculus of variations problems correspond to the particular choice of dynamics f = u in
the OCP.

Kalman first formulated the inverse problem in the context of linear quadratic regulator
(LQR) [16] which triggered research efforts in this realm [3, 15, 13]. Departing from the
linear case, Hamilton-Jacobi theory is used in [29] to recover quadratic value functions,
in [23] to prove existence theorems for a class of inverse control problems, and in [7] to
generalize results obtained for LQR. In a slightly different context, [12] linked Lyapunov
and optimal value functions for optimal stabilization problems. More recently the well-
posedness issue was addressed in [24] in the context of LQR. Robustness and continuity
aspects with respect to Lagrangian variations were investigated in [8], results about well-
posedness and experimental requirements were exposed in [2], both in the context of
Dubbins dynamics and strictly convex positive Lagrangians.

On a more practical side, motivated by [4], the authors in [22] have proposed an algorithm
based on the ability to solve the direct problem for parametrized Lagrangians and on a
formulation of the IOCP as a (finite-dimensional) nonlinear program. Similar approaches
have been proposed in the context of Markov Decision Processes [1, 27]. In a sense
these methods are “blind” to the problem structure as testing optimality at each current
candidate solution is performed by solving numerically the associated direct OCP. To
further exploit the problem structure, we can use explicit analytical optimality conditions
for the direct OCP. For instance the use of necessary optimality conditions for solving
numerically the IOCP have already been proposed in recent works. In [26] the direct
problem is first discretized and the IOCP is expressed as a (finite-dimensional) nonlinear
program. Then the residual technique of [17] for inverse parametric optimization is applied
to the Karush-Kuhn-Tucker optimality conditions of the nonlinear program to account
for optimality of the database trajectories. On the other hand, [14] proposes to use the
maximum principle for kinetic parameter estimation.
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Surprisingly, in all the above references, only the seminal theoretical works of [29, 23, 7]
are based on (or use) the Hamilton-Jacobi-Bellman equation (HJB in short), whereas the
HJB provide a well-known sufficient condition for optimality and a perfect practical tool
for verification. One reason might be that the HJB is rarely used for solving the direct
OCP and is rather used only as a verification tool.

1.2 Contribution

We claim and hope to convince the reader that the HJB optimality equation (in fact even
a certain relaxation of HJB) is a very appropriate tool not only for analyzing but also for
solving the IOCP. Indeed:

(a) The HJB optimality equation provides an almost perfect criterion to express optimality
for database trajectories.

(b) The HJB optimality equation (or its relaxation) sheds light on the many potential
pitfalls related to the IOCP when treated in full generality. Among them, the most
concerning issue is the ill-posedness of the inverse problem and the existence of solutions
carying very little physical meaning. The HJB condition can be used as a guide to
restrict the search space for candidate Lagrangians. Previous approaches to deal with
this problem, implicitly or explicitly, involve strong constraints on the class of functions
among which candidate Lagrangians are searched [22, 26, 8, 2]. This allows, in some cases,
to alleviate the ill-posedness issue and to provide theoretical guarantees regarding the
possibility to recover a true Lagrangian from the observation of optimal trajectories [8, 2].
Departing from these approaches, the search space restrictions that we propose stems
from either simple relations between the candidate Lagrangian and optimal value function
associated with the OCP, obvious from the HJB equation, or from purely sparsity biased
estimation arguments. We do not require an a priori (and always questionable) selection
of the “type” of candidate Lagrangian (e.g. coming from some “physical” observations
and/or remarks).

(c) Last but not least, a relaxation of the HJB optimality equation can be readily trans-
lated into a positivity condition for a certain function on some set. If the vector field
f is polynomial, and the state and/or control constraint sets X and U are basic semi-
algebraic then a natural strategy is to consider polynomials as candidate Lagrangians
and (approximated) optimal value functions associated with the direct OCP. Within this
framework, using powerful positivity certificates à la Putinar to look for an optimal solu-
tion of the IOCP reduces to solving a hierarchy of semidefinite programs (SDP), or linear
matrix inequalities (LMI) of increasing size. Importantly, a distinguishing feature of this
approach is not to rely on iteratively solving a direct OCP. Notice that since the 1990s,
the availability of reasonably efficient SDP solvers [31] has strengthened the interest in
optimization problems with polynomial data. Examples of applications of such positivity
certificates are given in [18] and [20] for direct optimization and optimal control, and in
[19] for inverse (static) optimization.

The paper is organized as follows. In Section 2 we properly define the IOCP. Next, in
section 3, we present the conceptual ideas based on HJB theory, polynomial optimiza-
tion and LMI. We emphasize that these ideas allow to highlight potential pitfalls of the

3



IOCP. A practical implementation of the discussed conceptual method is proposed in
section 4. Finally, in section 5 we first illustrate the outputs of the method on a simple
one-dimensional example and then provide promising results on more complex academic
examples.

2 PROBLEM FORMULATION

2.1 Notations

If A is a topological vector space, C(A) represents the set of continuous functions from A

to R and C1(A) represents the set of continuously differentiable functions from A to R.
Let X ⊆ R

dX denote the state space and U ⊆ R
dU denote the control space which are

supposed to be compact subsets of Euclidean spaces. System dynamics are represented
by a continuously differentiable vector field f ∈ C1(X × U)dX which is supposed to be
known. Terminal state constraints are represented by a set XT ⊆ X which is also given.
Let Bn denote the unit ball of the Euclidean norm in R

n, and let ∂X denote the boundary
of set X .

2.2 Direct OCP

Given a Lagrangian

l0 ∈ C(X × U),

we consider a direct OCP of the form:

v0(t, z) := inf
u

∫ T

t

l0(x(s), u(s))ds

s.t. ẋ(s) = f(x(s), u(s)),
x(s) ∈ X, u(s) ∈ U, s ∈ [t, T ],
x(t) = z, x(T ) ∈ XT

(OCP)

with final time T ≥ t. In this formulation, the final time T might be given or free, in
which case it is a variable of the problem and the value function v0 does not depend on t.
For the rest of this paper, direct problems of the form of (OCP) are denoted as

OCP(l0, z).

Remark. More general problem classes could be considered. Indeed, there is no terminal
cost and the problem is stationary. Further comments are found in next sections.

Remark. The infimum in (OCP) might not be attained.

2.3 IOCP

The inverse problem consists of recovering the Lagrangian of the direct OCP based on:
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• knowledge of the dynamics f as well as state and/or control constraint sets X,U,XT ,

• observation of optimal trajectories stored in a database indexed by some index set
I

D = {(ti, xi, ui)}i∈I ∈ ([0, T ]×X × U)I .

Remark. For complete trajectories, the index set I is a continuum. For real world data,
it is a finite set.

More specifically, the inverse problem consists of finding l ∈ C(X × U) such that D is a
subset of optimal trajectories of problem OCP(l, xi(t)) for all t ∈ [0, T ]. A solution of
this problem would be an operator mapping back D to l such that the input data satisfy
optimality conditions for problem OCP(l, xi(t)).

3 HAMILTON-JACOBI-BELLMAN FOR THE IN-

VERSE PROBLEM

3.1 Hamilton-Jacobi-Bellman theory

For the rest of this paper, we define the following linear operator acting on Lagrangians
and value functions:

L : (l, v) → l +
∂v

∂t
+

∂v

∂x

T

f.

A well-known sufficient condition for optimality in problem (OCP) follows from Hamilton-
Jacobi-Bellman (HJB) theory, see e.g. [11, 6].

Proposition 3.1. Suppose that there exist state and control trajectories (x0(s), u0(s))s∈[t,T ]

such that

ẋ0(s) = f(x0(s), u0(s)), (A1)

x0(s) ∈ X, u0(s) ∈ U, s ∈ [t, T ],

x0(t) = z, x0(T ) ∈ XT .

Suppose in addition that there exists a function v0 ∈ C1([t, T ]×X) such that

L(l0, v0)(s, x, u) ≥ 0, ∀(s, x, u) ∈ [t, T ]×X × U, (1)

v0(T, x) = 0, ∀x ∈ XT , (2)

L(l0, v0)(s, x0(s), u0(s)) = 0, ∀s ∈ [t, T ]. (3)

Then the state and control trajectories (x0(s), u0(s))s∈[t,T ] are optimal solutions of the
direct problem (OCP).

Proof. Recall that X,U are compact. So integrating (1) along any feasible state and con-

trol trajectories (x(s), u(s)) with initial state z at time t, and using (2) yields
∫ T

t
l0(x(s), u(s))ds ≥

v0(t, z) whereas using (3) one has
∫ T

t
l0(x0(s), u0(s))ds = v0(t, z).

5



Observe that (1)-(2) are just a relaxation of the HJB equation and from Proposition 3.1
(1)-(3) provide a certificate of optimality of the proposed trajectory. Additional assump-
tions on problem structure are required to make this condition necessary, see e.g. [11].
Moreover, for most direct problems these conditions can not be met in the usual sense
and viscosity solutions are needed, see e.g. [6]. Our approach is based on a classical
interpretation as well as a relaxation of these sufficient conditions alone.

Remark. In the free terminal time setting, the conditions (1)-(2) can be simplified because
v0 does not depend on the initial time t any more.

3.2 Inverse problem: main idea

We use HJB relations to characterize some approximate solutions of the inverse problem.
The idea is based on the following weakening of Proposition 3.1.

Proposition 3.2. Let (x0(s), u0(s))s∈[t,T ], with x0(t) = z, be such that (A1) is satisfied.
Suppose that there exist a real ǫ and functions l ∈ C(X ×U), v ∈ C1([0, T ]×X) such that

L(l, v)(s, x, u) ≥ 0, ∀(s, x, u) ∈ [t, T ]×X × U, (4)

v(T, x) = 0, ∀x ∈ XT , (5)
∫ T

t

L(l, v)(s, x0(s), u0(s))ds ≤ ǫ. (6)

Then, the input trajectory (x0(s), u0(s))s∈[t,T ] is ǫ-optimal for problem OCP(l, z).

Proof. Proceeding as in the proof of Proposition 3.1, v(t, z) is a lower bound on the value
function of problem OCP(l, z) and from the last linear constraint (6) we deduce that

∫ T

t

l(x0(s), u0(s))ds ≤ v(t, z) + ǫ.

Proposition 3.2 can be easily extended to the case of multiple trajectories. The main
advantage is that we have a certificate of ǫ-optimality. Observe that 0-optimality is in
principle impossible to obtain because the optimal value function v of a direct OCP
is in general non-differentiable; however as soon as v is continuous then by the Stone-
Weierstrass Theorem v can be approximated on the compact [t, T ] × X as closely as
desired by a polynomial and so ǫ-optimality is indeed achievable for arbitrary ǫ > 0.

Remark. The conditions (4)-(6) do not ensure that the infimum of the direct problem
with cost l(x, u) is attained. However the fact that a trajectory is given ensures that it is
feasible.

3.3 Multiple and trivial solutions

The construction of multiple solutions to the inverse problem is trivial given the tools of
Proposition 3.2. Consider the free terminal time setting and suppose that the pair (l, v)
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satisfies conditions (4)-(6) for some ǫ > 0. Take a differentiable ṽ such that ṽ(T, x) = 0
for x ∈ XT . Then the pair (l−fT v, v+ ṽ) satisfies constraints (4)-(6) for the same ǫ. The
possibility to construct such solutions stems from the existence of trivial solutions to the
problem.

As we already mentioned, the constraint (4) is positively homogeneous in (l, v) and there-
fore, the pair (0, 0) is always feasible. In other words the trivial cost l = 0 is always
an optimal solution of the inverse problem, independently of input trajectories. But the
well-posedness issue is even worse than this. Consider a pair of functions (l, v) such that
L(l, v) = 0 on the domain of interest, then any feasible trajectory of the direct problem
will be optimal for l.

Example 1. Consider the following one dimensional free terminal time direct setting

X = U = B1, XT = {0}, f(x, u) = u.

The pair of functions (l, v) = (−2xu, x2) satisfies constraint (4) and L(l, v) = 0. Any
feasible trajectory, (x0(s), u0(s))s∈[t,T ] with t < T , x0(t) = z, and such that (A1) is
satisfied, is optimal for OCP(l, z). Indeed

∫ T

t

l(x0(s), u0(s))ds =

∫ T

t

d

dt
(−x0(s)

2)ds = x0(t)
2.

Such pairs are solutions of the IOCP in the sense that was proposed in the previous
section. However, these solutions do not have any physical interpretation, because they
do not depend on input trajectories. In addition, because the solutions of the IOCP form
a convex cone, the existence of such solutions allows to construct multiple solutions to the
IOPC. To avoid this, one possibility is to include an additional normalizing constraint of
the form:

A(L(l, v)) = 1 (7)

for some linear functional A on the space of continuous functions. This can be viewed as
a search space reduction as we intersect the cone defined by (4) with an affine space.

Remark. As we already mentioned, we do not consider terminal cost and limit ourselves
to stationary problems. This setting was chosen to avoid more ill-posedness of the same
type and keep the presentation clear.

Remark. Previous practical methods [22, 26] and theoretical work [24, 8, 2] include, im-
plicitly or explicitly, constraints of the form of (7) but only enforce them on the candidate
Lagrangian l.

3.4 Considering multiple trajectories

Considering a single trajectory as input for the IOCP leads to Lagrangians that enforce
closedness to this trajectory, which may have little physical meaning.
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Example 2. Consider the direct problem with free terminal time

X = U = B2, XT = {0}, f(x, u) = u, l(x, u) = 1.

The optimal control is u(x) = −x

||x||2
and the optimal value function is v(x) = ||x||2.

Consider the trajectory

(x0(s), u0(s))s∈[0,1] = ((s− 1, 0), (1, 0))s∈[0,1].

This trajectory is optimal for OCP(l, (−1, 0)) but it is also optimal for OCP(||u−(1, 0)||22, (−1, 0)).
However, the second Lagrangian only captures a constant of the particular trajectory con-
sidered.

3.5 Effect of discretization

In practical settings, one rarely has access to complete trajectories. Typical experiments
produce discrete samples from trajectories and possibly with additional experimental
noise. The database consists of a set of n ∈ N points {(ti, xi, ui)}i=1...n. In this case, we
replace the integral in (6) by a discrete sum:

1

n

n
∑

i=1

L(l, v)(ti, xi, ui) ≤ ǫ. (8)

In this setting, it is generically possible to find Lagrangians that satisfy constraints (4)
and (6) with ǫ = 0.

Example 3. Consider, in a free terminal time setting a discrete dataset {(xi, ui)}i=1...n.
The pair of functions ((x, u) →

∏

i ||xi − x||2||ui − u||2, 0) satisfies constraint (4) and (8)
with ǫ = 0.

Because of experimental noise and random perturbations of the input trajectories, one can
find Lagrangians which fit tightly a particular sample of trajectories. This does not give
much insight about the true nature of the original trajectories. Furthermore, the proposed
Lagrangian may be far from optimal if the database was fed up with a different sample
of trajectories. In statistics this well-known phenomenon bears the name of overfitting
(see e.g. [5] for a nontechnical introduction and [32] for an overview of the mechanisms it
involves). A common approach to avoid overfitting is to introduce biases in the estimation
procedure with search space restrictions or regularization terms. We adopt such a strategy
in the practical method described in the next section.

Remark. It is clear that this discretization, although intuitive, arises many questions
regarding the effect of noise and of sample size in practical IOCP, rarely discussed and
even mentioned in previous works. These theoretical considerations are not specific to
the method we propose. They are beyond the scope of this paper and constitute a strong
motivation for future research work.
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4 A PRACTICAL IMPLEMENTATION

We have seen that the HJB theory is very useful to address well-posedness issues regard-
ing the inverse problem. In full generality the HJB equations (or their relaxations) are
computationally intractable. On the other hand, in a polynomial and semi-algebraic
context, some powerful positivity certificates from real algebraic geometry permit to
translate the relaxation (4) of the HJB equations into an appropriate LMI hierarchy,
hence amenable to practical computation. Therefore, in the sequel, we assume that
f is a polynomial and X , U and XT are basic semi-algebraic sets. Recall that G ⊂
R

d is basic semi-algebraic whenever there exists polynomials {gi}i=1...m such that G =
{x : gi(x) ≥ 0, i = 1 . . .m}. In addition, we assume that the input database is indexed by
a finite set: D = {(ti, xi, ui)}i=1,...,n.

4.1 Problem formulation

We consider the following program

inf
l,v,ǫ

ǫ+ λ||l||1

s.t. L(l, v)(t, x, u) ≥ 0, ∀(t, x, u) ∈ [0, T ]×X × U,

v(T, x) = 0, ∀x ∈ XT ,

1
n

n
∑

i=1

L(l, v)(ti, xi, ui) ≤ ǫ,

A(L(l, v)) = 1

(IOCP)

where l and v are polynomials, ǫ is a real, λ > 0 is a given regularization parameter,
and ||.||1 denotes the ℓ1 norm of a polynomial, i.e. the sum of absolute values of its
coefficients when expanded in the monomial basis. The first two constraints come from
the relaxation (4) of the HJB equations while the third constraint comes from the fit
constraint (8). Finally, the last affine constraint is meant to avoid the trivial solutions that
satisfy L(l, v) = 0. The ℓ1 norm is not differentiable around sparse vectors (with entries
equal to zero) and has therefore a sparsity promoting role which allows to bias solutions of
the problem toward Lagrangians with few nonzero coefficients. This regularization affects
the problem well-posedness and will prove to be essential in numerical experiments.

4.2 Implementation details

Linear constraints are easily expressed in term of polynomial coefficients. A classical
lifting allows to express the ℓ1 norm minimization as a linear program. The normalization
functional θ is chosen to be an integral over a box contained in S. To express nonnegativity
of polynomials over a compact basic semi-algebraic set of the form G = {x : gi(x) ≥ 0, i =
1, . . . , m}, we invoke powerful positivity certificates from real algebraic geometry. Indeed,
if a polynomial p is positive on G then by Putinar’s Positivstellensatz [25] it can be written
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as

p = p0 +

m
∑

i=1

gipi, pi ∈ Σ2, i = 1, . . . , m (9)

where Σ2 denotes the set of sum of squares (SOS) polynomials. Hence (9) provides a
useful certificate that p is nonnegative on G. Moreover, as membership to Σ2 reduces
to semidefinite programming, the constraint (9) is easily expressed as an LMI whose size
depends on the degree bound allowed for the SOS polynomials pi in (9). Therefore,
replacing the positivity constraint in (IOCP) with the constraint (9) allows to express
problem (IOCP) as a hierarchy of LMI problems [31] indexed by the degree bounds on
the SOS in (9). Thus each LMI of the hierarchy can be solved efficiently (of course up to
some size limitations). We use the SOS module of the YALMIP toolbox [21] to manipulate
and express polynomial constraints at a high level in MATLAB.

5 NUMERICAL EXPERIMENTS

5.1 General setting

In our numerical experiments we considered several direct problems of the same form
as (OCP). That is, we give ourselves compact sets X , U , XT , the dynamics f , and
a Lagrangian l0. We take known examples for which the optimal control law can be
computed. Given these, we generate randomly n data points D = {(ti, xi, ui)}i=1...n in
the domain, such that ui is the optimal control value at point xi and time ti. For a given
value of λ, we compute a solution l of problem (IOCP). We can then measure how l is
close to l0. Note that in some simulations, the control is corrupted with noise.

5.2 Benchmark direct problems

5.2.1 Minimum exit time in dimension 1

For this problem we take

X = U = B1, XT = ∂X, l0 = 1, f = u.

The optimal law for this problem is u = sign(x) and the value function is v0(x) = 1− |x|.

5.2.2 Minimum exit time in dimension 2

For this problem we take

X = U = B2, XT = ∂X, l0 = 1, f = u.

The optimal law for this problem is u = x

||x||2
and the value function is v0(x) = 1− ||x||2.
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5.2.3 Minimum exit norm in dimension 2

For this problem we take

X = U = B2, XT = ∂X,

l0 = ||x||22 + ||u||22, f = u.

The optimal law for this problem is u = x and the value function is v0(x) = 1− ||x||22.

5.2.4 Fixed time double integrator with quadratic cost

For this problem we take

X = B2, U = [−r, r], T = 1,

l0 = xT

(

2 1
4

1
4

1

)

x+ u2,

f =

(

0 1
0 0

)

x+

(

0
1

)

u

for a big enough value of r. This is an LQR problem, the optimal control is of the form
u(t) = −K(t)x(t) where K(t) is obtained by solving the corresponding Riccati differential
equation.

5.3 Numerical results

5.3.1 Illustration on a one dimensonal problem

We consider the one dimensional minimum exit time problem in 5.2.1. The results are
presented in Figure 1. We compare the output of (IOCP) with (λ = 1) and without
(λ = 0) regularization. The main comments are as follows.

• Given any symmetric differentiable concave function v vanishing on {−1, 1}, the
pair (l = |v′|, v) solves problem (IOCP) with ǫ = 0.

• Given any polynomial v vanishing on {−1, 1}, and any positive polynomial p on
[0, T ]×X × U , the pair (l = (1− u2)p− uv′, v) solves problem (IOCP) with ǫ = 0.
Note that this solution only captures the fact that |u| = 1.

• Any convex combination of solutions of the types mentioned above also solve prob-
lem (IOCP). It is therefore very hard, in the absence of regularization (λ = 0), to
recover the true Lagrangian.

• The sparsity inducing effect of ℓ1-norm regularization allows to recover the true
Lagrangian (λ = 1).

• The value function associated to this Lagrangian is not smooth around the origin
and therefore hard to approximate, hence the value of the error is high.
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Figure 1: Solution for the one dimensional minimum exit time problem, effect of the
regularization parameter λ. The first column is the distribution of the error ǫ, the second
is a representation of the value function v and the third column is a representation of its
derivative for solutions of problem (IOCP) with and without regularization. We take 100
points on the segment. Lagrangian l and value function v are both polynomials of degree
16.

5.3.2 Lagrangian estimation in dimension 2

We consider the following settings

A Problem 5.2.2 with {xi} sampled on B2.

A’ Problem 5.2.2 with {xi} sampled on B2 \
1
2
B2.

B Problem 5.2.3 with {xi} sampled on B2.

C Problem 5.2.4 with {xi} sampled uniformly on the unit ℓ∞ ball.

In all cases, l has degree 4 and v has degree 10.

Estimation error Since the inverse problem is positively homogeneous, our objective is
to recover a Lagrangian l0, up to a positive multiplicative factor. Since we use polynomials,
the Lagrangians we estimate can be represented as vectors in the monomial basis. We
use the following metric to account for the estimation error:

inf
α

||l0 − αl||2
||l0||2

=

(

1−
〈l0, l〉

2

||l0||22||l||
2
2

)
1

2

(10)

where the scalar product of polynomials is defined as the usual scalar product of their
vectors of coefficients in the monomial basis.
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Figure 2: Deterministic setting in dimension 2, error versus variation of regularization
parameter λ. A: minimum exit time. A’: minimum exit time sampling far from the
origin. B: minimum exit norm. C: double integrator. Estimation error is the metric
defined in (10). Epsilon error is the value of the term ǫ in program (IOCP). For A, A’
and B, we take 20 random points and corresponding control value. For C, we take 50
random points and time with corresponding control. For all problems, Lagrangian l is a
polynomial of degree 4 and value function v is a polynomial of degree 10.

Deterministic setting The results for the four problems are presented in Figure 2. For
all problems, l is of degree 4. Therefore, for problems A, A’ and B, l is represented by a 70-
dimensional vector and for problem C, it is a 35-dimensional vector. When the estimation
error is close to 1, we estimate a Lagrangian l that is orthogonal to l0 in the monomial
basis. For all problems we are able to recover the true Lagrangian with good accuracy for
some value of the regularization parameter λ. In the absence of regularization, we do not
recover the true Lagrangian at all. This highlights the important role of ℓ1 regularization
which allows to bias the estimation toward sparse polynomials. When the estimation error
is minimal, the value of ǫ is reasonably low, depending on how the value function can be
approximated by a polynomial. For example, A’ shows lower ǫ value because we avoid
sampling database points close to the nondifferentiable point of the true value function.
In example C, the value function is not a polynomial and therefore harder to approximate.
The estimation accuracy is still very reasonable.

Stochastic setting The results for the four problems are presented in Figure 3. The
setting is similar to the deterministic case of the previous paragraph, except that we add
uniform noise (of maximum magnitude 10−1) to the control input. Therefore, the problem
is harder than the one presented in the previous paragraph. Several samples and noise
realizations are considered to highlight the global trends. These simulations show that
despite the stochastic corruption of the input control, we are still able to recover the
true Lagrangian with reasonable accuracy. As one could expect, increasing the number
of datapoints allows to recover the true Lagrangian with a better accuracy.
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Figure 3: Stochastic setting in dimension 2, estimation error versus variation of regular-
ization parameter λ. A: minimum exit time. A’: minimum exit time sampling far from
the origin. B: minimum exit norm. C: double integrator. Estimation error is the metric
defined in (10). We vary the number of random points. The control is corrupted by uni-
form noise and we repeat the experiment five times for each value of λ. For all problems,
Lagrangian l is a polynomial of degree 4 and value function v is a polynomial of degree
10.

6 CONCLUSIONS AND FUTURE WORKS

We have presented how Hamilton-Jacobi-Bellman sufficient condition can be used to anal-
yse the inverse problem of optimal control and proposed a practical method based on
polynomial optimization and linear matrix inequality hierarchies to provide a candidate
solution to this problem. Numerical results suggest that the method is able to estimate
accurately Lagrangians comming from various optimal control problems.

For the specific examples proposed, the optimality conditions allow to highlight many
sources of ill-posedness for the inverse problem. In addition to a relaxation of the opti-
mality conditions, we added a constraint and a penalization to circumvent ill-posedness.
Numerical simulations support the idea that these are essential to estimate a Lagrangian
accuartely. We do not rely on strong bias toward specific candidate Lagrangians and are
able to perform accurate estimation in many different settings using the same regulariza-
tion technique. A natural question that arises here is to find necessary conditions under
which this is possible.

The motivation for the use of Hamilton-Jacobi-Bellman optimality condition is the guar-
antees it provides when one has access to complete noiseless trajectories. However, prac-
tical experimental settings require to consider the effects of discretization and additive
noise. Along these lines, consistency and asymptotic properties of the proposed estimation
procedure with respect to random discretization and noise are natural questions.

Finally, it is necessary to carry out further experiments on real world datasets in order
to determine if the proposed method works on practical inverse problems, our primary
target being those coming from humanoid robotics [4, 22].
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