

Consistency analysis of a 1D Finite Volume scheme for barotropic Euler models

Florent Berthelin, Thierry Goudon, Sebastian Minjeaud

▶ To cite this version:

Florent Berthelin, Thierry Goudon, Sebastian Minjeaud. Consistency analysis of a 1D Finite Volume scheme for barotropic Euler models. J. Fuhrmann, M. Ohlberger, C. Rohde Eds. Finite Volumes for Complex Applications VII-Methods and Theoretical Aspects, 77, Springer Proc. in Math.

Stat., pp. 97-106, 2015. hal-00961615

HAL Id: hal-00961615 https://hal.science/hal-00961615

Submitted on 20 Mar 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Consistency analysis of a 1D Finite Volume scheme for barotropic Euler models

F. Berthelin *1,3 , T. Goudon $^{\dagger 1,3}$, and S. Minjeaud $^{\ddagger 2,3}$

¹Inria, Sophia Antipolis Méditerranée Research Centre, Project COFFEE ²Inria, Sophia Antipolis Méditerranée Research Centre, Project CASTOR ³Univ. Nice Sophia Antipolis, CNRS, LJAD, UMR 7351, France

Abstract

This work is concerned with the consistency study of a 1D (staggered kinetic) finite volume scheme for barotropic Euler models. We prove a Lax-Wendroff-like statement: the limit of a converging (and uniformly bounded) sequence of stepwise constant functions defined from the scheme is a weak entropic-solution of the system of conservation laws.

1 Introduction

The model. This work is concerned with the consistency study of a (staggered kinetic) Finite Volume (FV) scheme for barotropic Euler models

$$\partial_t \rho + \partial_x (\rho V) = 0, \tag{1}$$

$$\partial_t(\rho V) + \partial_x(\rho V^2 + p(\rho)) = 0.$$
⁽²⁾

The unknowns are the density ρ and the velocity V. The pressure $(\rho \mapsto p(\rho))$ is assumed to be $\mathcal{C}^2([0,\infty))$ with $p(\rho) > 0$, $p'(\rho) > 0$, $p''(\rho) \ge 0$, $\forall \rho > 0$. Thus, the sound speed $c : \rho \mapsto \sqrt{p'(\rho)}$ is well defined and is an increasing function.

We consider the problem (1)-(2) on the bounded domain $(0, L) \times [0, T]$ with the boundary conditions V(0, t) = 0 = V(L, t), $\forall t > 0$ and the initial conditions $\rho(x, 0) = \rho_0(x)$, $V(x, 0) = V_0(x)$, $\forall x \in (0, L)$ with ρ_0 , $V_0 \in L^{\infty}(0, L)$.

Let $\Phi : \rho > 0 \mapsto \Phi(\rho)$ such that $\rho \Phi'(\rho) - \Phi(\rho) = p(\rho)$, $\forall \rho > 0$. The quantity $\mathcal{S} = \frac{1}{2}\rho|V|^2 + \Phi(\rho)$ is an entropy of the system: entropy solutions to (1)-(2) are required to satisfy: for any $\varphi \in \mathcal{C}_c^{\infty}((0,L) \times [0,T))$ such that $\varphi \ge 0$,

$$-\int_{0}^{T}\int_{0}^{L} \left[\mathcal{S}\partial_{t}\varphi + (\mathcal{S} + p(\rho))V\partial_{x}\varphi \right](x,t) \,\mathrm{d}x \,\mathrm{d}t - \int_{0}^{L} \mathcal{S}_{0}(x)\varphi(x,0) \,\mathrm{d}x \leqslant 0.$$
(3)

^{*}Florent.Berthelin@unice.fr

[†]thierry.goudon@inria.fr

[‡]minjeaud@unice.fr

The meshes. We consider a set of J + 1 points $0 = x_1 < x_2 < ... < x_J < x_{J+1} = L$. The x_j are the edges of the so-called primal mesh \mathcal{T} . We set $\delta x_{j+1/2} = x_{j+1} - x_j$. The centers of the primal cells, $x_{j+1/2} = (x_j + x_{j+1})/2$ for $j \in \{1, ..., J\}$, realize the dual mesh \mathcal{T}^* . We set $\delta x_j = (\delta x_{j-1/2} + \delta x_{j+1/2})/2$ for $j \in \{2, ..., J-1\}$ and $\delta x = \text{size}(\mathcal{T}) = \max_j \delta x_{j+1/2}$. The adaptive time step is δt^k and we set $\delta t = \max_k \delta t^k$.

The scheme. We analyze the scheme introduced in [1]. It works on staggered grids: the densities, $\rho_{j+1/2}$, $j \in \{1, ..., J\}$, are evaluated at centers whereas the velocities, V_j , $j \in \{1, ..., J+1\}$, are evaluated at edges. We set, for $j \in \{1, ..., J\}$ and $i \in \{2, ..., J\}$

$$\rho_{j+1/2}^{0} = \frac{1}{\delta x_{j+1/2}} \int_{x_{j}}^{x_{j+1}} \rho_{0}(x) \,\mathrm{d}x, \quad V_{i}^{0} = \frac{1}{\delta x_{i}} \int_{x_{i-1/2}}^{x_{i+1/2}} V_{0}(x) \,\mathrm{d}x. \tag{4}$$

The density is first updated with a FV approximation on the primal mesh

$$\delta x_{j+1/2} (\rho_{j+1/2}^{k+1} - \rho_{j+1/2}^{k}) + \delta t^{k} (\mathscr{F}_{j+1}^{k} - \mathscr{F}_{j}^{k}) = 0, \quad \forall j \in \{1, .., J\}.$$

$$(5)$$

Then, the velocity is updated with a FV approximation on the dual mesh:

$$\delta x_j (\rho_j^{k+1} V_j^{k+1} - \rho_j^k V_j^k) + \delta t^k \Big(\mathscr{G}_{j+1/2}^k - \mathscr{G}_{j-1/2}^k + \pi_{j+1/2}^{k+1/2} - \pi_{j-1/2}^{k+1/2} \Big) = 0, \tag{6}$$

for $j \in \{2, .., J\}$, while $V_1^{k+1} = V_{J+1}^{k+1} = 0$. The density on the edges ρ_j^k is defined by

$$2\delta x_j \rho_j^k = \delta x_{j+1/2} \rho_{j+1/2}^k + \delta x_{j-1/2} \rho_{j-1/2}^k, \quad \forall j \in \{2, ..., J\}.$$

The definition of the fluxes relies on the kinetic framework. We refer the reader to [1] for details. Let us introduce the two following functions \mathscr{F}^+ and \mathscr{F}^-

$$\mathscr{F}^{\pm}(\rho, V) = \frac{\rho}{2c(\rho)} \int_{\xi \ge 0} \xi \, \mathbb{1}_{|\xi - V| \le c(\rho)} \mathrm{d} \, \xi.$$

We adopt the following formulas for mass fluxes: $\mathscr{F}_1^k = \mathscr{F}_{J+1}^k = 0$,

$$\mathscr{F}_{j}^{k} = \mathscr{F}^{+}(\rho_{j-1/2}^{k}, V_{j}^{k}) + \mathscr{F}^{-}(\rho_{j+1/2}^{k}, V_{j}^{k}), \quad \forall j \in \{2, ..., J\},$$
(7)

and, for momentum fluxes: $\mathscr{G}_{3/2}^k = \frac{V_2^k}{2} \mathscr{F}^-(\rho_{5/2}^k, V_2^k), \ \mathscr{G}_{J+1/2}^k = \frac{V_J^k}{2} \mathscr{F}^+(\rho_{J-1/2}^k, V_J^k),$

$$\mathscr{G}_{j+1/2}^{k} = \frac{V_{j}^{k}}{2} \left(\mathscr{F}^{+}(\rho_{j-1/2}^{k}, V_{j}^{k}) + \mathscr{F}^{+}(\rho_{j+1/2}^{k}, V_{j+1}^{k}) \right) \\ + \frac{V_{j+1}^{k}}{2} \left(\mathscr{F}^{-}(\rho_{j+1/2}^{k}, V_{j}^{k}) + \mathscr{F}^{-}(\rho_{j+3/2}^{k}, V_{j+1}^{k}) \right), \ \forall j \in \{2, .., J-1\}.$$

$$(8)$$

The discrete pressure gradient combines a space centered scheme and time semi implicit discretization, namely it uses

$$\pi_{j+1/2}^{k+1/2} = \rho_{j+1/2}^k \Phi'(\rho_{j+1/2}^{k+1}) - \Phi(\rho_{j+1/2}^k).$$

Properties of the scheme. The analysis is driven by the shapes of the functions \mathscr{F}^{\pm} , see [1, Lemma 3.2]. Here, we shall use the following properties

- (i) Smoothness: $(\rho, V) \in (0, \infty) \times \mathbb{R} \mapsto \mathscr{F}^{\pm}(\rho, V)$ are of class C^1 ,
- (i) Consistency: $\mathscr{F}^+(\rho, V) + \mathscr{F}^-(\rho, V) = \rho V, \quad \forall V \in \mathbb{R}, \ \forall \rho \ge 0.$ (9)

Under CFL conditions, see [1], the scheme preserves the positivity of the discrete density and discrete kinetic and internal energies evolution equations hold.

Lemma 1.1 Let $N \in \mathbb{N}$. Assume $\min_i (\rho_{i+1/2}^0) > 0$. For all $k \in \{0, .., N-1\}$, there exists $\mathcal{V}^k > 0$, which depends only on the state (ρ^k, V^k) , such that if

$$\frac{\delta t^k}{\min_j \left(\delta x_{j+1/2}\right)} \mathcal{V}^k \leqslant 1,\tag{10}$$

then, $\min_{i} (\rho_{i+1/2}^{k}) > 0, \forall k \in \{0, .., N\}$ and

$$0 \leqslant \sum_{k=0}^{N-1} \sum_{j=2}^{J} D_{j}^{k} \leqslant C, \quad with \quad D_{j}^{k} = \frac{1}{4} \delta x_{j} \rho_{j}^{k+1} (V_{j}^{k+1} - V_{j}^{k})^{2}, \tag{11}$$

$$\frac{\delta x_{j+1/2}}{\delta t^k} \left[e_{j+1/2}^{k+1} - e_{j+1/2}^k \right] + \overline{G}_{j+1}^k - \overline{G}_j^k + \pi_{j+1/2}^{k+1/2} \left[V_{j+1}^{k+1} - V_j^{k+1} \right] \leqslant \frac{D_j^k}{\delta t^k}, \quad (12)$$

$$\frac{\delta x_j}{\delta t^k} \Big[E_{K,j}^{k+1} - E_{K,j}^k \Big] + \Gamma_{j+1/2}^k - \Gamma_{j-1/2}^k + \Big[\pi_{j+1/2}^{k+1/2} - \pi_{j-1/2}^{k+1/2} \Big] V_j^{k+1} + \frac{D_j^k}{\delta t^k} \leqslant 0, \quad (13)$$

where $E_{K,j}^k = \frac{1}{2}\rho_j^k (V_j^k)^2$ and $e_{j+1/2}^k = \Phi(\rho_{j+1/2}^k)$ are the kinetic and internal energies. The fluxes are defined by $\overline{G}_1^k = \overline{G}_{J+1}^k = 0$ and

$$\begin{split} \overline{G}_{j}^{k} &= \Phi(\rho_{j-1/2}^{k})V_{j}^{k+1} - \frac{\delta x_{j-1/2}}{2\delta t^{k}} \Big[\bar{\Phi} \Big(\overline{\rho_{j-1/2}^{k+1}} \Big) - \bar{\Phi}(\rho_{j-1/2}^{k}) \Big], \; \forall j \in \{2,..,J\}, \\ \Gamma_{j+1/2}^{k} &= \frac{1}{2}V_{j}^{k}V_{j+1}^{k} \frac{\mathscr{F}_{j}^{k} + \mathscr{F}_{j+1}^{k}}{2} + \frac{1}{2}(V_{j}^{k} - V_{j+1}^{k})^{2} \frac{\mathscr{F}_{j}^{k,|\cdot|} + \mathscr{F}_{j+1}^{k,|\cdot|}}{2}, \; \forall j \in \{1,..,J\}, \\ \overline{\overline{\rho_{j-1/2}^{k+1}}} &= \rho_{j-1/2}^{k} - \frac{2\delta t^{k}}{\delta x_{j-1/2}} \Big(\mathscr{F}^{-}(\rho_{j+1/2}^{k}, V_{j}^{k}) - \mathscr{F}^{-}(\rho_{j-1/2}^{k}, V_{j}^{k}) - \rho_{j-1/2}^{k}(V_{j}^{k+1} - V_{j}^{k}) \Big), \end{split}$$

and $\mathscr{F}_1^{k,|\cdot|} = \mathscr{F}_{J+1}^{k,|\cdot|} = 0$, $\mathscr{F}_j^{k,|\cdot|} = \mathscr{F}^+(\rho_{j-1/2}^k, V_j^k) - \mathscr{F}^-(\rho_{j+1/2}^k, V_j^k)$, $\forall j \in \{2, ..., J\}$. The function $\overline{\Phi}$ is a \mathcal{C}^2 extension of the function Φ (see [1, Section 4.3]).

Results. As in [2], we prove a Lax-Wendroff-like statement: the limit of a converging (and uniformly bounded) sequence of stepwise constant functions defined from the scheme is a weak entropic-solution of the system of conservation laws.

2 Consistency analysis

Notation. Assuming that $\sum_{k=0}^{N-1} \delta t^k = T$, we define the reconstructions (i = 0, 1)

$$\rho_{\delta}^{(i)} = \sum_{k=0}^{N-1} \sum_{j=1}^{J} \rho_{j+1/2}^{k+i} \chi_{j+1/2}^{k+1/2}, \quad \pi_{\delta} = \sum_{k=0}^{N-1} \sum_{j=1}^{J} \pi_{j+1/2}^{k+1/2} \chi_{j+1/2}^{k+1/2}, \quad V_{\delta} = \sum_{k=0}^{N-1} \sum_{j=2}^{J} V_{j}^{k} \chi_{j}^{k+1/2},$$

where $\chi_j^{k+1/2} = \chi_{[x_{j-1/2}, x_{j+1/2}] \times [t^k, t^{k+1}]}, \quad \chi_{j+1/2}^{k+1/2} = \chi_{[x_j, x_{j+1}] \times [t^k, t^{k+1}]}.$

We also introduce the following discrete norms

$$\begin{split} ||\rho_{\delta}||_{\infty,\mathcal{T}} &= \max_{0 \leqslant k \leqslant N} \max_{1 \leqslant j \leqslant J} |\rho_{j+1/2}^{k}|, \qquad ||V_{\delta}||_{\infty,\mathcal{T}^{\star}} = \max_{0 \leqslant k \leqslant N} \max_{2 \leqslant j \leqslant J} |V_{j}^{k}|, \\ ||\rho_{\delta}||_{1;\mathrm{BV},\mathcal{T}} &= \sum_{k=0}^{N} \delta t^{k} \sum_{j=2}^{J} |\rho_{j+1/2}^{k} - \rho_{j-1/2}^{k}|, \quad ||V_{\delta}||_{1;\mathrm{BV},\mathcal{T}^{\star}} = \sum_{k=0}^{N} \delta t^{k} \sum_{j=1}^{J} |V_{j+1}^{k} - V_{j}^{k}|, \\ ||\rho_{\delta}||_{\mathrm{BV};1,\mathcal{T}} &= \sum_{j=1}^{J} \delta x_{j+1/2} \sum_{k=0}^{N-1} |\rho_{j+1/2}^{k+1} - \rho_{j+1/2}^{k}|. \end{split}$$

For $\varphi \in \mathcal{C}_c^{\infty}((0,L) \times [0,T))$, we set $\varphi_{j+1/2}^k = \varphi(x_{j+1/2},t^k)$ and $\varphi_j^k = \varphi(x_j,t^k)$. The interpolate φ_{τ} of φ on the primal mesh and its discrete derivatives are defined by

$$\begin{split} \varphi_{\tau}(\cdot,0) &= \sum_{j=1}^{J} \varphi_{j+1/2}^{0} \chi_{j+1/2}^{1/2}(\cdot,0), \qquad \varphi_{\tau}(\cdot,t) = \sum_{k=0}^{N-1} \sum_{j=1}^{J} \varphi_{i+1/2}^{k+1/2} \chi_{j+1/2}^{k+1/2}(\cdot,t), \ \forall t > 0, \\ \eth_{t}\varphi_{\tau} &= \sum_{k=0}^{N-1} \sum_{j=1}^{J} \frac{\varphi_{j+1/2}^{k+1} - \varphi_{j+1/2}^{k}}{\delta t^{k}} \chi_{j+1/2}^{k+1/2}, \quad \eth_{x}\varphi_{\tau} = \sum_{k=0}^{N-1} \sum_{j=2}^{J} \frac{\varphi_{j+1/2}^{k+1} - \varphi_{j-1/2}^{k+1}}{\delta x_{j}} \chi_{j}^{k+1/2}. \end{split}$$

Similarly, the interpolate $\varphi_{\mathcal{T}^{\star}}$ of φ on \mathcal{T}^{\star} and its discrete derivatives are given by

$$\begin{split} \varphi_{\mathcal{T}^{\star}}(\cdot,0) &= \sum_{j=2}^{J} \varphi_{j}^{0} \chi_{j}^{1/2}(\cdot,0), \qquad \varphi_{\mathcal{T}^{\star}}(\cdot,t) = \sum_{k=0}^{N-1} \sum_{j=2}^{J} \varphi_{j}^{k+1} \chi_{j}^{k+1/2}(\cdot,t), \; \forall t > 0, \\ \eth_{t}^{\star} \varphi_{\mathcal{T}^{\star}} &= \sum_{k=0}^{N-1} \sum_{j=2}^{J} \frac{\varphi_{j}^{k+1} - \varphi_{j}^{k}}{\delta t^{k}} \chi_{j}^{k+1/2}, \qquad \eth_{x}^{\star} \varphi_{\mathcal{T}^{\star}} = \sum_{k=0}^{N-1} \sum_{j=1}^{J} \frac{\varphi_{j+1}^{k+1} - \varphi_{j}^{k+1}}{\delta x_{j+1/2}} \chi_{j+1/2}^{k+1/2} \end{split}$$

Assumptions. Let $(\mathcal{T}_m)_{m \ge 1}$ be a sequence of meshes s. t. size $(\mathcal{T}_m) \to 0$ and a family of time steps $(\delta t_m^k)_{k \ge 0, m \ge 1}$ verifying $\delta t_m \to 0$ and (10). Assume that there exists $N_m \in \mathbb{N}$ s. t. $\sum_{k=0}^{N_m - 1} \delta t_m^k = T$. The scheme defines $(\rho_{\delta_m}^{(0)}, V_{\delta_m})_{m \ge 1}$. Suppose that

$$||\rho_{\delta_m}^{(0)}||_{\infty,\tau} + ||V_{\delta_m}||_{\infty,\tau^*} \leqslant C_{\infty}, \qquad ||\rho_{\delta_m}^{(0)}||_{1;\mathrm{BV},\tau} + ||V_{\delta_m}||_{1;\mathrm{BV},\tau^*} \leqslant C_{\mathrm{BV}}$$
(14)

holds and, in the case $(\rho \mapsto \frac{p'(\rho)}{\rho}) \notin L^1_{\text{loc}}(0,\infty), ||(\rho_{\delta_m}^{(0)})^{-1}||_{\infty,\mathcal{T}} \leq C$. We assume that there exists $(\bar{\rho}, \bar{V}) \in L^{\infty}((0,T) \times (0,L))^2$ such that

$$\left(\rho_{\delta_m}^{(0)}, V_{\delta_m}\right) \longrightarrow (\bar{\rho}, \bar{V}) \text{ in } L^r((0, T) \times (0, L))^2, \ 1 \leqslant r < \infty.$$
 (15)

Main results. The uniform bounds imply that there exists constants such that

$$\begin{split} \sup_{\substack{0 \leqslant \rho, |V| \leqslant C_{\infty}}} |\mathscr{A}(\rho, V)| &\leqslant C_{\mathscr{A}}, \quad \text{with} \quad \mathscr{A} = \mathscr{F}^{\pm}, \ \partial_{\rho} \mathscr{F}^{\pm} \quad \text{and} \ \partial_{V} \mathscr{F}^{\pm}, \\ \sup_{\substack{0 \leqslant \rho \leqslant C_{\infty} + 4(C_{\infty}^{2} + C_{\mathscr{F}^{\pm}})}} |\mathscr{B}(\rho)| &\leqslant C_{\mathscr{B}}, \quad \text{with} \quad \mathscr{B} = \Phi, \ \Phi', \ \text{and} \ \bar{\Phi}'. \end{split}$$

Note also that we have $|\Phi(\rho_{j+1/2}^k)| \leq C_{\Phi,\rho}\rho_{j+1/2}^k$, $\forall j,k$. Furthermore, we show that $||\rho_{\delta_m}^{(0)}||_{\mathrm{BV};1,\mathcal{T}} \leq C$ by using (5) which allows to dominate $\delta x_{j+1/2}|\rho_{j+1/2}^{k+1} - \rho_{j+1/2}^k|$ by

$$\delta t^k \Big[C_{\partial_{\rho} \mathscr{F}^{\pm}} \big(|\rho_{j+1/2}^k - \rho_{j-1/2}^k| + |\rho_{j+3/2}^k - \rho_{j+1/2}^k| \big) + 2C_{\partial_V \mathscr{F}^{\pm}} |V_{j+1}^k - V_j^k| \Big].$$

Consequently, $\rho_{\delta_m}^{(1)} \to \bar{\rho}$ and $\pi_{\delta_m} \to p(\bar{\rho})$ in $L^r((0,T) \times (0,L))$; with (4) and since $\rho_0, V_0 \in L^{\infty}(0,L)$, we get $\rho_{\delta_m}^{(0)}(\cdot,0) \to \rho_0$ and $V_{\delta_m}(\cdot,0) \to V_0$ in $L^r((0,L))$, $1 \leq r < \infty$.

Finally, in the sequel, when a function $\varphi \in \mathcal{C}_c^{\infty}((0,L) \times [0,T))$ is given, we assume that δt_m and δx_m are sufficiently small so that $\varphi(x, \cdot) \equiv 0, \forall x \in [0, x_{3/2}] \cup [x_{J+1/2}, L]$ and $\varphi(\cdot, t) \equiv 0, \forall t \in [t^{N-1}, t^N]$. Moreover, since φ is smooth, $\varphi_{\mathcal{T}_m}, \varphi_{\mathcal{T}_m^*} \to \varphi$, $\eth_t \varphi_{\mathcal{T}_m}, \eth_t^* \varphi_{\mathcal{T}_m^*} \to \partial_t \varphi$, and $\eth_x \varphi_{\mathcal{T}_m}, \eth_x^* \varphi_{\mathcal{T}_m^*} \to \partial_x \varphi$, in $L^r((0,T) \times (0,L)), 1 \leq r \leq \infty$.

Theorem 2.1 Assume (14) and (15). Then, $(\bar{\rho}, \bar{V})$ satisfies (1)-(2) in the distribution sense in $(\mathcal{C}_c^{\infty}((0,L)\times[0,T)))'$, that is

$$-\int_{0}^{T}\int_{0}^{L} \left[\bar{\rho}\partial_{t}\varphi + \bar{\rho}\bar{V}\partial_{x}\varphi\right](x,t)\,\mathrm{d}x\,\mathrm{d}t - \int_{0}^{L}\rho_{0}(x)\varphi(x,0)\,\mathrm{d}x = 0, \quad (16)$$

$$-\int_0^T \int_0^L \left[\bar{\rho}\bar{V}\partial_t\varphi + (\bar{\rho}\bar{V}^2 + p(\bar{\rho}))\partial_x\varphi\right](x,t)\,\mathrm{d}x\,\mathrm{d}t - \int_0^L \rho_0(x)V_0(x)\varphi(x,0)\,\mathrm{d}x = 0.$$
 (17)

Moreover, $(\bar{\rho}, V)$ satisfies the entropy inequality (3).

Proof. Let $\varphi \in \mathcal{C}_c^{\infty}((0, L) \times [0, T))$. For the sake of simplicity, the index m is dropped. Mass balance. We multiply (5) by $\varphi_{j+1/2}^{k+1}$ and sum the results for $0 \leq k \leq N-1$ and $1 \leq j \leq J$ to obtain

$$\sum_{k=0}^{N-1} \sum_{j=1}^{J} \delta x_{j+1/2} (\rho_{j+1/2}^{k+1} - \rho_{j+1/2}^{k}) \varphi_{j+1/2}^{k+1} + \underbrace{\sum_{k=0}^{N-1} \delta t^{k} \sum_{j=1}^{J} \left(\mathscr{F}_{j+1}^{k} - \mathscr{F}_{j}^{k}\right) \varphi_{j+1/2}^{k+1}}_{:=T_{2}} = 0.$$

For T_1 , since $\varphi_{j+1/2}^N = 0$, a discrete integration by part w.r.t. time yields

$$T_1 = -\sum_{k=0}^{N-1} \sum_{j=1}^J \delta x_{j+1/2} \rho_{j+1/2}^k (\varphi_{j+1/2}^{k+1} - \varphi_{j+1/2}^k) - \sum_{j=1}^J \delta x_{j+1/2} \rho_{j+1/2}^0 \varphi_{j+1/2}^0.$$

Noting that

$$\int_{t^k}^{t^{k+1}} \int_{x_j}^{x_{j+1}} \rho_{\delta}^{(0)} \eth_t \varphi_{\tau} \, \mathrm{d}x \, \mathrm{d}t = \delta x_{j+1/2} \rho_{j+1/2}^k (\varphi_{j+1/2}^{k+1} - \varphi_{j+1/2}^k)$$

for $k \in \{0, .., N - 1\}, j \in \{1, .., J\}$, we get

$$T_1 = -\int_0^T \int_0^L \rho_\delta^{(0)} \eth_t \varphi_\tau \, \mathrm{d}x \, \mathrm{d}t - \int_0^L \rho_\delta^{(0)}(x,0) \varphi_\tau(x,0) \, \mathrm{d}x.$$

For T_2 , by integrating by part w.r.t. space, we readily obtain

$$T_2 = -\sum_{k=0}^{N-1} \delta t^k \sum_{j=2}^{J} \mathscr{F}_j^k (\varphi_{j+1/2}^{k+1} - \varphi_{j-1/2}^{k+1}).$$

Bearing in mind that $2\delta x_j = \delta x_{j-1/2} + \delta x_{j+1/2}$, we then combine the two following expressions of mass fluxes (see (9)-(ii))

$$\mathscr{F}_{j}^{k} = \rho_{j\pm 1/2}^{k} V_{j}^{k} \mp R_{j}^{k,\pm} \text{ with } R_{j}^{k,\pm} = \mathscr{F}^{\pm}(\rho_{j+1/2}^{k}, V_{j}^{k}) - \mathscr{F}^{\pm}(\rho_{j-1/2}^{k}, V_{j}^{k})$$

to write

$$\mathscr{F}_{j}^{k} = \left[\frac{\delta x_{j-1/2}}{2\delta x_{j}}\rho_{j-1/2}^{k}V_{j}^{k} + \frac{\delta x_{j+1/2}}{2\delta x_{j}}\rho_{j+1/2}^{k}V_{j}^{k}\right] + \left[\frac{\delta x_{j-1/2}}{2\delta x_{j}}R_{j}^{k,-} - \frac{\delta x_{j+1/2}}{2\delta x_{j}}R_{j}^{k,+}\right].$$

This expression of the mass fluxes leads to $T_2 = -T_{2,1} - T_{2,2}$ with

$$T_{2,1} = \sum_{k=0}^{N-1} \delta t^k \sum_{j=2}^{J} \frac{1}{2} \Big[\delta x_{j-1/2} \rho_{j-1/2}^k + \delta x_{j+1/2} \rho_{j+1/2}^k \Big] V_j^k \frac{\varphi_{j+1/2}^{k+1} - \varphi_{j-1/2}^{k+1}}{\delta x_j} \\ T_{2,2} = \sum_{k=0}^{N-1} \delta t^k \sum_{j=2}^{J} \frac{1}{2} \Big[\delta x_{j-1/2} R_j^{k,-} - \delta x_{j+1/2} R_j^{k,+} \Big] V_j^k \frac{\varphi_{j+1/2}^{k+1} - \varphi_{j-1/2}^{k+1}}{\delta x_j} .$$

We now observe that, for $k \in \{0, .., N-1\}$, $j \in \{2, .., J\}$,

$$\int_{t^{k}}^{t^{k+1}} \int_{x_{j-1/2}}^{x_{j}} \rho_{\delta}^{(0)} V_{\delta} \eth_{x} \varphi_{\tau} \, \mathrm{d}x \, \mathrm{d}t = \delta t^{k} \frac{\delta x_{j-1/2}}{2} \left[\rho_{j-1/2}^{k} V_{j}^{k} \frac{\varphi_{j+1/2}^{k+1} - \varphi_{j-1/2}^{k+1}}{\delta x_{j}} \right],$$

and

$$\int_{t^{k}}^{t^{k+1}} \int_{x_{j}}^{x_{j+1/2}} \rho_{\delta}^{(0)} V_{\delta} \eth_{x} \varphi_{\tau} \, \mathrm{d}x \, \mathrm{d}t = \delta t^{k} \frac{\delta x_{j+1/2}}{2} \bigg[\rho_{j+1/2}^{k} V_{j}^{k} \frac{\varphi_{j+1/2}^{k+1} - \varphi_{j-1/2}^{k+1}}{\delta x_{j}} \bigg].$$

Summing these equalities yields

$$T_{2,1} = \int_0^T \int_{x_{3/2}}^{x_{J+1/2}} \rho_\delta^{(0)} V_\delta \eth_x \varphi_\tau \, \mathrm{d}x \, \mathrm{d}t = \int_0^T \int_0^L \rho_\delta^{(0)} V_\delta \eth_x \varphi_\tau \, \mathrm{d}x \, \mathrm{d}t,$$

since $\eth_x \varphi_{\tau}(x, \cdot) \equiv 0$ for $x \in [0, x_{3/2}] \cup [x_{J+1/2}, L]$.

With (15), we pass to the limit in T_1 and $T_{2,1}$. We prove that $(\bar{\rho}, \bar{V})$ satisfies the mass conservation equation (16) by showing that $T_{2,2} \to 0$ since

$$|T_{2,2}| \leqslant C_{\partial_{\rho}\mathscr{F}^{\pm}} |\partial_{x}\varphi|_{L^{\infty}} ||V_{\delta}||_{\infty,\mathcal{T}^{\star}} ||\rho_{\delta}||_{1;\mathrm{BV},\mathcal{T}} \delta x \lesssim \delta x.$$

Momentum balance. We multiply (6) by φ_j^{k+1} and sum for $0 \leq k \leq N-1$ and $2 \leq j \leq J$ to obtain $T_3 + T_4 + T_5 = 0$ with

$$T_{3} = \sum_{k=0}^{N-1} \sum_{j=2}^{J} \delta x_{j} (\rho_{j}^{k+1} V_{j}^{k+1} - \rho_{j}^{k} V_{j}^{k}) \varphi_{j}^{k+1},$$
$$T_{4} = \sum_{k=0}^{N-1} \delta t^{k} \sum_{j=2}^{J} (\mathscr{G}_{j+1/2}^{k} - \mathscr{G}_{j-1/2}^{k}) \varphi_{j}^{k+1}, \quad T_{5} = \sum_{k=0}^{N-1} \delta t^{k} \sum_{j=2}^{J} (\pi_{j+1/2}^{k+1/2} - \pi_{j-1/2}^{k+1/2}) \varphi_{j}^{k+1}$$

For T_3 , integrating by part w.r.t time yields

$$T_{3} = -\sum_{k=0}^{N-1} \sum_{j=2}^{J} \delta x_{j} \rho_{j}^{k} V_{j}^{k} (\varphi_{j}^{k+1} - \varphi_{j}^{k}) - \sum_{j=2}^{J} \delta x_{j} \rho_{j}^{0} V_{j}^{0} \varphi_{j}^{0}$$

Next, we observe that

$$\int_{t^{k}}^{t^{k+1}} \int_{x_{j-1/2}}^{x_{j+1/2}} \rho_{\delta}^{(0)} V_{\delta} \eth_{t}^{\star} \varphi_{\mathcal{T}^{\star}} \, \mathrm{d}x \, \mathrm{d}t = V_{j}^{k} \frac{\varphi_{j}^{k+1} - \varphi_{j}^{k}}{\delta t^{k}} \int_{t^{k}}^{t^{k+1}} \int_{x_{j-1/2}}^{x_{j+1/2}} \rho_{\delta}^{(0)} \, \mathrm{d}x \, \mathrm{d}t \\ = \delta x_{j} \rho_{j}^{k} V_{j}^{k} (\varphi_{j}^{k+1} - \varphi_{j}^{k}).$$

Summing these equalities for $k \in \{0, .., N-1\}, j \in \{2, .., J\}$ yields

$$T_{3} = -\int_{0}^{T} \int_{x_{3/2}}^{x_{J+1/2}} \rho_{\delta}^{(0)} V_{\delta} \eth_{t}^{\star} \varphi_{\mathcal{T}^{\star}} \, \mathrm{d}x \, \mathrm{d}t - \int_{x_{3/2}}^{x_{J+1/2}} \rho_{\delta}^{(0)}(x,0) V_{\delta}(x,0) \varphi_{\mathcal{T}^{\star}}(x,0) \, \mathrm{d}x,$$

$$= -\int_{0}^{T} \int_{0}^{L} \rho_{\delta}^{(0)} V_{\delta} \eth_{t}^{\star} \varphi_{\mathcal{T}^{\star}} \, \mathrm{d}x \, \mathrm{d}t - \int_{0}^{L} \rho_{\delta}^{(0)}(x,0) V_{\delta}(x,0) \varphi_{\mathcal{T}^{\star}}(x,0) \, \mathrm{d}x.$$

For T_4 and T_5 , we first integrate by part w.r.t space and obtain

$$T_4 = -\sum_{k=0}^{N-1} \delta t^k \sum_{j=1}^J \mathscr{G}_{j+1/2}^k (\varphi_{j+1}^{k+1} - \varphi_j^{k+1}), \quad T_5 = -\sum_{k=0}^{N-1} \delta t^k \sum_{j=1}^J \pi_{j+1/2}^{k+1/2} (\varphi_{j+1}^{k+1} - \varphi_j^{k+1}).$$

We then use the following expression of the momentum flux

$$\begin{cases} \mathscr{G}_{j+1/2}^{k} &= \frac{1}{2}\rho_{j+1/2}^{k} \left[\left(V_{j}^{k} \right)^{2} + \left(V_{j+1}^{k} \right)^{2} \right] + Q_{j+1/2}^{k}, \\ Q_{j+1/2}^{k} &= -\frac{1}{2}V_{j}^{k}R_{j}^{k,+} + \frac{1}{2}V_{j+1}^{k}R_{j+1}^{k,-} \\ &\qquad -\frac{1}{2}(V_{j+1}^{k} - V_{j}^{k}) \left[\mathscr{F}^{+}(\rho_{j+1/2}^{k}, V_{j+1}^{k}) - \mathscr{F}^{-}(\rho_{j+1/2}^{k}, V_{j}^{k}) \right]. \end{cases}$$

to write $T_4 = -T_{4,1} - T_{4,2}$ with

$$T_{4,1} = \sum_{k=0}^{N-1} \delta t^k \sum_{j=1}^{J} \frac{1}{2} \rho_{j+1/2}^k \Big[(V_j^k)^2 + (V_{j+1}^k)^2 \Big] (\varphi_{j+1}^{k+1} - \varphi_j^{k+1})$$
$$T_{4,2} = \sum_{k=0}^{N-1} \delta t^k \sum_{j=1}^{J} Q_{j+1/2}^k (\varphi_{j+1}^{k+1} - \varphi_j^{k+1}).$$

Next, we observe that

$$\int_{t^{k}}^{t^{k+1}} \int_{x_{j}}^{x_{j+1}} \rho_{\delta}^{(0)}(V_{\delta})^{2} \eth_{x}^{\star} \varphi_{\mathcal{T}^{\star}} \, \mathrm{d}x \, \mathrm{d}t = \delta t^{k} \rho_{j+1/2}^{k} \frac{(V_{j}^{k})^{2} + (V_{j+1}^{k})^{2}}{2} (\varphi_{j+1}^{k+1} - \varphi_{j}^{k+1})$$

and, consequently, summing for $k \in \{0, .., N-1\}, j \in \{1, .., J\}$,

$$T_{4,1} = \int_0^T \int_0^L \rho_{\delta}^{(0)} (V_{\delta})^2 \eth_x^{\star} \varphi_{\mathcal{T}^{\star}} \, \mathrm{d}x \, \mathrm{d}t.$$

Similarly, for T_5 , we get

$$T_5 = -\int_0^T \int_0^L \pi_\delta \eth_x^\star \varphi_{\mathcal{T}^\star} \, \mathrm{d}x \, \mathrm{d}t.$$

With (15), we pass to the limit in T_3 , $T_{4,1}$ and T_5 . We obtain that $(\bar{\rho}, \bar{V})$ satisfies the momentum balance equation (17) by showing that $T_{4,2} \to 0$. Indeed, we have

$$|T_{4,2}| \leqslant ||V_{\delta}||_{\infty,\mathcal{T}^{\star}} |\partial_{x}\varphi|_{L^{\infty}} \Big(C_{\partial_{\rho}\mathscr{F}^{\pm}} ||\rho_{\delta}||_{1;\mathrm{BV},\mathcal{T}} + C_{\mathscr{F}^{\pm}} ||V_{\delta}||_{1;\mathrm{BV},\mathcal{T}^{\star}} \Big) \delta x \lesssim \delta x.$$

Entropy inequality. We now assume that $\varphi \ge 0$.

• Kinetic energy. We multiply (13) by $\delta t^k \varphi_j^{k+1}$ and sum for $0 \leq k \leq N-1$ and $2 \leq j \leq J$. We obtain to get $T_6 + T_7 + T_8 \leq 0$ with

$$T_{6} = \sum_{k=0}^{N-1} \sum_{j=2}^{J} \delta x_{j} \Big[E_{K,j}^{k+1} - E_{K,j}^{k} \Big] \varphi_{j}^{k+1}, \quad T_{7} = \sum_{k=0}^{N-1} \delta t^{k} \sum_{j=2}^{J} \Big[\Gamma_{j+1/2}^{k} - \Gamma_{j-1/2}^{k} \Big] \varphi_{j}^{k+1},$$
$$T_{8} = \sum_{k=0}^{N-1} \delta t^{k} \sum_{j=2}^{J} \Big[\pi_{j+1/2}^{k+1/2} - \pi_{j-1/2}^{k+1/2} \Big] V_{j}^{k+1} \varphi_{j}^{k+1} + \sum_{k=0}^{N-1} \sum_{j=2}^{J} D_{j}^{k} \varphi_{j}^{k+1}.$$

Integrating by part w.r.t. time yields

$$T_{6} = -\sum_{k=0}^{N-1} \sum_{j=2}^{J} \delta x_{j} E_{K,j}^{k} \Big[\varphi_{j}^{k+1} - \varphi_{j}^{k} \Big] - \sum_{j=1}^{J} \delta x_{j} E_{K,j}^{0} \varphi_{j}^{0} \\ = -\int_{0}^{T} \int_{0}^{L} \frac{1}{2} \rho_{\delta}^{(0)} (V_{\delta})^{2} \eth_{t}^{\star} \varphi_{\mathcal{T}^{\star}} \, \mathrm{d}x \, \mathrm{d}t - \int_{0}^{L} \frac{1}{2} \rho_{\delta}^{(0)} (x, 0) (V_{\delta}(x, 0))^{2} \varphi_{\mathcal{T}^{\star}}(x, 0) \, \mathrm{d}x.$$

For T_7 , we write $\Gamma_{j+1/2}^k = \frac{1}{4}\rho_{j+1/2}^k [(V_j^k)^3 + (V_{j+1}^k)^3] + \frac{1}{4}S_{j+1/2}^k$ where

$$S_{j+1/2}^{k} = V_{j}^{k} V_{j+1}^{k} \Big[R_{j+1}^{k,-} - R_{j}^{k,+} \Big] + (V_{j+1}^{k} - V_{j}^{k})^{2} \Big[\mathscr{F}_{j}^{k,|\cdot|} + \mathscr{F}_{j+1}^{k,|\cdot|} - \rho_{j+1/2}^{k} (V_{j}^{k} + V_{j+1}^{k}) \Big].$$

Integration by part w.r.t space leads to $T_{7} = -T_{7,1} - T_{7,2}$ with

$$T_{7,1} = \int_0^T \int_0^L \frac{1}{2} \rho_{\delta}^{(0)} (V_{\delta})^3 \eth_x^* \varphi_{\mathcal{T}^*} \, \mathrm{d}x \, \mathrm{d}t, \quad T_{7,2} = \frac{1}{4} \sum_{k=0}^{N-1} \delta t^k \sum_{j=1}^J S_{j+1/2}^k \Big[\varphi_{j+1}^{k+1} - \varphi_j^{k+1} \Big].$$

Finally $|T_{7,2}| \lesssim \delta x$ since it is dominated by

$$\begin{split} \delta x |\partial_x \varphi|_{L^{\infty}} ||V_{\delta}||_{\infty,\mathcal{T}^{\star}} \Big[\frac{C_{\partial_{\rho}\mathscr{F}^{\pm}}}{2} ||V_{\delta}||_{\infty,\mathcal{T}^{\star}} ||\rho_{\delta}||_{1;\mathrm{BV},\mathcal{T}} \\ &+ (2C_{\mathscr{F}^{\pm}} + ||V_{\delta}||_{\infty,\mathcal{T}^{\star}} ||\rho_{\delta}||_{\infty,\mathcal{T}}) ||V_{\delta}||_{1;\mathrm{BV},\mathcal{T}^{\star}} \Big]. \end{split}$$

• Internal energy. Multiply (12) by $\delta t^k \varphi_{j+1/2}^{k+1}$ and sum for $0 \leq k \leq N-1$ and $1 \leq j \leq J$ to get $T_9 + T_{10} + T_{11} \leq 0$ with

$$T_{9} = \sum_{k=0}^{N-1} \sum_{j=1}^{J} \delta x_{j+1/2} \Big[e_{j+1/2}^{k+1} - e_{j+1/2}^{k} \Big] \varphi_{j+1/2}^{k+1}, \ T_{10} = \sum_{k=0}^{N-1} \delta t^{k} \sum_{j=1}^{J} \Big[\overline{G}_{j+1}^{k} - \overline{G}_{j}^{k} \Big] \varphi_{j+1/2}^{k+1},$$
$$T_{11} = \sum_{k=0}^{N-1} \delta t^{k} \sum_{j=1}^{J} \pi_{j+1/2}^{k+1/2} (V_{j+1}^{k+1} - V_{j}^{k+1}) \varphi_{j+1/2}^{k+1} - \sum_{k=0}^{N-1} \sum_{j=1}^{J} D_{j}^{k} \varphi_{j+1/2}^{k+1}.$$

Owing to integration by part w.r.t. time, we get

$$T_{9} = -\sum_{k=0}^{N-1} \sum_{j=1}^{J} \delta x_{j+1/2} \Phi(\rho_{j+1/2}^{k}) (\varphi_{j+1/2}^{k+1} - \varphi_{j+1/2}^{k}) - \sum_{j=1}^{J} \delta x_{j+1/2} \Phi(\rho_{j+1/2}^{0}) \varphi_{j+1/2}^{0},$$

$$= -\int_{0}^{T} \int_{0}^{L} \Phi(\rho_{\delta}^{(0)}) \eth_{t} \varphi_{\tau} \, \mathrm{d}x \, \mathrm{d}t - \int_{0}^{L} \Phi(\rho_{\delta}^{(0)}(x,0)) \varphi_{\tau}(x,0) \, \mathrm{d}x.$$

For T_{10} , we rewrite the flux as follows

$$\begin{cases} \overline{G}_{j}^{k} = \frac{1}{2\delta x_{j}} \Big[\delta x_{j-1/2} \Phi(\rho_{j-1/2}^{k}) + \delta x_{j+1/2} \Phi(\rho_{j+1/2}^{k}) \Big] V_{j}^{k} + U_{1,j}^{k} + U_{2,j}^{k} + U_{3,j}^{k}, \\ U_{1,j}^{k} = e_{j-1/2}^{k} (V_{j}^{k+1} - V_{j}^{k}), \qquad U_{2,j}^{k} = -\frac{\delta x_{j+1/2}}{2\delta x_{j}} \Big[e_{j+1/2}^{k} - e_{j-1/2}^{k} \Big] V_{j}^{k}, \\ U_{3,j}^{k} = -\frac{\delta x_{j-1/2}}{2\delta t^{k}} \Big[\overline{\Phi}(\overline{\rho_{j-1/2}^{k+1}}) - \overline{\Phi}(\rho_{j-1/2}^{k}) \Big]. \end{cases}$$

It leads to $T_{10} = -T_{10,0} - T_{10,1} - T_{10,2} - T_{10,3}$ with

$$\begin{cases} T_{10,0} = \int_{0}^{T} \int_{0}^{L} \Phi(\rho_{\delta}^{(0)}) V_{\delta} \eth_{x} \varphi_{\tau} \, \mathrm{d}x \, \mathrm{d}t, \\ T_{10,i} = \sum_{k=0}^{N-1} \delta t^{k} \sum_{j=2}^{J} U_{i,j}^{k} (\varphi_{j+1/2}^{k+1} - \varphi_{j-1/2}^{k+1}), \quad i = 1, 2, 3. \end{cases}$$

The term $T_{10,1}$ can be bounded as follows

$$|T_{10,1}| \leqslant C_{\Phi,\rho} |\partial_x \varphi| \sum_{k=0}^{N-1} \delta t^k \sum_{j=2}^J \delta x_j \rho_{j-1/2}^k |V_j^{k+1} - V_j^k|.$$
(18)

Since $a \leq \min(a, b) + |b - a|$, we get $\rho_{j-1/2}^k \leq \rho_j^k + |\rho_{j+1/2}^k - \rho_{j-1/2}^k|$. This leads to

$$|T_{10,1}| \leqslant C_{\Phi,\rho} |\partial_x \varphi|_{L^{\infty}} \Big(\underbrace{\sum_{k=0}^{N-1} \delta t^k \sum_{j=2}^J \delta x_j \rho_j^k |V_j^{k+1} - V_j^k|}_{:=T^*} + 2||V_\delta||_{\infty,\mathcal{T}^*} ||\rho_\delta||_{1;\mathrm{BV},\mathcal{T}} \delta x \Big).$$

Writing $\rho_j^k\!=\!\rho_j^{k+1}\!-(\rho_j^{k+1}\!-\rho_j^k)$ and using the Cauchy-Schwarz inequality yields

$$T^{\star} \leq 2 \Big(TL ||\rho_{\delta}||_{\infty,\tau} \Big)^{1/2} \Big(\delta t \sum_{k=0}^{N-1} \sum_{j=2}^{J} D_{j}^{k} \Big)^{1/2} + 2 ||V_{\delta}||_{\infty,\tau^{\star}} ||\rho_{\delta}||_{\mathrm{BV};1,\tau} \delta t \lesssim \delta t^{1/2}.$$

It finally leads to $|T_{10,1}| \lesssim \delta t^{\frac{1}{2}} + \delta x$. The term $T_{10,2}$ can be bounded as follows $|T_{10,2}| \leqslant C_{\Phi'} ||V_{\delta}||_{\infty,\mathcal{T}^{\star}} |\partial_x \varphi|_{L^{\infty}} ||\rho_{\delta}||_{1;\mathrm{BV},\mathcal{T}} \, \delta x \, \lesssim \, \delta x.$

We now turn to $T_{10,3}$. We remark that

$$\left|\overline{\rho_{j-1/2}^{k+1}} - \rho_{j-1/2}^k\right| \leqslant \frac{2\delta t^k}{\delta x_{j-1/2}} \Big(C_{\partial_\rho \mathscr{F}^{\pm}} |\rho_{j+1/2}^k - \rho_{j-1/2}^k| + \rho_{j-1/2}^k |V_j^{k+1} - V_j^k| \Big).$$

Hence, using the same bound as for $T_{10,1}$ yields

$$|T_{10,3}| \leqslant C_{\bar{\Phi}'} |\partial_x \varphi|_{L^{\infty}} \left(\left(C_{\partial_\rho \mathscr{F}^{\pm}} + 2||V_{\delta}||_{\infty,\mathcal{T}^{\star}} \right) ||\rho_{\delta}||_{1;\mathrm{BV},\mathcal{T}} \delta x + T^{\star} \right) \lesssim \delta t^{1/2} + \delta x.$$

• Pressure terms. It remains to get the limit of $T_8 + T_{11} = -T_{12,0} - T_{12,1} - T_{12,2} - T_{12,3}$

with

$$T_{12,0} = \int_0^T \int_0^L \pi_\delta V_\delta \eth_x^\star \varphi_{\mathcal{T}^\star} \, \mathrm{d}x \, \mathrm{d}t, \qquad T_{12,1} = \sum_{k=0}^{N-1} \sum_{j=2}^J D_j^k (\varphi_{j+1/2}^{k+1} - \varphi_j^{k+1}),$$

$$T_{12,2} = \frac{1}{2} \sum_{k=0}^{N-1} \delta t^k \sum_{j=1}^J \pi_{j+1/2}^{k+1/2} (V_j^{k+1} - V_j^k + V_{j+1}^{k+1} - V_{j+1}^k) (\varphi_{j+1}^{k+1} - \varphi_j^{k+1}),$$

$$T_{12,3} = -\frac{1}{2} \sum_{k=0}^{N-1} \delta t^k \sum_{j=1}^J \pi_{j+1/2}^{k+1/2} (V_{j+1}^{k+1} - V_j^{k+1}) (2\varphi_{j+1/2}^{k+1} - \varphi_{j+1}^{k+1} - \varphi_j^{k+1}).$$

We bound $T_{12,1}$ and $T_{12,3}$ as follows

$$T_{12,1} \leqslant \frac{|\partial_x \varphi|_{L^{\infty}}}{2} \bigg(\sum_{k=0}^{N-1} \sum_{j=2}^{J} D_j^k \bigg) \delta x \lesssim \delta x, \quad T_{12,3} \leqslant \frac{C_{\pi}}{4} |\partial_{xx} \varphi|_{L^{\infty}} ||V_{\delta}||_{1;\mathrm{BV},\mathcal{T}^{\star}} \big(\delta x\big)^2 \lesssim \big(\delta x\big)^2.$$

Note that $|\pi_{j+1/2}^{k+1/2}| \leq (C_{\Phi'} + C_{\Phi,\rho})\rho_{j+1/2}^k$. It readily leads to

$$|T_{12,2}| \leqslant (C_{\Phi'} + C_{\Phi,\rho}) |\partial_x \varphi|_{L^{\infty}} T^{\star} \lesssim \delta t^{\frac{1}{2}}.$$

With (15), we pass to the limit in T_6 , $T_{7,1}$, T_9 , $T_{10,0}$ and $T_{12,0}$. We arrive at (3) since the other terms tend to 0.

References

- [1] F. Berthelin, T. Goudon, and S. Minjeaud. Kinetic schemes on staggered grids for barotropic euler models: entropy-stability analysis. 2014. in revision.
- [2] R. Herbin, J.-C. Latché, and T. T. Nguyen. Explicit staggered schemes for the compressible Euler equations. *ESAIM:Proc.*, 40:83–102, 2013.