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Introduction

The model. This work is concerned with the consistency study of a (staggered kinetic) Finite Volume (FV) scheme for barotropic Euler models

∂ t ρ + ∂ x (ρV ) = 0, ( 1 
)
∂ t (ρV ) + ∂ x (ρV 2 + p(ρ)) = 0. (2) 
The unknowns are the density ρ and the velocity V . The pressure ρ → p(ρ) is assumed to be C 2 [0, ∞) with p(ρ) > 0, p ′ (ρ) > 0, p ′′ (ρ) 0, ∀ρ > 0. Thus, the sound speed c : ρ → p ′ (ρ) is well defined and is an increasing function.

We consider the problem ( 1)-( 2) on the bounded domain (0, L) × [0, T ] with the boundary conditions V (0, t) = 0 = V (L, t), ∀t > 0 and the initial conditions ρ(x, 0) = ρ 0 (x), V (x, 0) = V 0 (x), ∀x ∈ (0, L) with ρ 0 , V 0 ∈ L ∞ (0, L).

Let Φ : ρ > 0 → Φ(ρ) such that ρΦ ′ (ρ) -Φ(ρ) = p(ρ), ∀ρ > 0. The quantity S = 1 2 ρ|V | 2 +Φ(ρ) is an entropy of the system: entropy solutions to (1)-( 2) are required to satisfy: for any ϕ ∈ C ∞ c (0, L) × [0, T ) such that ϕ 0,

- T 0 L 0 S∂ t ϕ + S + p(ρ) V ∂ x ϕ (x, t) dx dt - L 0 S 0 (x)ϕ(x, 0) dx 0. ( 3 
)
The meshes. We consider a set of J + 1 points 0 = x 1 < x 2 < ... < x J < x J+1 = L. The x j are the edges of the so-called primal mesh T . We set δx j+1/2 =x j+1 -x j . The centers of the primal cells, x j+1/2 = (x j + x j+1 )/2 for j ∈ {1, .., J}, realize the dual mesh T ⋆ . We set δx j = (δx j-1/2 + δx j+1/2 )/2 for j ∈ {2, .., J -1} and δx = size(T ) = max j δx j+1/2 . The adaptive time step is δt k and we set δt = max k δt k .

The scheme. We analyze the scheme introduced in [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic euler models: entropy-stability analysis[END_REF]. It works on staggered grids: the densities, ρ j+1/2 , j ∈ {1, .., J}, are evaluated at centers whereas the velocities, V j , j ∈ {1, .., J + 1}, are evaluated at edges. We set, for j ∈ {1, .., J} and i ∈ {2, .., J}

ρ 0 j+1/2 = 1 δx j+1/2 x j+1 x j ρ 0 (x) dx, V 0 i = 1 δx i x i+1/2 x i-1/2 V 0 (x) dx. ( 4 
)
The density is first updated with a FV approximation on the primal mesh

δx j+1/2 ρ k+1 j+1/2 -ρ k j+1/2 + δt k F k j+1 -F k j = 0, ∀j ∈ {1, .., J}. (5)
Then, the velocity is updated with a FV approximation on the dual mesh:

δx j ρ k+1 j V k+1 j -ρ k j V k j + δt k G k j+1/2 -G k j-1/2 + π k+1/2 j+1/2 -π k+1/2 j-1/2 = 0, (6) 
for j ∈ {2, .., J}, while V k+1 1 = V k+1 J+1 = 0. The density on the edges ρ k j is defined by

2δx j ρ k j = δx j+1/2 ρ k j+1/2 + δx j-1/2 ρ k j-1/2 , ∀j ∈ {2, .., J}.
The definition of the fluxes relies on the kinetic framework. We refer the reader to [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic euler models: entropy-stability analysis[END_REF] for details. Let us introduce the two following functions F + and F -

F ± (ρ, V ) = ρ 2c(ρ) ξ≷0 ξ 1 I |ξ-V | c(ρ) d ξ.
We adopt the following formulas for mass fluxes:

F k 1 = F k J+1 = 0, F k j = F + (ρ k j-1/2 , V k j ) + F -(ρ k j+1/2 , V k j ), ∀j ∈ {2, .., J}, (7) 
and, for momentum fluxes:

G k 3/2 = V k 2 2 F -(ρ k 5/2 , V k 2 ), G k J+1/2 = V k J 2 F + (ρ k J-1/2 , V k J ), G k j+1/2 = V k j 2 F + (ρ k j-1/2 , V k j ) + F + (ρ k j+1/2 , V k j+1 ) + V k j+1 2 F -(ρ k j+1/2 , V k j ) + F -(ρ k j+3/2 , V k j+1 ) , ∀j ∈ {2, .., J -1}. ( 8 
)
The discrete pressure gradient combines a space centered scheme and time semi implicit discretization, namely it uses

π k+1/2 j+1/2 = ρ k j+1/2 Φ ′ (ρ k+1 j+1/2 ) -Φ(ρ k j+1/2 ).
Properties of the scheme. The analysis is driven by the shapes of the functions F ± , see [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic euler models: entropy-stability analysis[END_REF]Lemma 3.2]. Here, we shall use the following properties

(i) Smoothness: (ρ, V ) ∈ (0, ∞) × R → F ± (ρ, V ) are of class C 1 , (ii) Consistency: F + (ρ, V ) + F -(ρ, V ) = ρV, ∀V ∈ R, ∀ρ 0. ( 9 
)
Under CFL conditions, see [START_REF] Berthelin | Kinetic schemes on staggered grids for barotropic euler models: entropy-stability analysis[END_REF], the scheme preserves the positivity of the discrete density and discrete kinetic and internal energies evolution equations hold.

Lemma 1.1 Let N ∈ N. Assume min i ρ 0 i+1/2 > 0. For all k ∈ {0, .., N -1}, there exists V k > 0, which depends only on the state (ρ k , V k ), such that if

δt k min j δx j+1/2 V k 1, ( 10 
)
then, min i ρ k i+1/2 > 0, ∀k ∈ {0, .., N } and

0 N -1 k=0 J j=2 D k j C, with D k j = 1 4 δx j ρ k+1 j V k+1 j -V k j 2 , ( 11 
)
δx j+1/2 δt k e k+1 j+1/2 -e k j+1/2 + G k j+1 -G k j + π k+1/2 j+1/2 V k+1 j+1 -V k+1 j D k j δt k , ( 12 
)
δx j δt k E k+1 K,j -E k K,j + Γ k j+1/2 -Γ k j-1/2 + π k+1/2 j+1/2 -π k+1/2 j-1/2 V k+1 j + D k j δt k 0, ( 13 
)
where

E k K,j = 1 2 ρ k j V k j
2 and e k j+1/2 = Φ(ρ k j+1/2 ) are the kinetic and internal energies. The fluxes are defined by

G k 1 = G k J+1 = 0 and G k j = Φ(ρ k j-1/2 )V k+1 j - δx j-1/2 2δt k Φ ρ k+1 j-1/2 -Φ(ρ k j-1/2 ) , ∀j ∈ {2, .., J}, Γ k j+1/2 = 1 2 V k j V k j+1 F k j + F k j+1 2 + 1 2 (V k j -V k j+1 ) 2 F k,|•| j + F k,|•| j+1 2 , ∀j ∈ {1, .., J}, ρ k+1 j-1/2 = ρ k j-1/2 - 2δt k δx j-1/2 F -(ρ k j+1/2 , V k j )-F -(ρ k j-1/2 , V k j )-ρ k j-1/2 V k+1 j -V k j ,
and

F k,|•| 1 = F k,|•| J+1 = 0, F k,|•| j = F + (ρ k j-1/2 , V k j ) -F -(ρ k j+1/2 , V k j ), ∀j ∈ {2, .., J}. The function Φ is a C 2 extension of the function Φ (see [1, Section 4.3]).
Results. As in [START_REF] Herbin | Explicit staggered schemes for the compressible Euler equations[END_REF], we prove a Lax-Wendroff-like statement: the limit of a converging (and uniformly bounded) sequence of stepwise constant functions defined from the scheme is a weak entropic-solution of the system of conservation laws.

Consistency analysis

Notation. Assuming that N -1 k=0 δt k = T , we define the reconstructions (i = 0, 1)

ρ (i) δ = N -1 k=0 J j=1 ρ k+i j+1/2 χ k+1/2 j+1/2 , π δ = N -1 k=0 J j=1 π k+1/2 j+1/2 χ k+1/2 j+1/2 , V δ = N -1 k=0 J j=2 V k j χ k+1/2 j , where χ k+1/2 j = χ [x j-1/2 , x j+1/2 [×[t k , t k+1 [ , χ k+1/2 j+1/2 = χ [x j , x j+1 [×[t k , t k+1 [ . We also introduce the following discrete norms ||ρ δ || ∞,T = max 0 k N max 1 j J |ρ k j+1/2 |, ||V δ || ∞,T ⋆ = max 0 k N max 2 j J |V k j |, ||ρ δ || 1;BV,T = N k=0 δt k J j=2 |ρ k j+1/2 -ρ k j-1/2 |, ||V δ || 1;BV,T ⋆ = N k=0 δt k J j=1 |V k j+1 -V k j |, ||ρ δ || BV;1,T = J j=1 δx j+1/2 N -1 k=0 |ρ k+1 j+1/2 -ρ k j+1/2 |. For ϕ ∈ C ∞ c (0, L) × [0, T ) , we set ϕ k j+1/2 = ϕ(x j+1/2 , t k ) and ϕ k j = ϕ(x j , t k ).
The interpolate ϕ T of ϕ on the primal mesh and its discrete derivatives are defined by

ϕ T (•, 0) = J j=1 ϕ 0 j+1/2 χ 1/2 j+1/2 (•, 0), ϕ T (•, t) = N -1 k=0 J j=1 ϕ k+1 i+1/2 χ k+1/2 j+1/2 (•, t), ∀t > 0, ð t ϕ T = N -1 k=0 J j=1 ϕ k+1 j+1/2 -ϕ k j+1/2 δt k χ k+1/2 j+1/2 , ð x ϕ T = N -1 k=0 J j=2 ϕ k+1 j+1/2 -ϕ k+1 j-1/2 δx j χ k+1/2 j .
Similarly, the interpolate ϕ T ⋆ of ϕ on T ⋆ and its discrete derivatives are given by

ϕ T ⋆ (•, 0) = J j=2 ϕ 0 j χ 1/2 j (•, 0), ϕ T ⋆ (•, t) = N -1 k=0 J j=2 ϕ k+1 j χ k+1/2 j (•, t), ∀t > 0, ð ⋆ t ϕ T ⋆ = N -1 k=0 J j=2 ϕ k+1 j -ϕ k j δt k χ k+1/2 j , ð ⋆ x ϕ T ⋆ = N -1 k=0 J j=1 ϕ k+1 j+1 -ϕ k+1 j δx j+1/2 χ k+1/2 j+1/2 .
Assumptions. Let T m m 1 be a sequence of meshes s. t. size(T m ) → 0 and a familly of time steps δt k m k 0, m 1 verifying δt m → 0 and (10). Assume that there exists

N m ∈ N s. t. Nm-1 k=0 δt k m = T . The scheme defines (ρ (0) δm , V δm ) m 1 . Suppose that ||ρ (0) δm || ∞,T + ||V δm || ∞,T ⋆ C ∞ , ||ρ (0) δm || 1;BV,T + ||V δm || 1;BV,T ⋆ C BV (14) 
holds and, in the case ρ

→ p ′ (ρ) ρ ∈ L 1 loc (0, ∞), || ρ (0) δm -1 || ∞,T C. We assume that there exists (ρ, V ) ∈ L ∞ ((0, T ) × (0, L)) 2 such that ρ (0) δm , V δm -→ (ρ, V ) in L r ((0, T ) × (0, L)) 2 , 1 r < ∞. ( 15 
)
Main results. The uniform bounds imply that there exists constants such that sup 

0 ρ,|V | C∞ |A (ρ, V )| C A , with A = F ± , ∂ ρ F ± and ∂ V F ± , sup 0 ρ C∞+4(C 2 ∞ +C F ± ) |B(ρ)| C B , with B = Φ, Φ ′ ,
δt k C ∂ρF ± |ρ k j+1/2 -ρ k j-1/2 | + |ρ k j+3/2 -ρ k j+1/2 | + 2C ∂ V F ± |V k j+1 -V k j | . Consequently, ρ (1) 
δm → ρ and π δm → p(ρ) in L r ((0, T ) × (0, L)); with (4) and since ρ 0 , V 0 ∈ L ∞ (0, L), we get ρ

(0) δm (•, 0) → ρ 0 and V δm (•, 0) → V 0 in L r ((0, L)), 1 r < ∞.
Finally, in the sequel, when a function ϕ ∈ C ∞ c (0, L) × [0, T ) is given, we assume that δt m and δx m are sufficiently small so that ϕ(x,

•) ≡ 0, ∀x ∈ [0, x 3/2 ] ∪ [x J+1/2 , L] and ϕ(•, t) ≡ 0, ∀t ∈ [t N -1 , t N ]. Moreover, since ϕ is smooth, ϕ Tm , ϕ T ⋆ m → ϕ, ð t ϕ Tm , ð ⋆ t ϕ T ⋆ m → ∂ t ϕ, and ð x ϕ Tm , ð ⋆ x ϕ T ⋆ m → ∂ x ϕ, in L r ((0, T ) × (0, L)), 1 r ∞. Theorem 2.1 Assume (14) and (15). Then, (ρ, V ) satisfies (1)-(2) in the distribution sense in C ∞ c (0, L) × [0, T ) ′ , that is - T 0 L 0 ρ∂ t ϕ + ρ V ∂ x ϕ (x, t) dx dt - L 0 ρ 0 (x)ϕ(x, 0) dx = 0, ( 16 
)
- T 0 L 0 ρ V ∂ t ϕ + ρ V 2 + p(ρ) ∂ x ϕ (x, t) dx dt - L 0 ρ 0 (x)V 0 (x)ϕ(x, 0) dx = 0. ( 17 
)
Moreover, (ρ, V ) satisfies the entropy inequality (3).

Proof. Let ϕ ∈ C ∞ c (0, L)×[0, T ) .
For the sake of simplicity, the index m is dropped.

Mass balance. We multiply (5) by ϕ k+1 j+1/2 and sum the results for 0 k N -1 and 1 j J to obtain

N -1 k=0 J j=1 δx j+1/2 (ρ k+1 j+1/2 -ρ k j+1/2 )ϕ k+1 j+1/2 :=T 1 + N -1 k=0 δt k J j=1 F k j+1 -F k j ϕ k+1 j+1/2 :=T 2 = 0.
For T 1 , since ϕ N j+1/2 = 0, a discrete integration by part w.r.t. time yields

T 1 = - N -1 k=0 J j=1 δx j+1/2 ρ k j+1/2 ϕ k+1 j+1/2 -ϕ k j+1/2 - J j=1 δx j+1/2 ρ 0 j+1/2 ϕ 0 j+1/2 .
Noting that

t k+1 t k x j+1 x j ρ (0) δ ð t ϕ T dx dt = δx j+1/2 ρ k j+1/2 ϕ k+1 j+1/2 -ϕ k j+1/2
for k ∈ {0, .., N -1}, j ∈ {1, .., J}, we get

T 1 = - T 0 L 0 ρ (0) δ ð t ϕ T dx dt - L 0 ρ (0) δ (x, 0)ϕ T (x, 0) dx.
For T 2 , by integrating by part w.r.t. space, we readily obtain

T 2 = - N -1 k=0 δt k J j=2 F k j ϕ k+1 j+1/2 -ϕ k+1 j-1/2 .
Bearing in mind that 2δx j = δx j-1/2 + δx j+1/2 , we then combine the two following expressions of mass fluxes (see ( 9)-(ii))

F k j = ρ k j±1/2 V k j ∓ R k,± j with R k,± j = F ± (ρ k j+1/2 , V k j ) -F ± (ρ k j-1/2 , V k j ) to write F k j = δx j-1/2 2δx j ρ k j-1/2 V k j + δx j+1/2 2δx j ρ k j+1/2 V k j + δx j-1/2 2δx j R k,- j - δx j+1/2 2δx j R k,+ j .
This expression of the mass fluxes leads to T 2 = -T 2,1 -T 2,2 with

T 2,1 = N -1 k=0 δt k J j=2 1 2 δx j-1/2 ρ k j-1/2 + δx j+1/2 ρ k j+1/2 V k j ϕ k+1 j+1/2 -ϕ k+1 j-1/2 δx j , T 2,2 = N -1 k=0 δt k J j=2 1 2 δx j-1/2 R k,- j -δx j+1/2 R k,+ j V k j ϕ k+1 j+1/2 -ϕ k+1 j-1/2 δx j .
We now observe that, for k ∈ {0, .., N -1}, j ∈ {2, .., J},

t k+1 t k x j x j-1/2 ρ (0) δ V δ ð x ϕ T dx dt = δt k δx j-1/2 2 ρ k j-1/2 V k j ϕ k+1 j+1/2 -ϕ k+1 j-1/2
δx j , and

t k+1 t k x j+1/2 x j ρ (0) δ V δ ð x ϕ T dx dt = δt k δx j+1/2 2 ρ k j+1/2 V k j ϕ k+1 j+1/2 -ϕ k+1 j-1/2 δx j .
Summing these equalities yields

T 2,1 = T 0 x J+1/2 x 3/2 ρ (0) δ V δ ð x ϕ T dx dt = T 0 L 0 ρ (0) δ V δ ð x ϕ T dx dt, since ð x ϕ T (x, •) ≡ 0 for x ∈ [0, x 3/2 ] ∪ [x J+1/2 , L].
With (15), we pass to the limit in T 1 and T 2,1 . We prove that (ρ, V ) satisfies the mass conservation equation ( 16) by showing that T 2,2 → 0 since

|T 2,2 | C ∂ρF ± |∂ x ϕ| L ∞ ||V δ || ∞,T ⋆ ||ρ δ || 1;BV,T δx δx.
Momentum balance. We multiply (6) by ϕ k+1 j and sum for 0 k N -1 and 2 j J to obtain T 3 +T 4 +T 5 = 0 with

T 3 = N -1 k=0 J j=2 δx j ρ k+1 j V k+1 j -ρ k j V k j ϕ k+1 j , T 4 = N -1 k=0 δt k J j=2 G k j+1/2 -G k j-1/2 ϕ k+1 j , T 5 = N -1 k=0 δt k J j=2 π k+1/2 j+1/2 -π k+1/2 j-1/2 ϕ k+1 j .
For T 3 , integrating by part w.r.t time yields

T 3 = - N -1 k=0 J j=2 δx j ρ k j V k j ϕ k+1 j -ϕ k j - J j=2 δx j ρ 0 j V 0 j ϕ 0 j .
6

Next, we observe that

t k+1 t k x j+1/2 x j-1/2 ρ (0) δ V δ ð ⋆ t ϕ T ⋆ dx dt = V k j ϕ k+1 j -ϕ k j δt k t k+1 t k x j+1/2 x j-1/2 ρ (0) δ dx dt = δx j ρ k j V k j ϕ k+1 j -ϕ k j .
Summing these equalities for k ∈ {0, .., N -1}, j ∈ {2, .., J} yields

T 3 = - T 0 x J+1/2 x 3/2 ρ (0) δ V δ ð ⋆ t ϕ T ⋆ dx dt - x J+1/2 x 3/2 ρ (0) δ (x, 0)V δ (x, 0)ϕ T ⋆ (x, 0) dx, = - T 0 L 0 ρ (0) δ V δ ð ⋆ t ϕ T ⋆ dx dt - L 0 ρ (0) δ (x, 0)V δ (x, 0)ϕ T ⋆ (x, 0) dx.
For T 4 and T 5 , we first integrate by part w.r.t space and obtain

T 4 = - N -1 k=0 δt k J j=1 G k j+1/2 ϕ k+1 j+1 -ϕ k+1 j , T 5 = - N -1 k=0 δt k J j=1 π k+1/2 j+1/2 ϕ k+1 j+1 -ϕ k+1 j .
We then use the following expression of the momentum flux

                 G k j+1/2 = 1 2 ρ k j+1/2 V k j 2 + V k j+1 2 + Q k j+1/2 , Q k j+1/2 = - 1 2 V k j R k,+ j + 1 2 V k j+1 R k,- j+1 - 1 2 V k j+1 -V k j F + (ρ k j+1/2 , V k j+1 ) -F -(ρ k j+1/2 , V k j ) . to write T 4 = -T 4,1 -T 4,2 with T 4,1 = N -1 k=0 δt k J j=1 1 2 ρ k j+1/2 V k j 2 + V k j+1 2 ϕ k+1 j+1 -ϕ k+1 j T 4,2 = N -1 k=0 δt k J j=1 Q k j+1/2 ϕ k+1 j+1 -ϕ k+1 j .
Next, we observe that

t k+1 t k x j+1 x j ρ (0) δ V δ 2 ð ⋆ x ϕ T ⋆ dx dt = δt k ρ k j+1/2 V k j 2 + V k j+1 2 2 ϕ k+1 j+1 -ϕ k+1 j
and, consequently, summing for k ∈ {0, .., N -1}, j ∈ {1, .., J},

T 4,1 = T 0 L 0 ρ (0) δ V δ 2 ð ⋆ x ϕ T ⋆ dx dt.
Similarly, for T 5 , we get

T 5 = - T 0 L 0 π δ ð ⋆ x ϕ T ⋆ dx dt.
With (15), we pass to the limit in T 3 , T 4,1 and T 5 . We obtain that (ρ, V) satisfies the momentum balance equation (17) by showing that T 4,2 → 0. Indeed, we have

|T 4,2 | ||V δ || ∞,T ⋆ |∂ x ϕ| L ∞ C ∂ρF ± ||ρ δ || 1;BV,T + C F ± ||V δ || 1;BV,T ⋆ δx δx.
Entropy inequality. We now assume that ϕ 0.

• Kinetic energy. We multiply (13) by δt k ϕ k+1 j and sum for 0 k N -1 and 2 j J. We obtain to get T 6 +T 7 + T 8 0 with

T 6 = N -1 k=0 J j=2 δx j E k+1 K,j -E k K,j ϕ k+1 j , T 7 = N -1 k=0 δt k J j=2 Γ k j+1/2 -Γ k j-1/2 ϕ k+1 j , T 8 = N -1 k=0 δt k J j=2 π k+1/2 j+1/2 -π k+1/2 j-1/2 V k+1 j ϕ k+1 j + N -1 k=0 J j=2 D k j ϕ k+1 j .
Integrating by part w.r.t. time yields

T 6 = - N -1 k=0 J j=2 δx j E k K,j ϕ k+1 j -ϕ k j - J j=1 δx j E 0 K,j ϕ 0 j = - T 0 L 0 1 2 ρ (0) δ V δ 2 ð ⋆ t ϕ T ⋆ dx dt - L 0 1 2 ρ (0) δ (x, 0) V δ (x, 0) 2 ϕ T ⋆ (x, 0) dx.
For T 7 , we write

Γ k j+1/2 = 1 4 ρ k j+1/2 V k j 3 + V k j+1 3 + 1 4 S k j+1/2
where

S k j+1/2 = V k j V k j+1 R k,- j+1 -R k,+ j + (V k j+1 -V k j ) 2 F k,|•| j + F k,|•| j+1 -ρ k j+1/2 (V k j + V k j+1
) . Integration by part w.r.t space leads to T 7 = -T 7,1 -T 7,2 with

T 7,1 = T 0 L 0 1 2 ρ (0) δ V δ 3 ð ⋆ x ϕ T ⋆ dx dt, T 7,2 = 1 4 N -1 k=0 δt k J j=1 S k j+1/2 ϕ k+1 j+1 -ϕ k+1 j .
Finally |T 7,2 | δx since it is dominated by

δx|∂ x ϕ| L ∞ ||V δ || ∞,T ⋆ C ∂ρF ± 2 ||V δ || ∞,T ⋆ ||ρ δ || 1;BV,T + 2C F ± + ||V δ || ∞,T ⋆ ||ρ δ || ∞,T ||V δ || 1;BV,T ⋆ .
• Internal energy. Multiply (12) by δt k ϕ k+1 j+1/2 and sum for 0 k N -1 and 1 j J to get T 9 + T 10 + T 11 0 with

T 9 = N -1 k=0 J j=1 δx j+1/2 e k+1 j+1/2 -e k j+1/2 ϕ k+1 j+1/2 , T 10 = N -1 k=0 δt k J j=1 G k j+1 -G k j ϕ k+1 j+1/2 , T 11 = N -1 k=0 δt k J j=1 π k+1/2 j+1/2 V k+1 j+1 -V k+1 j ϕ k+1 j+1/2 - N -1 k=0 J j=1 D k j ϕ k+1 j+1/2 .
Owing to integration by part w.r.t. time, we get

T 9 = - N -1 k=0 J j=1 δx j+1/2 Φ(ρ k j+1/2 ) ϕ k+1 j+1/2 -ϕ k j+1/2 - J j=1 δx j+1/2 Φ(ρ 0 j+1/2 )ϕ 0 j+1/2 , = - T 0 L 0 Φ ρ (0) δ ð t ϕ T dx dt - L 0 Φ ρ (0) δ (x, 0) ϕ T (x, 0) dx.
For T 10 , we rewrite the flux as follows

               G k j = 1 2δx j δx j-1/2 Φ(ρ k j-1/2 ) + δx j+1/2 Φ(ρ k j+1/2 ) V k j + U k 1,j + U k 2,j + U k 3,j , U k 1,j = e k j-1/2 V k+1 j -V k j , U k 2,j = - δx j+1/2 2δx j e k j+1/2 -e k j-1/2 V k j , U k 3,j = - δx j-1/2 2δt k Φ ρ k+1 j-1/2 -Φ(ρ k j-1/2 ) . It leads to T 10 = -T 10,0 -T 10,1 -T 10,2 -T 10,3 with          T 10,0 = T 0 L 0 Φ ρ (0) δ V δ ð x ϕ T dx dt, T 10,i = N -1 k=0 δt k J j=2 U k i,j ϕ k+1 j+1/2 -ϕ k+1 j-1/2 , i = 1, 2, 3.
The term T 10,1 can be bounded as follows

|T 10,1 | C Φ,ρ ∂ x ϕ N -1 k=0 δt k J j=2 δx j ρ k j-1/2 V k+1 j -V k j . ( 18 
)
Since a min(a, b)+|b -a|, we get

ρ k j-1/2 ρ k j + ρ k j+1/2 -ρ k j-1/2 . This leads to |T 10,1 | C Φ,ρ ∂ x ϕ L ∞ N -1 k=0 δt k J j=2 δx j ρ k j V k+1 j -V k j :=T ⋆ +2||V δ || ∞,T ⋆ ||ρ δ || 1;BV,T δx .
Writing ρ k j = ρ k+1 j -(ρ k+1 j -ρ k j ) and using the Cauchy-Schwarz inequality yields We now turn to T 10,3 . We remark that

T ⋆ 2 T L||ρ δ || ∞,T 1 
ρ k+1 j-1/2 -ρ k j-1/2 2δt k δx j-1/2 C ∂ρF ± ρ k j+1/2 -ρ k j-1/2 + ρ k j-1/2 V k+1 j -V k j .
Hence, using the same bound as for T 10,1 yields We bound T 12,1 and T 12,3 as follows . With (15), we pass to the limit in T 6 , T 7,1 , T 9 , T 10,0 and T 12,0 . We arrive at (3) since the other terms tend to 0.

T 10,3 C Φ′ |∂ x ϕ| L ∞ C ∂ρF ± + 2||V δ || ∞,
T 12,1 |∂ x ϕ| L ∞ 2 N -1 k=0 J j=2 D k j δx

/ 2 δt 2 +/ 2 . 2 +

 2222 2||V δ || ∞,T ⋆ ||ρ δ || BV;1,T δt δt 1It finally leads to |T 10,1 | δt 1 δx. The term T 10,2 can be bounded as follows |T 10,2 | C Φ ′ ||V δ || ∞,T ⋆ |∂ x ϕ| L ∞ ||ρ δ || 1;BV,T δx δx.

•

  T ⋆ ||ρ δ || 1;BV,T δx + T ⋆ δt 1/2 + δx. Pressure terms. It remains to get the limit of T 8 + T 11 = -T 12,0 -T 12,1 -T 12,2 -T 12

  and Φ′ .

	Note also that we have Φ ρ k j+1/2	C Φ,ρ ρ k j+1/2 , ∀j, k. Furthermore, we show that
	||ρ	(0) δm || BV;1,T	C by using (5) which allows to dominate δx j+1/2 |ρ k+1 j+1/2 -ρ k j+1/2 | by
				4

  δx, T 12,3C π 4 |∂ xx ϕ| L ∞ ||V δ || 1;BV,T ⋆ δx C Φ ′ + C Φ,ρ ρ k j+1/2 . It readily leads to T 12,2 C Φ ′ + C Φ,ρ |∂ x ϕ| L ∞ T ⋆ δt

		2	δx	2 .
	Note that π	k+1/2 j+1/2	
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