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THE ABEL TRANSFORMATION ON SYMMETRIC POLYGONAL

GRAPHS

ALAA JAMAL EDDINE

Abstract. Let Γ be a polygonal symmetric graph of type k and order r , where k, r ≥

2. In this paper we give explicite expressions of the horocyclic Abel transformation and

its dual as well as their inverses on Γ.

1. Introduction

Let Γ be a symmetric polygonal graph, and let G a group acting isometrically and

simply transitively on Γ. Iozzi and Picardello [16],[17] have generalized to the case of

groups acting isometrically and simply transitively on symmetric polygonal graph Γ the

theory of representation, spherical functions and convolution operators studied in [13],[12]

in the case of free groups and homogenous trees. They considered the convolution algebra

of radial functions C∗(µ1), where µ1 is the uniformaly distributed measure over words

of length one, and they computed the spectrum S of µ1 in the regular C∗–algebra. It

turns out that the Plancherel measure is the only positive measure supported on S, and

that verifies f(o) =
∫

S
f̂(λ)dλ, for all f ∈ C∗(µ1), where f̂(λ) is the Helgason Fourier

transform of f , which in this case coincides with the spherical Fourier transform of f

as f is radial, and o denotes a reference vertex in Γ. The Plancherel measure has been

computed on symmetric graphs in [11] and [19]. In this paper we extend to the case

of symmetric graphs, the definition of the horocyclic Abel transformation, a variant of

the horocyclic Radon transformation. The Radon transformation on trees has been first

studied by Cartier [6], and was further investigated by Betori and Pagliacci [5], Betori,

Faraut and Pagliacci [3], by E. Casadio Tarabusi, M. Cohen and F. Colona [9], and by

M. Cowling, S. Meda and A. Setti [10].

We will deal with radial functions. We will first define the horocycles on the symmetric

graph Γ, then we will give an explixite expression of the Abel transform. Our argument
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is similar to that used on semihomogeneous trees in [5]. In this case we will derive an

inversion formula for the Abel transformation. We then study the mapping properties

of the Abel transformation, and characterize the Abel transform of Schwartz spaces.

Using the definition of the Abel transformation, we derive an explicite expression of

the dual Abel transformation and its inverse. The dual Abel transformation has been

used extensively, in order to derive an explicite expression of the solution to the wave

equation, (see [15] for the symmetric space case, [2] for the Damek–Ricci spaces and for

the homogeneous trees cases, and [18] for the symmetric graph case).

In the last section, we show that the Helgason–Fourier transformation factors into the

Abel transformation and the Euclidean Fourier transformation as in the symmetric space

case, and the homogeneous trees case. As an application of this relation, we derive an

explicite expression of the heat kernel on Γ. We then derive the Plancherel formula and

the inversion formula of the Helgason–Fourier transformation using the Plancherel and

the inversion formulae of the spherical Fourier transformation already derived in [19] and

[11]. We then deduce a version of the Kunze–Stein phenomenon on G.

2. Symmetric graphs

A graph Γ is symmetric of type k ≥ 2 and order r ≥ 2 if every vertex v belongs exactly

to r polygons, with k sides each, contained in the graph, with no sides and no vertex in

common except v, and if every nontrivial loop in Γ runs through all the edges of at least

one polygon. In other words, a symmetric graph of type k and order r can be thought

of as a homogeneous tree of order r built up with polygons with polygons with k sides.

Notice that, if k = 2, Γ is a homogeneous tree of degree 2r.

Different notions of distance on Γ have been introduced in [16]. We define the distance

between two vertices v1 and v2 as the minimal number of polygons crossed by a path

connecting v1 with v2. Here we define the length |v| of a vertex v, with respect to a

reference vertex o, as the distance between v and o. We can prove easily that the group

G that acts isometrically and simply transitively on Γ is isomorphic to the free product

of r copies of Z/kZ if k > 2, while, for k = 2, i.e when Γ is a homogeneous tree, G is

isomorphic to the free product of t copies of Z and s copies of Z/2Z, where 2t+ s = r.

Let us denote V the set of vertices of Γ. There is a natural probability measure on V

which we will denote by µ. Every element of V can be identified with an element of G,

and every polygon of the graph corresponds, under this identification to an orbit under
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right translations by one of the factors Z/kZ. Under this identification, we can define

the length |g| of an element g ∈ G as follows. Let a1, ....., ar denote the generators of G.

Then, an element g ∈ G can be written as g = am1

i1
...amn

in
and |g| = n. Denote S(o, n)

the sphere of centre o and radius n in G. we have

|S(o, n)| = δ(n) =







1 if n = 0

r(k − 1)Qn−1 if n ≥ 1

where Q = (r − 1)(k − 1).

Between any two points v1 and v2 in Γ such that d(v1, v2) = n, there is a unique

geodesic path of the form (P1, ..., Pn) where (Pi)1≤i≤n are polygons in Γ and such that

v1 ∈ P1 \ P2 and v2 ∈ Pn \ Pn−1.

A geodesic ray P in Γ is a one sided sequence {Pn, n ∈ N} of polygons. We say that

v ∈ P if v ∈ Pn for some n ∈ N. We denote by Ω the set of all geodesic rays starting

with o. Ω is called the boundary of Γ. G acts by left translation on words in Ω. For

x ∈ G, let E(x) denotes the subset of Ω of words that begin with the reduced word x.

Then, {E(x), x ∈ G} is a base of the topology of Ω making Ω a compact topological

space. Let ν denotes a probability measure on Ω defined by

ν(E(x)) =
1

δ(n)
if |x| = n.

We then denote (Ω, ν) the Poisson boundary of G with respect to µ1. The group G acts

on measures on Ω, particularily on ν by

νx(A) = ν(x−1A)

for all x ∈ G, and for all Borelian set A ∈ Ω. νx is absolutely continuous with respect

to ν, and we have, thus for ω ∈ Ω, such that ω = an1

i1
an2

i2
...... we denote ωm = an1

i1
...anm

im .

The Radon Nikodym derivative

(1) ν(x−1E(ωm))/ν(E(ωm)) = Qζ(x,ω)

where ζ denotes the Busemann function on Γ

ζ(x, ω) = d(o, ωm)− d(x, ωm).

We remark that ζ(x, ω) doesn’t depend on ω if m > |x|. The quantity obtained in (1)

denotes the Poisson kernel P (x, ω), it verifies the following cocycle identities :

(2) P (o, ω) = 1 and P (xy, ω) = P (y, x−1ω)P (x, ω).
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We shall need some function spaces and related notations. Given a discrete space X ,

we denote by D(X) the space of all finitely supported functions on X . A function f on

G is radial if it is constant on S(o, n) for all n ∈ N. If E(G) is a space of functions on

G, then E(G)♯ will denote the subset of E(G) of radial functions. If E(Z) is a space of

functions on Z, then E(Z)even will denote the subspace of E(Z) of even functions therein.

We define the convolution product on G by

f ∗ g(x) =
∑

y∈G

f(y)g(y−1x).

If g is radial, we have

f ∗ g(x) =
∑

n∈N

g(n)
∑

d(x,y)=n

f(y)

We use the variable constants convention, and denote by C a constant who will depend

only on unvariable data.

3. The Abel transformation

In this section, we give an explicite expression of the Abel transformation, which is the

horocyclic Radon transformation on radial functions. We first begin by describing the

horocycles on Γ. Recall that V denotes the set of vertices of Γ and Ω its boundary. For

ω ∈ Ω and x ∈ V, there exists a unique geodesic ray issued from x and joining ω that we

will denote by [x, ω]. Let x, y ∈ Γ and ω ∈ Ω. We denote by z the confluence point of the

geodesic rays [x, ω], [y, ω], that is the last point on [x, ω] laying on the geodesic ray [y, ω].

We then define ζω(x, y) = d(x, z) − d(y, z). Thus, ∀ω ∈ Ω, the relation ζω(x, y) = 0

defines an equivalence relation on V, and the equivalence classes denote the horocycles

of Γ. The choice of o as an origin will permit us to enumerate the horocycles and to

prove that the set of horocycles Hh(ω) is one-to-one with Ω×Z. More precisely, ∀ω ∈ Ω,

∀h ∈ Z,

Hh(ω) = {x ∈ V, ζω(o, x) = h}.

The function ζω(o, x) is nothing else than the Busemann function ζ(x, ω) defined above.

Thus, horocycles are the level sets of the Poisson kernel. We may prove easily that V

decomposes disjointly as :

V =
⋃

h∈Z

Hh(ω),
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in particular, o ∈ H0(ω). The horocyclic Radon transformation is defined on D(V) by

Rf(ω, h) =
∑

x∈Hh(ω)

f(x)

and the Abel transformation on D(V)♯ by

Af(ω, h) = Q
h
2 Rf(ω, h).

The following proposition gives an explicit formula for the Abel transform of a radial

function f . Such a function may be identified with a function on N, and we denote by

f(n) the common value f(x) when |x| = n.

Proposition 3.1. Denote σ = k − 2. If f ∈ D(V)♯, then

Af(ω, h) = Q
|h|
2 f(|h|) + σ

∑

j≥1

Q
|h|
2
+j−1f(|h|+ 2j − 1) +

r − 2

r − 1

∑

j≥1

Q
|h|
2
+j f(|h|+ 2j)

∀ (ω, h) ∈ Ω× Z.

Consequently, Af is constant in the first variable, and is even in the second. The

following lemma is crucial in the proof of this proposition.

Lemma 3.2. Given ω ∈ Ω. For all n ∈ N and h ∈ Z, let b(n, h) = Card {Hh(ω)
⋂

S(o, n)} .

Then,

b(n, h) =



























0 if n < |h|

Q−h− if n = |h|

σQ−h−+j−1 if n = |h|+2j−1 where j ≥ 1

(r − 2)(k − 1)Q−h−+j−1 if n = |h|+2j where j ≥ 1,

where h− = min(0, h).

Proof of lemma. The proof is similar to that on semihomogeneous trees (see [5]). Given

ω ∈ Ω, and let ω = an1

i1
an2

i2
..... be the reduced word representation of ω. We denote by

ω0 = an1

i1
, ω1 = ω0 a

n2

i2
, ... the nodes of [o, ω], that is the points on [o, ω] where we change

of horocycles (see fig. ). when h ≥ 0, ωh is the only element of Hh(ω)
⋂

S(o, h), thus

b(h, h) = 1. Now, if h < 0, a point x belongs to Hh(ω)
⋂

S(o, |h|) iff o is the confluence

point of the geodesics [x, ω] and [o, ω], or

Card{x ∈ S(o,−h)| o /∈ [x, ω] ∩ [o, ω]} = (k − 1)−h (r − 1)−h−1,
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then b(−h, h) = Card{S(o,−h)}− (k−1)−h (r−1)−h−1 = Q−h. Clearly b(n, h) = 0 when

|h| > n. In the other cases, we proceed by reccurence on n, using the following equality

(3) b(n + 2, h) = Qb(n, h)

in both cases. We consider first the case h = n− 1. In this case h and n are of different

parity. The intersection points of S(o, n) and Hh(ω) are situated on the polygone that

has ωh and ωh+1 as nodes, thus ωh ∈ Hh(ω) \ S(o, n), and ωh+1 ∈ Hh+1(ω). Clearly the

other points of this polygon belongs to S(o, n)
⋂

Hh(ω) (see fig...), so b(n, n − 1) = σ,

thus we have proven the formula for h = n − 1. If h = n − 2, h and n have the same

parity. In this case, we consider the points v ∈ V such that |v| = n = |ωh + 2|, and

v ∈ Hh(ω). These points are vertices of polygons issued from ωh+1. Or, all vertice of

polygons situated between ωh+1 and ωh+2 belong to Hh+1(ω). It’s clear that the (r − 2)

other polygons have vertices that belong to S(o, n)
⋂

Hh(ω) for h = n − 2 (see fig 1).

Then, if h = n− 2, b(n, h) = (r − 2)(k − 1). We conclude using (3). �

0

1

2

−1

h ω

0

Figure 1. Spheres in the upper-half space of (Z/4Z)⋆4

By definition of the Abel transformation,

Af(ω, h) = Q
h
2

∑

n∈N

b(n, h) f(n),

thus we prove the proposition 3.1 by substituing the value of b(n, h) in this formula.
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Proposition 3.3. For all k ≤ r, A : D(G)♯ → D(Z)even is an isomorphism, and its

inverse is given by

A−1g(n) =
1

k
Q−n−1

2

{

∞
∑

m=1

Q−m
2 [g(n+m− 1)− g(n+m+ 1)](4)

+

∞
∑

m=1

(−1)m−1(k − 1)mQ−m
2 [g(n+m− 1)− g(n+m+ 1)]

}

.

which is equivalent to the following expression

A−1g(n) = Q−n
2

{

g(n)− (k − 2)Q− 1
2 g(n+ 1)(5)

−
Q− 1

k

∞
∑

m=1

Q−m
2 g(n+m)

−
r − k

r

∞
∑

m=1

(−1)m (k − 1)mQ−m
2 g(n+m)

}

.

Note that these sums are finite as long as we consider functions g of finite supports.

Proof. By definition of A, we have

Q−n
2

{

Af(n)− Af(n+2) + Q− 1
2 [Af(n+1) − Af(n+3)]

}

=

f(n)− f(n+2)+ (k − 1) [ f(n+1)− f(n+3) ],

or f is of finite support, so

f(n)+ (k − 1) f(n+1) =
∑

j≥0

{f(n+2j)− f(n+2j+2)}+

(k − 1)
∑

j≥1

{ f(n+2j − 1)− f(n+2j+1)}

thus

f(n)+ (k − 1) f(n+1) =
∑

j≥0

Q−n
2
−j
{

Af(n+2j)− Af(n+2j+2)
}

(6)

+
∑

j≥1

Q−n−1
2

−j
{

Af(n+2j−1) − Af(n+2j+1)]
}

.

Let F (n) = (k− 1)nf(n), so multiplying both members of (6) by (k− 1)n, we obtain the

following reccurence formula

(7) F (n)+ F (n+1) = (k − 1)nG(n),
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where

G(n) =
∑

j≥0

Q−n
2
−j{g(n+ 2j)− g(n+ 2j + 2)}(8)

+
∑

j≥0

Q−n+1
2

−j{g(n+ 2j + 1)− g(n+ 2j + 3)}.

We rewrite (7) as

F (n) = (k − 1)nG(n)− F (n+ 1).

Then

(9) F (n) =
∑

ℓ≥0

(−1)ℓ(k − 1)n+ℓG(n+ℓ).

Thus

(10) f(n) =
∑

ℓ≥0

(−1)ℓ(k − 1)ℓG(n+ℓ).

Note that this sum is finite for functions g = Af , consequently G is of finite support.

Substituing (8) in (10), then leting m = ℓ + 2j + 1, respectively m = ℓ + 2j, and

distinguishing the case m even and m odd, we have

A−1g(n) = Q−n
2 {g(n)− g(n+ 2)}(11)

−
∑

m even≥2

(k − 1)m − 1

k
Q−n+m−1

2 {g(n+m− 1)− g(n+m+ 1)}

+
∑

m odd≥3

(k − 1)m + 1

k
Q−n+m−1

2 {g(n+m− 1)− g(n+m+ 1)}

=
1

k

{

∑

m odd>0

[(k − 1)m + 1]Q−n+m−1
2 {g(n+m− 1)− g(n+m+ 1)}

−
∑

m even>0

[(k − 1)m − 1]Q−n+m−1
2 {g(n+m− 1)− g(n+m+ 1)}

}

.

Rearranging the terms, we obtain (4), then (5). �

Corollary 3.4. supp f ⊂ B′(0, n) iff supp Af ⊂ [−n,+n].

Our next goal is to extend the definition of the Abel transformation to Schwartz spaces.

For 0 < p < ∞, let Sp(G) the set of functions f : G → C such that

(12) ‖f‖(p,m) = sup
x∈G

(1+|x|)mQ|x|/p|f(x)| < ∞ ∀m ∈ N.
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It’s a Frechet space for the increasing norms family (12). We will also consider the space

S(Z)even of even functions g : Z → C such that

‖g‖(m) = sup
n∈Z

(1+|n|)m|g(n)| < ∞ ∀m ∈ N.

Proposition 3.5. (1) For all 1 ≤ p ≤ 2, the Abel transformation extends to a con-

tinuous homomorphism from Sp(G)♯ to Q−( 1
p
− 1

2
)|.| S(Z)

even

(2) If k ≤ r, then A−1 is a continuous homomorphism from Q−( 1
p
− 1

2
)|.|S(Z)

even
to

Sp(G)♯, for all 1 ≤ p ≤ 2

(3) If k > r, then A−1 is a continuous homomorphism from Q− 1
2
|.|S(Z)

even
to S1(G)♯.

Proof. Let 1 ≤ p ≤ 2. We will show that, for all m ∈ N there exist C > 0 such that, for

f ∈ Sp(G)♯,

(13)
∥

∥

∥
Q( 1

p
− 1

2
)|.|Af

∥

∥

∥

(m)
≤ C ‖f‖(p,m+2) .

Or by hypothesis we have

|f(n)| ≤ C ′(1+n)−m−2Q−n/p ‖f‖(p,m+2)

for all f ∈ Sp(G)♯ and n ∈ N. Then

(1+h)mQ( 1
p
− 1

2
)h|Af(h)| ≤ (1 + h)m

∑

j∈N

Q
h
p
+ j

2 |f(h+ j)|

≤ C
∑

j∈N

(1 + j)−2 ‖f‖(p,m+2)

for all h ∈ N, and this end the proof of the first part. For the second part, we will show

that, for all m ∈ N, there exist C > 0 such that
∥

∥A−1g
∥

∥

(p,m)
≤ C ‖g‖(m+2) ∀g ∈ Q−( 1

p
− 1

2
) |.|S(Z)even.

By hypothesis, for all g ∈ Q−( 1
p
− 1

2
)|.| S(Z)even and for all m ∈ N, we have

|g(n)| ≤ (1+n)−m−2Q−( 1
p
− 1

2
)n

∥

∥

∥
Q−( 1

p
− 1

2
) |.|g

∥

∥

∥

(m+2)
∀n ∈ N.

Or |A−1g(n)| ≤
∑

i≥0

(k − 1)i |G(n+i)| ∀n ∈ N, where

(k − 1)i ≤ Q
i
2 ≤ Q

i
p and

|G(n+i)| ≤ C
∑

j≥0

Q−n+i+j

2 |g(n+i+j)|,
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so we deduce the following estimations

(1+n+i)m+2Q
n+i
p |G(n+i)| ≤ C

∑

j≥0

Q− j

p (1+n+i+j)m+2Q( 1
p
− 1

2
)(n+i+j) |g(n+i+j)|

≤ C
∥

∥

∥
Q( 1

p
− 1

2
)|.|g

∥

∥

∥

(m+2)
∀n, i, ∈ N,

then (1+n)mQ
n
p |A−1g(n)| ≤

∑

i≥0

(1+i)−2(1+n+i)m+2Q
n+i
p |G(n+i)|

≤ C
∥

∥

∥
Q( 1

p
− 1

2
) |.| g

∥

∥

∥

(m+2)
∀n ∈ N.

Thus we have proved the second part. The last part can be proven in the same way. �

Corollary 3.6. (1) If k ≤ r , then the Abel transformation is a toplogic isomorphism

between Sp(G)♯ and Q−( 1
p
− 1

2
)|.|S(Z)

even
, for all 1 ≤ p ≤ 2.

(2) If k > r, then the Abel transformation is a topologic isomorphism between S1(G)♯

and Q− 1
2
|.|S(Z)

even
.

Next, we will derive an explicite expression of the dual Abel transformation and its

inverse. The dual Abel transform A∗g of even functions g : Z → C is defined as follows :

(14)
∑

n∈N

A∗g(n) f(n) δ(n) =
∑

h∈Z

g(|h|)Af(|h|)

for all f ∈ D(V)♯. Recall that δ(n) denotes the cardinal of sphere of radius n, and

σ = k − 2.

Theorem 3.7. We have

A∗g(0) = g(0)

and

(15)

A∗g(n) = 2
r − 1

r
Q−n

2 g(n) + σ
r − 1

r
Q−n−1

2

∑

−n<j<n

j and n of different parity

g(±j) +
r − 2

r
Q−n

2

∑

−n<j<n

j and n of different parity

g(±j)

for all n > 0.

Proof.

(16)
∑

h∈Z

Af(h) g(h) = Af(0)g(0) + 2
∑

h≥1

Af(h) g(h) =
∑

n≥0

Q
n
2 f(n)G(n).
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where G(0) = g(0) and

G(n) = 2 g(n) +
r − 2

r − 1

∑

−n<j<n

j etn of different parity

g(±j) + σ Q− 1
2

∑

−n<j<n

j etn of different parity

g(±j),

we then conclude easily. �

We will next establish the expression of the inverse dual Abel transformation.

Theorem 3.8. The dual Abel transformation is an isomorphism from the space of even

functions g : Z → C on the space of radial functions f : V → C. Its inverse is given by

g(0) = f(0), g(1) = −
σ

2
Q− 1

2 f(0) +
r(k − 1)

2
Q− 1

2 f(1)

et

g(n) =−
1

2k
{q − 1+(r− k)(1− k)n} Q−n

2 f(0)

−
r(k − 1)

2k

∑

0<j<n−1

{

q − 1+(r − k)(1− k)n−j
}

Qj−n
2
−1 f(j)

−
1

2
r (k − 1) σQ

n
2
−2 f(n− 1) +

1

2
r (k − 1)Q

n
2
−1 f(n)

for all n ≥ 2, with the usual convention that sum on empty sets is equal to zero.

Proof. Given g ∈ D(Z)even, let

G(n) = Q
n
2 g(n) and

F (n) =
1

2
r (k − 1)Q

n
2

{

Q
n+2
2 A∗f(n+2)− Q

n
2 A∗g(n)

}

.

From theorem 3.7 we have,

(17) G(n+2) + σ G(n+1)− (k − 1)G(n) = F (n)

for all n ∈ N. The equation (17) is a inhomogeneous linear reccurence relation of second

order. Its homogeneous solution is given by

Ghom(n) = c1+c2(1− k)n.

We then use the constant variation method to resolve the inhomogeneous equation :

(18) G(n) = c1(n)+ c2(n) (1− k)n.

with the additionnal condition :

(19) c1(n+1)− c1(n) = {c2(n+1)− c2(n)} (1− k)n+1 = 0
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so we obtain

(20) G(n+1) = c1(n)+ c2(n) (1− k)n+1,

hence

(21) G(n+2) = c1(n+1)+ c2(n+1) (1− k)n+2.

Substituing (18), (20), (21) in (17), we obtain

(22) c1(n+1)− c1(n)+ {c2(n+1)− c2(n)} (1− k)n+2 = F (n).

The system of equations formed by (19) and (22) have the following solution






c1(n+1)− c1(n) = k−1 F (n)

c2(n+1)− c2(n) = −k−1 (1− k)−n−1 F (n)

hence














c1(n) = c1+ k−1
∑

0≤j<n

F (j)

c2(n) = c2 − k−1
∑

0≤j<n

(1− k)−j−1 F (j)

and

(23) G(n) = c1+ c2(1− k)n+
∑

0≤j≤n−2

1− (1− k)n−j−1

k
F (j).

We compute the constants






c1 =
1
2
A∗g(0) + r(k−1)

2k
A∗g(1),

c2 =
1
2
A∗g(0)− r(k−1)

2k
A∗g(1),

using the initial values






G(0) = g(0) = A∗g(0),

G(1) = Q
1
2 g(1) = r(k−1)

2
A∗g(1)− σ

2
A∗g(0).

We conclud by substituting in (23) the expressions of c1, c2 and F . �

We will now describe some consequences of the results obtained above. Let us recall

first the definition of the spherical Fourier transformation on Γ. There is a natural

Laplace operator L on Γ, defined by

Lf(x) = f(x)−
1

r(k − 1)

∑

y:d(x,y)=1

f(y),
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and the spherical functions are the radial eigenfunctions ϕ of L, normalized with the

condition ϕ(o) = 1. Each of these functions may be represented (see e.g., [17]) in terms

of the Poisson kernel by the formula

(24) ϕλ(x) =

∫

Ω

P (x, ω)
1
2
+iλdω,

so that ϕλ(x) is an eigenfunction with eigenvalue

γ(λ) =
Q

1
2
+iλ +Q

1
2
−iλ + σ

r(k − 1)
.

The spherical Fourier transform of a function f ∈ D(Γ)♯ is defined by

Hf(λ) =
∑

x∈Γ

f(x)ϕλ(x) ∀λ ∈ C.

This definition of the spherical Fourier transformation may be extended to some classes

of functions of infinite support. For example, as

|ϕλ(x)| ≤ 1 ∀ x ∈ G, λ ∈ Cwith | Imλ| ≤
1

2
,

Hf(λ) still can be defined for functions f ∈ L1(G)♯ and for λ ∈ C with | Imλ| ≤ 1
2
.

Let τ = 2π
lnQ

. Hf is even and τ–periodic. More generally, we can define the Helgason-

Fourier transform of a function f ∈ D(G) (not necessarily radial) by

(25) f̂(λ, ω) =
∑

x∈G

f(x)P (x, ω)
1
2
+iλ, ∀ (ω, λ) ∈ Ω× C.

Using the expression of P (x, ω), we obtain

(26) f̂(λ, ω) =
∑

h∈Z

Q( 1
2
+iλ)h

∑

x∈Hh(ω)

f(x) = Fh

{

Q
h
2Rf(ω, h)

}

(λ),

where F is the Fourier transform on Z, given by :

Fg(λ) =
∑

n∈Z

Qinλg(n),

and its inverse is given by

g(n) =
1

τ

∫ τ
2

− τ
2

Fg(λ)Q−inλ dλ.

Recall that for radial functions f , Af doesn’t depend on ω, whence, using (26), we

observe that, for radial functions f , f̂ doesn’t depend on ω. In this case, using the
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definition (24) of spherical functions, we have

f̂(λ, ω) =

∫

Ω

f̂(λ, ω) dν(ω) =
∑

x∈G

f(x)

∫

Ω

P
1
2
+iλ(x, ω) dν(ω) = Hf(λ).

This shows that, the spherical Fourier transformation and the Helgason-Fourier trans-

formation coincide on radial functions, and we have

(27) H = F ◦ A.

The next section is devoted to the Kunze-Stein phenomenon on Γ. To this end, we

will establish the Plancherel formula and the inversion formula of the Helgason-Fourier

transformation. Recall that the Plancherel formula and the inversion formula for the

spherical Fourier transformation were obtained by different methods in [11], [19]. More

precisely, Iozzi and Picardello [17] have computed the Plancherel measure µ on Γ and they

have shown that µ is supported on the set D∪E, where D is the segment [σ−2Q
1
2

r(k−1)
, σ+2Q

1
2

r(k−1)
]

and E is empty when k ≤ r and is equal to 1
1−k

if k > r. More precisely, from [11], [19]

we have the following expression of the Plancherel measure

(28) f(o) =
1

2π

q ln(q)

r(k − 1)

∫ τ
2

0

Hf(λ) |c(λ)|−2 dλ+

[

(k − r)+
k

Hf(λ0)

]

where the usual notation (k − r)+ stands to 0 if k ≤ r and to (k − r) if k > r, and

γ(λ0) =
1

1−k
. We then can deduce the following.

• Plancherel formula : For f ∈ D(V)♯, we have

(29) ‖f‖2L2 =
1

2π

q ln(q)

r(k − 1)

∫ τ
2

0

|Hf(λ)|2 |c(λ)|−2 dλ+

[

(k − r)+
k

|Hf(λ0)|
2

]

• Inversion formula : For all f ∈ D(V)♯ et x ∈ V, we have

f(x) =
1

2π

q ln(q)

r(k − 1)

∫ τ
2

0

Hf(λ)ϕλ(x) |c(λ)|
−2 dλ(30)

+

[

(k − r)+
k

Hf(λ0)ϕλ0
(x)

]

.

We will now generalize in the usual way these results to the nonradial case. The proof

is like the proof of the inversion formula for the Helgason Fourier transformation on

a symmetric space. More precisely, we first obtain the expression for f(o) using the

inversion formula established above for the spherical Fourier transformation. Then we

derive the expression of f(x) by noting that f(x) is the value at o of a suitable translate
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of f . To this end, we define the spherical means of a function f : G → C by

(31) f ♯(z) =
1

δ(z)

∑

y: |y|=|z|

f(y).

The mean operator f → f ♯ is the projection over radial functions. It verifies

(32) < f ♯, g♯ >=< f ♯, g >=< f, g♯ >,

< f, g >=
∑

x∈V

f(x) g(x)

Let f ∈ D(V). Since ϕλ is radial, we have

(33) < f ♯, ϕλ >=< f, (ϕλ)
♯ >=< f, ϕλ > .

Applying (33) and (31) on f ♯, we have

(34) f(o) = f ♯(o) =
1

2π

Q ln(Q)

r(k − 1)

∫ τ
2

0

< f, ϕλ > |c(λ)|−2 dλ+

[

(k − r)+
r

< f, ϕλ0
>

]

.

Recall the principal series of representations πλ of G given in [17]. For all η ∈ L2(Ω, dν),

(35) πλ(x)η(ω) = P (x, ω)
1
2
+iλ η(x−1ω) ∀ x ∈ G, ∀ ω ∈ Ω,

where P (x, ω) design the Poisson kernel, and λ ∈ C. These representations were defined

and studied on homogeneous trees in [13], and then on symmetric graphs in [17]. Note

also that πλ stands also to the representation on the convolution algebra D(V)

πλ(f) =
∑

x∈V

f(x)πλ(x).

Spherical functions are matrix coefficients of πλ. They verify

ϕλ(x) = (πλ(x)1I, 1I)

where (.|.) is the scalar product in L2(Ω, dν), and 1I is the constant function that equals

to 1 on Ω. We now can define the Helgason–Fourier transformation in terms of πλ by

(36) f̂(λ, ω) =
∑

x∈V

f(x)P (x, ω)
1
2
+iλ = [πλ(f)1I](ω).

Lemma 3.9. for all x, y ∈ G we have

ϕλ(xy
−1) = ϕλ(y

−1x) =

∫

Ω

P (x, ω)
1
2
+iλ P (y, ω)

1
2
−iλ dν(ω).

Proof. From the cocycle identity (2), we have, for all x, y ∈ G and ω ∈ Ω,

P (y−1x, ω) = P (x, yω)P (y−1, ω) et 1 = P (o, ω) = P (y, yω)P (y−1ω),
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whence

P (y−1x, ω) = P (x, yω)P (y, yω)−1.

We may then deduce that

ϕλ(y
−1x) =

∫

Ω

P (x, yω)
1
2
+iλP (y, yω)−

1
2
−iλ dν(ω)

=

∫

Ω

P (x, yω)
1
2
+iλ P (y, yω)−

1
2
−iλ dν(ω)

dν(yω)
dν(yω)

=

∫

Ω

P (x, ω)
1
2
+iλP (y, ω)−

1
2
−iλ P (y, ω) dν(ω)

=

∫

Ω

P (x, ω)
1
2
+iλ P (y, ω)

1
2
−iλ dν(ω),

where we have used the fact that P (y, ω) = dν(y−1ω)
dν(ω)

is a Radon-Nikodym derivative. �

Lemma 3.10. Let k ≤ r. In this case we have the following :

(a) Plancherel formula : For all f ∈ D(V), we have

(37)
∑

x∈V

|f(x)|2 =
1

2π

q ln q

r(k − 1)

∫ τ
2

0

∫

Ω

|f̂(λ, ω)|2 |c(λ)|−2 dν(ω) dλ.

(b) Inversion formula : For all f ∈ D(V) and x ∈ V, we have

(38) f(x) =
1

2π

q ln q

r(k − 1)

∫ τ
2

0

∫

Ω

f̂(λ, ω)P (x, ω)
1
2
−iλ |c(λ)|−2 dν(ω)dλ.

Note that, when k > r, there is an additive term that appears on the right hand side of

the equality, which corresponds to the parameter λ0.

Proof. The proof is similar to the symmetric space case (see [15]) and to the homogeneous

space case (see [13]). More precisely, we apply (28) on (f ∗ f ∗)♯, where f ∗(x) = f(x−1).

On one hand we have

(f ∗ f ∗)(o) =
∑

x∈G

|f(x)|2 = ‖f‖2L2(V) .
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On the other hand, from lemma 3.9,

H
[

(f ∗ f ∗)♯
]

(λ) =
∑

x,y∈G

f(x)f(y)ϕλ(xy
−1)

=

∫

Ω

[

∑

x∈G

f(x)P (x, ω)
1
2
+iλ

]

×

[

∑

y∈G

f(y)P (y, ω)
1
2
+iλ

]

dν(ω)

=

∫

Ω

|f̂(λ, ω)|2 dν(ω)

for all λ ∈ R. We conclude by using (3.9), proven (a). In order to prove (b), we apply

(28) to f ♯
x. On one hand, (fx)

♯(o) = f(x). On the other hand, using (31) and lemma 3.9,

one can show that

H
[

(fx)
♯
]

(λ) =
∑

x, y ∈ G
|y|=|x|

f(xy)
ϕλ(x, y)

δ(|z|)

=
∑

y∈G

f(y)ϕλ(x
−1y) =

∫

Ω

[

∑

y∈G

f(y)P (y, ω)
1
2
+iλ

]

P (x, ω)
1
2
−iλ

=

∫

Ω

f̂(λ, ω)P (x, ω)
1
2
−iλdν(ω)

for all λ ∈ R. We conclude using (28). �

Now let f ∈ D(V) and χ ∈ D(V)♯. One can easily show that

(39) (̂f ∗ χ)(λ, ω) = f̂(λ, ω)Hχ(λ).

Using the Plancherel formula (37), and the fact that |ϕλ(x)| ≤ |ϕ0(x)| ∀λ ∈ R, ∀ x ∈ V,

one can show that

‖f ∗ χ‖L2 ≤ ‖f‖L2

∑

x∈V

χ(x)ϕ0(x).

Now using the fact that ϕ0(x) ≤ C (1+|x|)Q− |x|
2 ∀ x ∈ V, we obtain the following version

of the Kunze–Stein phenomenon :

(40) ‖f ∗ χ‖L2(V) ≤ C ‖f‖L2(V)

∑

n≥0

χ(n) (1+n) q
n
2 .

In the next proposition we generalize this result to general Lp spaces.
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Proposition 3.11. For all 2 ≤ p, p̃ < ∞, there exist C > 0 such that

‖f ∗ χ‖Lp ≤ C ‖f‖Lp̃′

{

∑

n≥0

|χ(n)|r (1 + n)2s q(1+s)n)
}

1
r

,

where r = p p̃
p+ p̃

and s = min {p,p̃}
p+ p̃

.

The same result has been obtained on symmetric spaces and more generally on Damek-

Ricci spaces in [1]. The proof is based on an interpolation argument between the following

inequalities,

‖f ∗ χ‖Lp ≤ ‖f‖L1 ‖χ‖Lp , ‖f ∗ χ‖L∞ ≤ ‖f‖Lp̃′ ‖χ‖Lp .

The interpolation argument is well detailed in ([1], lemma 5.1).

We show now how to derive an explicite expression of the heat kernel on symmetric

graphs in terms of the heat kernel on Z, using the relation (26). Recall that the heat

kernel h(x, t) is the radial, t–analytic solution of the equation

∂th(x, t) + Lh(x, t) = 0 and h(x, 0) = δ0.

We resolve this equation by the standard way, applying first the spherical Fourier trans-

form, and then its inverse. So, using (26), one obtain , for k ≤ r,

hΓ(x, t) = hΓ(n, t) =
r(k − 1)

k

e−(α−β)t

t
q−

n
2

{

∞
∑

m=1

q−
m
2 (n +m) hZ(n+m, βt)

+
∞
∑

m=1

(−1)m−1 (k − 1)m q−
m
2 (n+m) hZ(n+m, βt)

}

for all t > 0 and n ∈ N such that |x| = n, where

hZ(n, t) =
e−t

π

∫ π

0

et cosλ cos(nλ) dλ = e−t In(t)

where In(t) is the modified Bessel function of the first kind. The heat kernel will be

studied in a forthecoming paper, we will be able to establish sharp estimates for the real

time heat kernel, and to the Schrödinger kernel.
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