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Abstract

This paper considers the construction of optimal designs due to
Hoel and Levine and Guest. It focuses on the relation between the
theory of the uniform approximation of functions and the optimality
of the designs. Some application to accelerated tests is also presented.
The multivariate case is also handled in some special situations.
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1 Introduction

1.1 Definition of the model and of the estimators

We assume that we are given an interval where the explanatory variable x
takes its value; for simplicity assume that x belongs to [−1, 1] . On this inter-
val the response Y can be observed. An additive noise causes Y to be only
partly related to the input x. This noise is assumed to be independent upon
the value of x, which is commonly referred to as a homoscedastic hypothesis
on the model. For a given input x the measure Y (x) can be written as

Y (x) = f(x) + ε
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where f is some unknown function and the generic real valued random vari-
able ε has some unknown distribution; however it is assumed that the two
first moment of ε are finite. The function f might be defined on a larger
interval than [−1, 1] . All possible measurements of f can only be achieved
on [−1, 1] . It may occur that we are interested in some estimation of f(x)
for some x where f is not measured; when x belongs to [−1, 1] this is an in-
terpolation problem. At times we may be interested in some approximation
of f(x) for x outside [−1, 1]; this is an extrapolation problem.

We will discuss optimal designs in those contexts. Defining a design
results in a two fold description. Firstly it is based on a set of measurements
points, say x0, .., xg−1 in [−1, 1] . Those are the nodes of the design. Next,
for any node xj , we define an integer nj which is the number of replicates of
the measurement performed under the condition xj . We thus inherit of the
nj measurements Y1(xj), .., Ynj

(xj). Those measurements are supposed to be
independent. Note that we do not assume any probabilistic structure on the
xj ’s which therefore will not be considered as sampled under any device. The
xj ’s are determined by the experimenter and their choice will follow from a
strictly deterministic procedure.

Obviously this simple model will allow for a simple estimate of f(xj) for
all j, assuming without loss of generality that the error ε has expectation 0.

The design is therefore defined by the family of the nodes (their number
g is fixed by the experimenter), and the so called frequencies nj’s, 0 ≤ j ≤
g − 1..

Obviously the total number of experiments is limited, for reasons which
have to do with the context of the study. Those reasons might be related
to the cost of each individual experiment, or by other considerations. For
example in phase 1 clinical trials it is usually assumed that only very few
patients can be eligible for the trial. Call n this number of trials to be
performed. The resulting constraint on the nj ’s is therefore

n0 + ..+ ng−1 = n.

Let us now define formally this model.
For any i = 0, .., g − 1, xi is a node and yk(xi) is the k−th measurement

of Y (xi) when k runs in 1, .., ni. Therefore





y1 (xi) = f (xi) + ε1,i
......................

yni
(xi) = f (xi) + εni,i
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where ni > 1 and ni ∈ N, together with n :=
∑g−1

i=0 ni where n is fixed.
Obviously the r.v’s εj,i, 1 ≤ j ≤ ni , i = 0, ..., g − 1, are not observed. They
are i.i.d. copies of a generic r.v. ε. Furthermore E (ε) = 0, var (ε) = σ2.

We assume that f is a polynomial with known degree g− 1 . Therefore it
is completely determined if known the values of f in g distinct points. Note
that the knowledge of g is an important and strong assumption. Denote
further

I := {x0 < ... < xg−1} ⊂ [−1, 1]

the family of nodes.
The aim of this chapter is to discuss the operational choice of the design;

we will thus propose some choices for the nodes and the so-called frequencies
nj/n which, all together , define the design. This will be achieved discussing
some notion of optimality.

When no random effect is present, existence and uniqueness of the solu-
tion of the linear system with g equations and g variables θ := (θ0, ..., θg−1) ,

y (xi) =

g−1∑

j=0

θjx
j
i , (x0, ..., xg−1) ∈ [−1, 1]g , 0 ≤ i ≤ g − 1

allow to identify the function f at any x in R. Changing the canonical basis
in Pg−1 (X) into the family of the elementary Lagrange polynomials

li (x) :=
g−1∏

j=0,j 6=i

x− xj

xi − xj
(1)

yields

f(x) =

g−1∑

i=0

f(xi)li(x).

In the present random setting, f(xi) is unknown. This suggests to con-

sider the estimator f̂ of f defined by

Ln(f̂)(x) :=

g−1∑

i=0

f̂ (xi) li(x),

where f̂ (xi) denotes some estimate of f on a generic node xi.
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Turn to the estimate of f(xi) namely the simplest one, defined by

f̂ (xi) := Y (xi) :=
1

ni

ni∑

j=1

Yj (xi) ,

which solves

f̂ (xi) = argmin
µ∈R

ni∑

j=1

(Yj (xi)− µ)2 ,

provides the optimal linear unbiased estimator of f (xi) . It follows that

f̂ (x) := Ln(f̂)(x) is unbiased since for all x ∈ R,

E
(
Ln(f̂)(x)

)
:=

g−1∑

i=0

E
(
f̂ (xi)

)
li(x) = Ln(f)(x) = f (x) .

Since Ln(f̂)(x) is linear with respect to the parameters f (xi) , i = 0, ..., g−
1, using Gauss Markov Theorem, Ln(f̂)(x) is optimal, i.e. has minimal vari-

ance. The variance of the estimator Ln(f̂)(x) is

var
(
Ln(f̂)(x)

)
= var

(
g−1∑

i=0

var
(
f̂ (xi)

)
(li(x))

2

)
= σ2

g−1∑

i=0

(li(x))
2

ni

, (2)

which depends explicitly on the frequency ni of the observations of f on the
nodes xi’s.

We now proceed to the formal definition of a design. The set

{
((n0, ..., ng−1) , (x0, ..., xg−1)) ∈ Ng × [−1, 1]g−1 : n :=

g−1∑

i=1

ni, n fixed

}

determines a discrete probability measure ξ with support I, a finite subset
in [−1, 1] , by

ξ (xi) :=
ni

n
, i = 0, ..., g − 1.

Turning to (2) we observe that the accuracy of the design depends on

the point x where the variance of Ln(f̂)(x) is calculated.
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Since all estimators of the form Ln(f̂)(x) are unbiased, their accuracy
depend only on their variance, which in turn depends both on x and on the
measure ξ. Optimizing on ξ for a given x turns to an optimal choice for I
and for the family of the ni’s, under the constraint

n0 + ..+ ng−1 = n.

Such designs ξx are called Hoel-Levine extrapolation designs when x lies
outside [−1, 1]. When x belongs to [−1, 1] then clearly the optimal design for
the criterion of the variance of the estimator of f(x) results in performing all
the n measurements at point x. The non trivial case is when the optimality
is defined through a control of the uniform variance of the estimator of f(x),
namely when ξ should minimize

sup
x∈[−1,1]

varξLn(f̂)(x).

Those designs ξ are called interpolation designs, or Guest or Legendre de-
signs.

The notation to be kept is as follows. The set of all probability measures
on the interval [−1, 1] supported by g distinct points in the interval [−1, 1]
is denoted M∗

[−1,1], which therefore is the class of all designs.
The purpose of this paper is to present a unified view on this classical

field which links the theory of the uniform approximation of functions and the
statistical theory of experimental designs, unifying notation and concepts. Its
content comes mostly from the seminal works by Hoel and Levine [8], Guest
[6]. Some other important references in the context is Kiefer and Wolfowicz
[11] and Studden [16].

1.2 Some facts from the theory of the approximation

of functions

We briefly quote some basic facts from classical analysis, to be used exten-
sively. For fixed n let Pn denote the class of all polynomials with degree
less or equal n defined on [−1, 1] and let Pn(x) := a0 + ... + anx

n. Some
coordinates of the vector of coefficients (a0, ..., an) can take value 0.

For a continuous function f defined on [−1, 1] denote

e := f − Pn
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which is a continuous function on [−1, 1] , as is |e| .
Applying Weierstrass Theorem it follows that |e| attains its maximal value

in [−1, 1], for at least one point x. We denote

µ = µ (a0, a1, ..., an) := max
x∈[−1,1]

|e (x)| ≥ 0

which yields to define

α := inf
(a0,a1,...,an)

µ (a0, a1, ..., an) , (3)

the minimum of the uniform error committed substituting f by a polynomial
in Pn . This lower bound exists.

Definition 1 A polynomial P ∗ in Pn with coefficients (a∗0, ..., a
∗
n) such that

sup
x∈[−1,1]

|f (x)− P ∗ (x)| = α,

where α is defined in (3) is called a best approximating polynomial of f with
degree n in the uniform sense.

This best approximation thus satisfies

P ∗ (x) := arg inf
Pn∈Pn

sup
x∈[−1,1]

|e (x)| .

The polynomial P ∗ may be of degree less than n. Define

e∗ (x) := f (x)− P ∗ (x) (4)

and
E (f) := max

x∈[−1,1]
|e∗ (x)| . (5)

1.2.1 Existence of the best approximation

The following result answers the question of attainment for the least uniform
error when approximating f by a polynomial in Pn.

Theorem 2 Let f be some continuous function defined on [−1, 1] . For any
integer n there exists a unique P ∗ in Pn such that ‖f − P ∗‖∞ = infPn∈Pn

‖f − Pn‖∞ .
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1.2.2 Uniqueness of the best approximation

The proof of the uniqueness Theorem strongly relies on a Theorem by Cheby-
shev which explores the number of changes of the sign of the error, which we
state now. Consider P ∗ (x) and E (f) as defined in (4) and (5).

Theorem 3 (Borel-Chebyshev) A polynomial P ∗ in Pn is a best uniform
approximation of a function f in C(0) [−1, 1] if and only if the function
x → e∗ (x) equals E(f) with alternating signs for at least n + 2 values of x
in [−1, 1] .

Theorem 4 Let f be a continuous function defined on [−1, 1].The best uni-
form approximating polynomial is unique.

For a complete treatment of the above arguments, see e.g. [5], [15] and
[12].

2 Optimal extrapolation designs; Hoel Levine

or Chebyshev designs

We consider the problem of approximating f(x) for any fixed x in the interval
[c,−1] for some c < −1. More generally the optimal design which is obtained
in this section is valid for any c such that |c| > 1.

As seen previously, since Ln(f̂)(x) is an unbiased estimate of f(x) a nat-
ural criterion for optimality in the class of all unbiased linear estimates is the
variance.

We therefore consider the problem

ξ∗x := arg min
ξ∈M∗

[−1,1]

var
(
Ln(f̂)(x)

)

to which we will propose a suboptimal solution.
Denoting generically n∗ :=

(
n∗
0, ..., n

∗
g−1

)
and (x∗) :=

(
x∗
0, ..., x

∗
g−1

)
, n :=

(n0, ..., ng−1) ∈ Ng and (x) := (x0, ..., xg−1) this problem can thus be written
as 




(n∗, (x∗)) = argmin(n,(x))

∑g−1
i=0

(li(x))
2

ni

n :
∑g−1

i=0 ni = n, n fixed
−1 ≤ x0 < ... < xg−1 ≤ 1, (x) ∈ [−1, 1]g

.
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This is an integer programming problem (w.r.t. n) with an inequality
constraint in R. As commonly done we find a proxy to the solution, consid-
ering the ni’s as real numbers. The resulting solution

(
n∗
0, ..., n

∗
g−1

)
will be

substituted by the integer part of each of the n∗
i ’s.

We therefore get to the following optimization problem in the 2g real
variables




((
w∗

0, ..., w
∗
g−1

)
,
(
x∗
0, ..., x

∗
g−1

))
= argmin((w0,...,wg−1),(x0,...,xg−1))

∑g−1
i=0

(li(x))
2

wi

(w0, ..., wg−1) ∈ Rg, w > 0,
∑g−1

i=0 wi = n, n fixed
−1 ≤ x0 < ... < xg−1 ≤ 1, (x0, ..., xg−1) ∈ [−1, 1]g .

.

(6)
Since the mapping

((w0, ..., wg−1) , (x0, ..., xg−1)) →
g−1∑

i=0

(li(x))
2

wi

is continuous, the optimization problem (6) can be solved in a two steps
procedure.

The principle is as follows: fix the vector x:= (x0, ..., xg−1)
′ and look for

the minimum with respect to the vector w:= (w0, ..., wg−1)
′. Once obtained

the optimizer w∗ vary x and determine the resulting minimum value of the
variance for fixed w=w∗.

Define therefore , with fixed x

(2a)

{
min(w0,...,wg−1)∈Rg

∑g−1
i=0

(lj(x))
2

wj∑g−1
i=0 wi = n, n fixed

. (7)

Denote
(
w∗

0, ..., w
∗
g−1

)
the solution of this problem.

The optimal design ξ∗ results then as the solution of the following prob-
lem, assuming in the present case that x < x0

(2b)

{
min(x0,...,xg−1)∈Rg

∑h
i=0

(lj(x))
2

w∗

j

x < −1 < x0 < ... < xg−1, {x0, ..., xg−1} ⊂ [−1, 1]
. (8)

Step 1. We handle Problem (7).
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Proposition 5 The solution of problem (7) exists and is unique. It is given
by

w∗
j := n

|lj (x)|∑g−1
j=0 |lj (x)|

, j = 0, ..., g − 1.

Proof. Applying the Karush-Kuhn-Tucker Theorem (see e.g. [1]), we obtain





∂
∂wj

(∑g−1
i=0

(li(x))
2

wi
+ λ

(∑g−1
i=0 wi − n

))
= 0

λ
(∑g−1

i=0 wi − n
)
= 0

λ ≥ 0

,

∂

∂wj

(
g−1∑

i=0,i 6=j

(li (x))
2

wj

+
(lj (x))

2

wj

+ λ

(
g−1∑

i=0.i 6=j

wi + wj − n

))
= 0,

λ =

(
lj (x)

wj

)2

,

wj =
|lj (x)|√

λ
.

Since
∑g−1

i=0 wi = n, we get

(
lj (x)

wj

)2

= λ =

(∑g−1
j=0 |lj (x)|

n

)2

.

Finally we get the solution of the problem (2a), namely

w∗
j := n

|lj (x)|∑g−1
j=0 |lj (x)|

, j = 0, ..., g − 1.

Step 2. Solving Problem (8) is more tedious and requires some technical
arguments, which we develop now.

Substituting nj in (2) by w∗
j the variance of Ln(f̂)(x) becomes

V arLn(f̂)(x) = σ2

(
g−1∑

i=0

|li (x)|
)2

.
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Hence minimizing this variance under the nodes turns into the following
problem {

min(x0,...,xg−1)∈Rg

∑g−1
i=0 |li (x)|

x < x0 < ... < xg−1, {x0, ..., xg−1} ⊂ [−1, 1]
(9)

.
Since x < x0 < ... < xg−1, we have

|li (x)| = (−1)i li (x) . (10)

We consider a suboptimal solution to Problem (9). Indeed no general
solution presently exists to the determination of a system of nodes which
minimizes the evaluation of the Lebesgue function t →

∑g−1
i=0 |li (t)| at some

fixed point t = x < −1.
Define

t → Tg−1 (t) :=

g−1∑

i=0

(−1)i li (t) (11)

a polynomial with degree g − 1 defined on R . This polynomial does not de-
pend any longer of x but only on the nodes. Up to the multiplicative constant
σ it coincides with the standard deviation of Ln(f̂ )(x) when evaluated at
point x.We provide the optimal choice of the nodes under this representation.

Observe the properties of Tg−1 on [−1, 1] . It holds

Tg−1(xj) = (−1)j

for all j between 0 and g − 1. Hence Tg−1 takes its extreme values in g
points; among those points, all interior ones in [−1, 1] are points where Tg−1

changes curvature. Those are obtained as the roots of the first derivative of
Tg−1; indeed t → Tqg−1 (t) is monotonous when t does not belong to [−1, 1] .
Hence we obtain that g−2 points among the xi’s are interior points in [−1, 1] .
It follows that the two remaining ones are −1 and 1.

We now identify Tg−1 and therefore the nodes.

Lemma 6 The polynomial Tg−1 is the solution of the differential equation

1− T 2
g−1(x) =

1

(g − 1)2
(1− x2)

(
dTg−1 (x)

dx

)2

. (12)

10



Proof. It should hold
{

Tg−1 (xj) = (−1)j(
dTg−1(x)

dt

)
x=xj

= 0, j = 1, ..., g − 2
.

Observe that
a) the degree of (1−T 2

g−1(x)) equals 2 (g − 1) and 1−T 2
g−1(xj) = 0, which

implies that the set of roots of 1− T 2
g−1(x) are {x0, ..., xg−1};

b) since Tg−1(x) = a0 + a1x + ... + ag−1x
g−1, it follows that

dTg−1(x)

dx
=

a1 + a2x+ ...+ (g − 1) ag−1t
g−2, and

(
dTg−1(x)

dx

)2

= β1 + ... + βg−2x
2(g−2)−2.

This implies that

degree(1− x2)

(
dTg−1(x)

dx

)2

≤ 2 (g − 1) .

Furthermore

(1− x2)

(
dTg−1(x)

dx

)2

= 0

when x ∈ {−1, 1} = {x0, xg−1}, and

T ′
g−1(x) = 0 when x ∈ {x1, ..., xg−2}.

From a) and b) we deduce that the polynomials 1 − T 2
g−1(x) and (1 −

x2)
(

dTg−1(x)

dx

)2
share the same roots and the same degree, hence are equal up

to a constant K, i.e.

1− T 2
g−1(x) = K(1− t2)

(
dTg−1(x)

dx

)2

. (13)

We determine K. Let

Tg−1(x) =

g−1∑

i=0

aix
i.

Then the coefficient of x2(g−1) equals a2g−1. Also since

dTg−1(x)

dx
=

g−2∑

i=1

iaix
i−1
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then the term with highest degree in
(

dTg−1(x)

dx

)2
is

(g − 1)2 a2g−1x
2(g−1)−2.

By (13) it should hold that the coefficient of greatest degree of 1 − T 2
g−1(x)

equals the corresponding one of K(1− x2)
(

dTg−1(x)

dx

)2
. This means

−a2g−1x
2(g−1) = −Kx2 (g − 1)2 a2g−1x

2(g−1)−2

which yields

1− T 2
g−1(x) =

1

(g − 1)2
(1− x2)

(
dTg−1(x)

dx

)2

.

This is a differential equation with separable variables with solution the
Tg−1(x) which we look for.

We first solve the differential equation (12).

Lemma 7 The solution of (12) under the boundary conditions Tg−1(−1) =
Tg−1(−1) = 1 is

Tg−1(x) = cos ((g − 1) arccosx)

Proof. Denote y = Tg−1(v). For v = xg−1 = 1, it should hold y = Tg−1(1) =
1. Therefore at v = 1, Tg−1 has a maximum. This proves that for v < 1,
with v close to 1, y = Tg−1(v) is increasing . Let v

∗ the point to the left
of xg−1 such that from v

∗ to xg−1 the function y is always increasing, and is
not increasing before v

∗. Clearly v
∗ is a minimizer of Tg−1 and y(v∗) = −1.

Therefore on [v∗, 1] the first derivative y′ is positive.
We can write, therefore

√
(y′)2 = |y′| = y′.

It follows that the equation 1 − y2 = 1
(g−1)2

(1 − v
2)(y′)2 may be written

as
g − 1√
1− v

2
=

y′√
1− y2

.

12



Take the primitive on all terms, namely

(g − 1)

∫
dv√
1− v

2
=

∫
y′√
1− y2

dv + c.

Some attention yields

(g − 1) arccos v = arccos y(v) + c′.

Hence
cos((g − 1) arccos v) = cos(arccos y + c′).

Take v = 1; then y = 1 so that

cos((g − 1) arccos 1) = cos(arccos 1 + c′).

Now arccos 1 = 2rπ, with r = 0, 1, .... Hence cos(h arccos 1) = 1, writing
rh = r′, with r′ ∈ Z. It follows that 1 = cos(arccos 1 + c′). Write arccos 1 +
c′ = β; this implies 1 = cos β, i.e. β = 2r′′π, with r′′ ∈ N.

Note that
arccos 1 + c′ = 2h′π

and therefore

c′ = 2h′π − arccos 1 = 2h′π − 2mπ = 2π(h′ −m) = 2h′′π, with h′′ ∈ Z.

For the constant c′ we may therefore consider any multiple of π, including
0, i.e. cos((g − 1) arccos v) = cos(arccos y + c′) with c′ = 0.

A solution of the initial differential equation is therefore given by

y = cos((g − 1) arccos v), for v ∈ [v∗, 1].

The polynomial Tg−1 increases from v
∗ to 1, it should decrease at the

left of v∗ . Define v
∗∗ the point where it starts its decrease. The point v

∗∗

is therefore a maximum point with y(v∗∗) = 1 and y decreases on [v∗∗, v∗].
Therefore y′ < 0 in [v∗∗, v∗] and

− y′√
1− y2

=
g − 1√
1− v

2
,

since
√
(y′)2 = |y′| = −y′.
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Therefore
∫

− y′√
1− y2

dy =

∫
g − 1√
1− v

2
dv + c, arccos y

= (g − 1) arccos v + c,

which together with a similar argument as previously yields to adopt c = 0.
Since v

∗ coincides with xg−2, and v
∗∗ = xg−3, we iterate the above argu-

ments for all nodes until x0 ; we conclude that y = cos((g − 1) arccos v).

Proceeding as above on any of the intervals between the nodes concludes
the proof.

We now obtain the roots x̃k of the derivative of x → Tg−1(x).

Proposition 8 It holds

x̃k = cos

(
kπ

g − 1

)
, for k = 1, ..., g − 2. (14)

Proof. We get the roots x̃k through a first order differentiation. With
θ = (g − 1) arccos v it holds

y′ = T ′
g−1(v) = − sin θ

dθ

dv
= (sin(h arccos v))

g − 1√
1− v

2
.

Note that

h√
1− v

2
sin(h arccos v) = 0, sin(h arccos v) = 0

hence

h arccos v = kπ, arccos v =
kπ

g − 1
, xk = cos

(
kπ

g − 1

)
.

Then we get

y(x̃k) = cos((g − 1) arccosxk)

= cos

(
(g − 1)

kπ

g − 1

)
= (−1)k,

which yields

x̃k = cos

(
kπ

g − 1

)
, for k = 1, ..., g − 2.

14



We rename the x̃k’s in increasing order.

Note that taking k = 0 and k = g − 1 in (14) we recover Tg−1(−1) =
Tg−1(1) = 1 so that all g points x̃k, 0 ≤ k ≤ g − 1 are points of maximal or
minimal value of Tg−1 in [−1, 1] .

The optimal design is therefore given by

ξ∗ :=

{([
n

|lk (x)|∑g−1
j=0 |lj (x)|

]
; cos

(
kπ

g − 1

))
, for k = 0, ..., g − 1

}
.

Definition 9 The nodes

x̃k = cos

(
kπ

g − 1

)
, for k = 0, ..., g − 1.

are the Chebyshev nodes on [−1, 1] .

Example 10 (Hoel - Levine) Consider R → R, x 7→ P3 (x) :=
∑3

j=0 θjx
j,

θj, j = 0; 1; 2; 3. We intend to estimate P3 (2) using n = 52 observations in
[−1; 1] . The model writes as yi (xj) := P3 (x) + εi with εi ∼ N (0; 1) i.i.d, for

all i and j, i = 1, ..., nj, j = 0, .., 3,
∑3

j=0 nj = 52.The optimal design ξ
∗
is

given by: (
xj = cos

(
jπ

h

)
,

[
n

|lj (x)|∑g−1
j=0 |lj (x)|

])
.

Therefore x0 = −1, x1 = −1
2
, x2 = 1

2
, x3 = 1 and ξ

∗
(−1) = 5

52
, ξ∗
(
−1

2

)
=

12
52
, ξ

∗ (1
2

)
= 20

52
, ξ

∗
(1) = 15

52
. Instead of this optimal design, consider the design

with nodes supp(ξ) =
{
−1, −1

3
, 1
3
, 1
}
and weights ξ (−1) = ξ

(
−1
3

)
= ξ

(
1
3

)
=

ξ (1) = 13
52
, it holds varξ

(
L3(P̂3)(2)

)
∼ 20 > varξ∗

(
L3(P̂3)(2)

)
∼ 13 where

varξ and varξ∗ denote respectively the variance under the corresponding de-
sign.

2.1 Hoel Levine optimal design and the uniform ap-

proximation of functions

We now make some comment pertaining to the polynomial x → Tg−1(x) in
relation with the theory of the best uniform polynomial approximation of
functions on [−1, 1] .

15



Consider the monomial x → xg−1 on [−1, 1] and define its best uniform
qg−2 approximation in the linear space of all polynomials with degree less or
equal g − 2. By Theorem 3 there exist g equi-oscillation points z0, .., zg−1 in
[−1, 1] where

zg−1
k − qg−2(zk) = (−1)k sup

x∈[−1,1]

∣∣xg−1 − qg−2(x)
∣∣ .

Some analysis proves that the coefficient of xg−1 in Tg−1 is C := 1/2g−2.

Observe that the polynomial x → T̃g−1(x) := CTg−1(x) shares the same
oscillation properties and degree as x → xg−1 − qg−2(x) on [−1, 1] ,but for its
extreme values. Now by Theorem 3 those properties identify Tg−1 with the
error function x → xg−1 − qg−2(x) up to a multiplicative constant .

Consider now the null function x → 0(x) defined on [−1, 1] and let pg−1 be
a generic polynomial defined on [−1, 1] with degree g−1 and whose coefficient
of xg−1 is 1. Then clearly

sup
x∈[−1,1]

∣∣∣T̃g−1(x)− 0(x)
∣∣∣ ≤ sup

x∈[−1,1]

|pg−1(x)− 0(x)| .

Note that in the present case when x → 0(x) is to be approximated, unique-
ness of the best uniform approximating function is defined up to a multi-
plicative constant; therefore we may say that Tg−1 is, up to the multiplicative
constant C the best uniform approximation of x → 0(x) by polynomials with
degree g − 1 in [−1, 1] .

This fact is the entry point to more general optimal designs when esti-
mating functions outside the context of polynomials; see [10].

3 Uniform interpolation optimal designs (Guest)

Consider the uniform variance of the estimator (with respect to x). A natural
strong criterion for optimality is defined through

min
{nj∈N∗, j=0,...,g−1:

∑g−1
j=0 nj=n}

max
x∈[−1;1]

var
(
Ln(f̂)(x)

)
. (15)

In this section two goals will be reached. First we obtain the optimal
design ξ∗ solving (15). Then we will show that extrapolation designs are of
a different nature with respect to interpolation ones, since, as seen below,

varξ∗
(
Ln(f̂)(x)

)
6= min

ξ
var

(
Ln(f̂)(x)

)
, for x > 1

16



where the minimum upon ξ all designs depends on x. Here we consider an
extrapolation design with x > 1.

Define the Legendre polynomials on [−1, 1] .

Definition 11 The Legendre polynomial of order g − 1 on [−1, 1] is defined
by

Pg−1 (x) :=
1

2g−1 (g − 1)!

dg−1

dxg−1

(
x2 − 1

)g−1

= 2−(g−1)

[ g−1
2 ]∑

j=0

(−1)g−1

(
g − 1
j

)(
2 (g − 1− j)
g − 1

)
xg−1−2j .

Remark 12 The relation Pg−1 (x) :=
1

2g−1(g−1)!
dg−1

dxg−1

(
(x2 − 1)

g−1
)
is known

as Rodriguez formula.

Remark 13 Clearly Pg−1 has g − 1 roots in (−1, 1) , as seen now. Indeed

the polynomial (x2 − 1)
g−1

has degree 2 (g − 1), and it has multiple roots at
points ±1. By Rolle’s Theorem its derivative admits a root inside (−1, 1) .
This derivative assumes also the value 0 at ±1, since it has at least three
roots in [−1, 1]. Apply once more Rolle’s theorem to the second derivative,
which takes value 0 at ±1, since it has at least four roots. Proceeding further
, the (g − 1)−th derivative has g − 1 roots in (−1, 1) . Up to a constant this
derivative is the Legendre polynomial Pg−1.

Remark 14 The value of Pg−1 (x) at x = ±1 can be obtained. Indeed it
holds (

x2 − 1
)g−1

= (x− 1)g−1 (x+ 1)g−1 .

By Leibnitz formula

dg−1
(
(x− 1)g−1 (x+ 1)g−1)

dxg−1

=

g−1∑

j=0

(
g − 1
j

)
dj
(
(x− 1)g−1)

dxj

dg−1−j (x+ 1)g−1

dxg−1−j
.

17



For j = 0, ..., g − 2, it holds
(
dj
(
(x− 1)g−1)

dxj

)

x=1

= 0

and (
dg−1 (x− 1)g−1

dxg−1

)

x=1

= (g − 1)!.

Henceforth
dg−1

(
(x− 1)g−1 (x+ 1)g−1)

dxg−1
= (g − 1)!2g−1.

This yields
Pg−1 (1) = 1 and Pg−1 (−1) = (−1)g−1 . (16)

We need some facts about the Lagrange elementary polynomials; denoting

π (x) :=
g−1∏
j=0

(x− xj)

it holds

Lemma 15 It holds (i)
(
dπ (x)

dx

)

x=xj

= 0 for j = 1, ..., g − 2,

iff

(
d2π (x)

dx2

)

x=xj

= 0 for j = 1, ..., g − 2.

(ii) π (x) = α (x2 − 1)φg−2 (x) ,with

φg−2 (x) =
dPg−1 (x)

dx

where Pg−1 is the Legendre polynomial of order g − 1 on [−1, 1] .

Finally (iii)
(

d

dx j
lj (x)

)

x=xj

= 0 iff

(
dPg−1 (x)

dx

)

x=xj

= 0.

18



Proof. Denoting

π (x) :=
g−1∏
j=0

(x− xj)

write

lj (x) =
π (x)

(x− xj)
(

dπ(x)
dx

)
xj

.

We have

π (x) = (x− xj)

(
dπ (x)

dx

)

xj

lj (x) ,

dπ (x)

dx
= (x− xj)

(
dπ (x)

dx

)

xj

dlj (x)

dx
+

(
dπ (x)

dx

)

xj

lj (x)

and
d2π (x)

dx2
=

(
dπ (x)

dx

)

xj

{
(x− xj)

d2lj (x)

dx2
+ 2

dlj (x)

dx

}
.

This last display proves (i).
In

π (x) :=
g−1∏
j=0

(x− xj)

the xj ’s, j = 0, ..., g − 1, are the abscissas where the variance function is
minimax. Indeed in (10) we have proved that the absolute value of the
elementary Lagrange polynomial takes value 1 , which is its maximal value,
when evaluated on the nodes. Hence the variance

var
(
Ln(f̂)(x)

)
=

g−1∑

i=0

(lj (x))
2 σ

2

ni

takes its maximal values at points xj ’s.
Hence {−1, 1} ⊂ {xj , j = 0, ..., g − 1} and the remaining g − 2 xj ’s are

points of maximal value of the variance inside (−1; 1) . Write the polynomial
π (x) as

π (x) = α
(
x2 − 1

)
φg−2 (x) ,

where

αφg−2 (x) :=
g−1∏

j=0, j 6=−1;1

(x− xj) .
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The polynomial φg−2, with degree g−2 is determined through the conditions

(
d2π (x)

dx2

)

x=xj

= 0 for j = 1, ..., g − 2.

Since
dπ (x)

dx
= 2αxφg−2 (x) + α

(
x2 − 1

) d (φg−2 (x))

dx
and

d2π (x)

dx2
= 2αφg−2 (x) + 4αx

d (φg−2 (x))

dx
+ α

(
x2 − 1

) d2 (φg−2 (x))

dx2

those conditions amount to the system




0 = 2αφg−2 (x1) + 4αx1

(
d(φg−2(x))

dx

)
x=x1

+ α (x2
1 − 1)

(
d2(φg−2(x))

dx2

)
x=x1

........................................................................

0 = 2αφg−2 (xj) + 4αxj

(
d(φg−2(x))

dx

)
x=xj

+ α
(
x2
j − 1

) (d2(φg−2(x))

dx2

)
x=xj

........................................................................

0 = 2αφg−2 (xg−2) + 4αxg−2

(
d(φg−2(x))

dx

)
x=xg−2

+ α
(
x2
g−2 − 1

) (d2(φg−2(x))

dx2

)
xg−2

.

Now the derivative of the Legendre polynomial Pg−1 is precisely the solution
of this system (see [6]). Hence

φg−2 (x) =
dPg−1 (x)

dx
.

This closes the proof of (ii).
We prove (iii). It holds

lj (x) =
π (x)

(x− xj)
(

dπ(x)
dx

)
xj

.

By

d

dx
lj(x) =

α(x2 − 1) d2

dx2Pg−1(x) + 2αx d
dx
Pg−1(x)

(x− x̃j)K
− α(x2 − 1) d

dx
Pg−1(x)

(x− x̃j)
2K

for some constant K. When x = x̃j then (iii) follows.
We now obtain the optimal design. It holds

20



Proposition 16 The nodes of the optimal design ξ∗ are the g − 2 solutions
of the equation

d

dx
Pg−1 (x) = 0

and −1, 1. The optimal frequencies are defined by the relation

nj =
g

n
.

Proof. Keeping the notation lj defined in (1), we have

var
(
Ln(f̂)(x)

)
=

g−1∑

j=0

l2j (x)
σ2

nj

.

Since σ2

nj
> 0, any σ2

nj
should be minimal in order to make the sum minimal.

Hence
(
n∗
0, ..., n

∗
g−1

)
should solve

{
min(n0,...,ng−1)

(
1
n0

+ ...+ 1
ng−1

)
∑g−1

j=0 nj = n
. (17)

Hence
n∗
j =

g

n
.

The polynomial
∑g−1

j=0 l
2
xj
(x) σ2

nj
has degree 2g−2, and indeed has g−1 roots

of order 2. This function is a decreasing function of x on (−∞,−1) and an
increasing function of x on (1,+∞) ; the points −1 and 1 are therefore points
of local maximal value of the variance. The variance has therefore g local
extrema in [−1, 1] . Hence there exist g − 2 local extrema for the variance

inside (−1, 1) ; they lie between the roots of var
(
Ln(f̂)(x)

)
. These extrema

are maxima, since the variance is a sum of squares and takes value 0 g − 2
times.

We suppose that we have those points at hand; call them x̃j , j = 0, ..., g−
1.On those points x̃j the function var

(
Ln(f̂)(x)

)
takes the value

g−1∑

i=0

l2i (x̃j)
σ2

ni
=

σ2

nj

21



with

li (x) :=
g−1∏

j=0,j 6=i

x− x̃j

x̃i − x̃j
.

The function x → l2j (x) takes its maximal value for x = x̃j, with l2j (x̃j) =
1 independently on j. Therefore it holds

max
x∈[−1;1]

var
(
Ln(f̂)(x)

)
= max

x∈[−1;1]

g−1∑

j=0

l2j (x)
σ2

nj

.

The principle leading to the optimal design should now be made precise.

The largest variance of
(
Ln(f̂)(x)

)
should be attained on the points of mea-

surements, in order to be able to control it. Consider two nodes x̃i and x̃k.
Then

var
(
Ln(f̂)(x̃i)

)
= var

(
Ln(f̂)(x̃k)

)
=

σ2g2

n
.

Hence

max
x∈[−1;1]

var
(
Ln(f̂)(x)

)
=

σ2g2

n
.

The nodes should hence be the points of maximal value of the variance, which
equals σ2g2

n
.

The first derivative of var
(
Ln(f̂)(x)

)
writes

d

dx
var

(
Ln(f̂)(x)

)
=

2g

n

g−1∑

j=0

lj (x)
d

dx
lj (x) .

It follows that finding the g − 2 internal nodes x̃j ’s results in finding the
solutions of the equation

d

dx
var

(
Ln(f̂)(x)

)
x=x̃j

= 0 (18)

which by the above argument turns out to solve

(
g−1∑

j=0

lj (x)
d

dx
lj (x)

)

x=x̃j

= 0
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which yields, since
li (x̃j) = δi,j

(
d

dx
lj (x)

)

x=x̃j

= 0 for all j = 1, .., g − 2.

This is a system of g − 2 equations in the g − 2 variables x̃1, .., x̃g−2. This
system has precisely g − 2 solutions, solving (18).

Apply Lemma 15 (iii) to conclude.

We now characterize the performance of the optimal design ξ∗ through
an evaluation of the minimax variance (15)

min
{nj∈N∗, j=0,...,g−1:

∑g−1
j=0 nj=n}

max
x∈[−1;1]

var
(
Ln(f̂)(x)

)
.

Lemma 17 The Legendre polynomial Pg−1 is a solution of the following
differential equation (so-called Legendre equation)

(
1− x2

) d2f (x)

dx2
− 2x

df (x)

dx
+ g (g − 1) f (x) = 0

i.e
d

dx

((
x2 − 1

) d

dx
f(x)

)
= g(g − 1)f(x) (19)

Proof. For an analytic function f on D, by Cauchy formula, it holds

f (g−1) (x) =
(g − 1)!

2πi

∫

γ

f (x)

(z − x)g
dz

where x is an interior point in D and γ is a regular circuit in D with x in its
interior. The variable z runs on γ in the positive sense. Apply this formula
to the analytic function

f (z) =
(
z2 − 1

)g−1
, g = 0, 1, 2, ....

By Rodriguez formula we obtain the following relation, known as Schläfli
formula

Pg−1 (x) =
1

2πi

∫

γ

(z2 − x)
g−1

2g−1 (z − x)g
dz.

23



Substituting now f by Pg−1 in Legendre equation and applying the above
formula, we get

(
1− x2

) d2Pg−1

dx2
− 2x

dPg−1

dx
+ g (g − 1)P

=
g

2g−12πi

∫

γ

(
d

dz

(
(z2 − 1)

g

(z − x)g+1

))
dz.

Now
g

2g−12πi

∫

γ

(
d

dz

(
(z2 − 1)

g

(z − x)g+1

))
dz = 0.

This can be written through

d

dx

((
x2 − 1

) dPg−1 (x)

dx

)
= g (g − 1)Pg−1 (x) .

Indeed

d

dx

((
x2 − 1

) dPg−1 (x)

dx

)
= 2x

dPg−1 (x)

dx
+
(
x2 − 1

) d2Pg−1

dx2

and therefore

d

dx

((
x2 − 1

) dPg−1 (x)

dx

)
= g (g − 1)Pg−1 (x)

which is

2x
dPg−1 (x)

dx
+
(
x2 − 1

) d2Pg−1

dx2
− g (g − 1)Pg−1 (x) = 0

which proves the claim.

We evaluate the local variance of the design of Guest for any point x in
[−1, 1].

We now turn back to the points where the variance assumes its maximal
values. It holds

π (x) = α
(
x2 − 1

) dPg−1 (x)

dx

hence
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dπ (x)

dx
=

d

dx

(
α
(
x2 − 1

) dPg−1 (x)

dx

)

= αg (g − 1)Pg−1 (x)

by Lemma 17.
Therefore

d2π (x)

dx2
= αg (g − 1)

dPg−1 (x)

dx
.

We evaluate the minimax variance, which we denote by varξ∗ .
It holds

varξ∗
(
Ln(f̂)(x)

)
=

g−1∑

j=0

l2j (x)
σ2

nj

=

g−1∑

j=0


 π (x)

(x− xj)
(

dπ(x)
dx

)
xj




2

gσ2

n

=

((
x2 − 1

) dPg−1 (x)

dx

)2
σ2

g (g − 1)2 n

g−1∑

j=0

(
1

(x− xj)Pg−1 (xj)

)2

.

Making use of Lobatto formula and after some calculus (see [7]) , we
obtain

varξ∗
(
Ln(f̂)(x)

)
=

(
1 +

x2 − 1

g (g − 1)

(
d2Pg−1 (x)

dx2

)2
)

gσ2

n
.

As a consequence, using Guest minimax design, the maximal variance
of the interpolation is obtained at the boundaries x = −1 and x = 1. By
symmetry the minimal variance of the interpolation holds when x = 0.

In the extrapolation zone, namely for large |x| > 1

dPg−1 (x)

dx
∼ (g − 1)

(2 (g − 1))!

2g−1 ((g − 1)!)2
xg−2.
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In the extrapolation zone this yields to the approximation

varξ∗
(
Ln(f̂)(x)

)
∼ (g − 1)

(
(2 (g − 1)!)

2g−1 ((g − 1)!)2

)2

x2(g−1) σ2

g − 1
.

Considering the points x0 = −1, xg−1 = 1 which are also points of maxi-
mum variance we see that the maximal variance cannot exceed g

n
σ2.

We have obtained the optimal minimax design in the interpolation range.
We now prove that this design is not suitable for extrapolation.

4 The interplay between the Hoel-Levine and

the Guest designs

Without loss of generality we may consider the case when c > 1; by

varξ

(
Ln(f̂)(x)

)
=

g−1∑

j=0

l2j (x)
σ2

nj

the variance of Ln(f̂)(x), say varξ

(
Ln(f̂)(x)

)
is an increasing function of x

for x > 1 for any design ξ since the mapping x → l2j (x) increases for x ≥ 1.
It follows that for any c > 1 the Hoel Levine design ξc is the minimax optimal
extrapolation design on (1, c) namely it solves

min
ξ∈M∗

1

max
x∈(1,c]

varξ

(
Ln(f̂)(x)

)
.

However there is no reason that ξc be minimax optimal on whole [−1, c] since
it might not solve

min
ξ∈M∗

1

max
x∈[−1,c]

varξ

(
Ln(f̂)(x)

)
.

We consider the optimal minimax design on [−1, c] with c > 1 and discuss
its existence and properties.
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On [−1, 1] the optimal minimax design is Guest’s design. We will prove
(see Proposition 21 hereunder) that this design is not minimax optimal on
[−1, c] with c > 1 for large c.

At the contrary we prove (Proposition 18) hereunder that the Hoel Levine
design ξc is minimax optimal on [1, c] .

Finally we prove (Proposition 19) that there exists a unique c∗ >> 1 such
that ξc∗ is minimax optimal on [−1, c∗] .

Proposition 18 The Hoel Levine optimal design ξc is minimax optimal on
[1, c] for c > 1 as proved in Section 2 (substitute c < −1 by c > 1).

Proof. This is a consequence of the fact that x → varξc

(
Ln(f̂)(x)

)
is an

increasing function on [1, c] .

Proposition 19 There exists c1 >> 1 such that the Hoel Levine design ξc∗
is minimax optimal on [−1, c1], i.e. it solves

min
ξ∈M∗

1

max
x∈[−1,c1]

varξ

(
Ln(f̂)(x)

)
.

Proof. We have seen that for 1 < x < c, the solution provided by Hoel
and Levine is minimax optimal. We now consider the case when [1, c] is
substituted by [−1; c] with c > 1.

In this case the minimax optimal solution still holds as the Hoel - Levine
design if c ”large enough” .

Indeed let varη

(
Ln(f̂)(x)

)
be the variance under a design η whose sup-

port consists in the Chebyshev nodes in [−1; 1]. The design η at this point
is not defined in a unique way, since the values of η(xj) is not specified.

The function
x → varη

(
Ln(f̂)(x)

)

is continuous on [−1, 1] . Denote

v∗η := max
x∈[−1,1]

varη

(
Ln(f̂)(x)

)
.

Assume that there exists some c > 1 which does not depend on η such that

v∗η < varη

(
Ln(f̂)(c)

)
. (20)
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In such case it holds

min
η∈M∗

[−1,1]

v∗η < min
η∈M∗

[−1,1]

varη

(
Ln(f̂)(c)

)
.

The minimizing measure on the right hand side of the above display is pre-
cisely the extrapolation Hoel Levine design at c since the function x →
varη

(
Ln(f̂)(x)

)
is increasing for x > 1.

It remains to prove that such c satisfying (20) exists.

For a given c let

R (c) :=
max[−1;1]

(
varη

(
Ln(f̂)(x)

))

varη

(
Ln(f̂)(c)

)

=
max[−1;1]

(∑g−1
j=0

l2j (x)

nj

)

∑g−1
j=0

l2j (c)

nj(c)

,

with

nj (c) :=
|lj (c)|∑g−1
i=0 |li (c)|

where the nj (c) , 0 ≤ j ≤ g − 1 are the optimal frequencies of the Hoel -
Levine design evaluated in x = c.

We intend to prove that some c > 1 exists for which R(c) < 1.
If this holds then

R (c) =

(∑g−1
i=0 |li (c)|

) (
max[−1;1]

(∑g−1
j=0

l2j (x)

|lj(c)|

))

(∑g−1
i=0 |li (c)|

) (∑g−1
j=0

∣∣l2j (c)
∣∣
)

=

(
max[−1;1]

(∑g−1
j=0

l2j (x)

|lj(c)|

))

(∑g−1
j=0 |lj (c)|

) .

Any of the |lj (c)| is an increasing function of c for c > 1; therefore R (c)
is a decreasing function of c for c > 1. Since each lj (c) → ∞ as c → ∞, R (c)
will approach 0 as c → ∞.
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Since lj (c) → 0 as c → 1, for all j, R (c) will become infinite as c → 1.
But R (c) is a continuous function of c for c > 1; consequently there will exist
a unique value of c, denote by c1, satisfying R (c1) = 1. For c > c1, R (c) < 1;
this entails that c exists with (20).

The proof of Proposition 19 is completed.

Remark 20 The analytic derivation of c1 is presented in [13].

It follows from the same type of arguments as that just used to reject the
possibility of a Legendre (or Guest) design for c > 1 that the Hoel - Levine
design cannot be optimum for c < c1. From continuity considerations one
would expect the optimum design to gradually change from the Guest spacing
and weighting to the Hoel - Levine spacing and weighting as c increases from
1 to c1. This is still an open question.

Proposition 21 The Guest design ξ∗ is not minimax optimal on [−1, c] for
any c > 1, which is to say that it not an optimal extrapolating design.

Proof. By Proposition 18 the Hoel Levine design on [1, c] is minimax optimal
for large c > 1. By uniqueness of the optimal design, following from the
optimization problem, we deduce that Guest design cannot coincide with
this design.

5 Confidence bound for interpolation/extrapolation

designs

Using a minimax optimal design we may produce a confidence bound for f(x)
at any point x in [−1, 1] or for x far away from [−1, 1] . We thus consider two
cases for the location of x. When x belongs to [−1, 1] then the optimal design
is the Guest one. By Proposition 19 the Hoel Levine design is minimax on
[−1, c1] for large c1. The minimax variance on [−1, c1] is therefore the variance

of f̂ (c1) since var
(
f̂ (x)

)
is an increasing function of the variable x for x > 1.

Write

f (x) =

g−1∑

j=0

lj (x) f (xj) = l (x) f (x̃)
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where x̃ := (x0, ..., xg−1)
′ are the Chebychev nodes , l (x) := (l0 (x) , ..., lg−1 (x))

′

and

f (x̃) :=




f (x0)
.
f (xj)
.
f (xg−1)




.

Assume that yi (xj) := f (xj) + εi,j with εi,j ∼ N (0; 1) i.i.d, for all i and
j, i = 1, ..., nj, j = 0, .., g − 1,

∑g−1
j=0 nj = n, where the n observations are

measured on [−1; 1] . The pointwise unbiased estimator of f (c), c > 1, is
given by

f̂ (c) := l (x) f̂ (x̃)

where

f̂ (x̃) =

(
1

n0

n0∑

i=1

yi (x0) , ...,
1

ng−1

ng−1∑

i=1

yi (xg−1)

)
.

Since the distribution of the yi (xj)
′ s is N (f (xj) , 1) for all i = 1, ..., nj

and every j = 0, ..., g − 1, the variance of the estimator f̂ (c1) is given by

var
(
f̂ (c1)

)
= var

(
g−1∑

j=0

lj (c1)

∑nj

i=1 yi (xj)

nj

)

=

g−1∑

j=0

(lj (c1))
2

nj
.

where the nj ’s are the frequencies of the Hoel Levine design evaluated at
point c1 (which is indeed the minimax optimal design on [−1, c1] as argued
above). The confidence set for f(c1) is given by

Cn := (l (c1))
′ f̂ (x̃)±

√√√√pα

g−1∑

j=0

(lj (c1))
2

nj
.

where
Pr (N(0, 1) > pα) = 1− α
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and N(0, 1) is a random variable distributed with a standard normal law. It
holds

Pr (Cn ∋ f(c1)) ≥ 1− α.

When the variance of the εi’s are unknown then it can be approximated
by

s2 :=

∑g−1
j=0 (nj − 1) s2j
n− g − 2

where

s2j :=

∑nj

i=1

(
yi(xj)−

(∑nj

i=1 yi(xj)
)
/nj

)2

n− g − 2
.

The confidence area for f(x) becomes

Cn := (l (x))′ f̂ (x̃)±

√√√√qα/2

g−1∑

j=0

(lj (c1))
2

njsj

where
Pr
(
|tg−2| > qα/2

)
= 1− α

where tg−2 is a Student r.v. with g − 2 degrees of freedom.

6 An application of the Hoel - Levine design,

a multivariate case

6.1 Some examples

The above discussion may be applied for more general situations including
the regression models. We refer to the location/scale models, which are of
broad interest. Let

Z =
Y (x)− µ (x)

σ
,

(σ, µ) ∈ R+×F, with (σ, µ) unknown and F a known class of functions.
The scale parameter σ is constant w.r.t. x and Z is a r.v. which is absolutely
continuous w.r.t. the Lebesgue measure. Its distribution is assumed to be
known and does not depend on x.
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Write

f (x) := µ (x) + σE (Z) ,

ε := σZ − σE (Z) ,

and therefore write the location/scale model as

Y (x) = f (x) + ε.

We consider some examples.

Example 22 The importance of the Weibull distribution in Reliability is
well known. Denote T a Weibull r.v. with distribution function

F (t) = 1− exp

(
−
(

t

µ (x)

)β
)
, t ≥ 0.

It can be written into

lnT = lnµ (x) +
1

β
ln (− ln (1− F (T ))) ,

and therefore

Y (x) = lnµ (x) + σZ.

where we wrote

Y (x) := lnT , σ :=
1

β
, Z := ln (− ln (1− F (T ))) .

The model is therefore

Z =
Y (x)− lnµ (x)

σ
.

Observe that

Pr (Z > t) = e−et , t > 0.

Thus Z is the Gumbel standard r.v.
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Write the above model defining

ε := σZ − σE (Z) ,

so that

Y (x) = f (x) + ε,

where

f (x) := lnµ (x) + σE (Z) .

Example 23 For a Gaussian r.v. X ∼ N (µ (x) , σ2), it holds

Z =
X − µ (x)

σ
∼ N (0, 1) .

Example 24 A regression model is clearly of the preceding type.

Example 25 Assume that T is logistic, i.e.

F (t) = 1−
(
1 + exp

(
t− f (x)

β

))−1

.

When β = 1, we may write

1− F (t) =
1

1 + exp (t− f (x))
,

1 + exp (t− f (x)) =
1

1− F (t)
, exp (t− f (x)) =

F (t)

1− F (t)
.

It is enough to state

Z := ln
F (t)

1− F (t)
, ε := Z − E (Z) , Y := T

to get

Y = f (v) + E (Z) + ε.
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6.2 Multivariate optimal designs; a special case

We extend the results of the above sections to a bivariate setting in a relia-
bility context; extension to multivariate similar cases is straightforward.

We consider the extrapolation problem with two variables.
Let

f : R2 → R, x := (x, y) 7→ f (x, y) :=

g1−1∑

i1=0

g2−1∑

i2=0

ai1i2 xi1yi2 , ai1i2 ∈ R,

be a polynomial in the two variables x, y with partial degrees gi − 1 ,
i = 1, 2 in the variables x, y. The polynomial f has M1 := g1g2 unknown
coefficients.

In order to determine these coefficients we observe f on a finite set E
in R2. The fact that E consists in M1 distinct points in R2 is not suffi-
cient for the estimation of the coefficients; it is necessary that these points
do not belong to an algebraic curve (or algebraic hypersurface in higher
dimension) . Indeed the identification for a polynomial with many vari-
ables usually does not have a unique solution. For example consider n points
{(xi, yi) : i = 0, ..., n− 1} ⊂ R2, together with n known values of f on those
points {f (xi, yi) : i = 0, ..., n− 1} ; then there may not exist a unique poly-
nomial P (x, y), such that

f (xi, yi) = P (xi, yi) , (xi, yi) ∈ E .
Indeed it is enough to consider the case when the n distinct points are on a

line in R3. In this case there exists an infinite number of planes z = ax+by+c,
which contain the n points (xi, yi) .

We will therefore assume that the M1 points which define E ⊂ R2 do not
belong to an algebraic curve. This implies existence and uniqueness for a
polynomial which coincides with f on E , with partial degree g1 − 1 with
respect to x and g2 − 1 w.r.t. y. Denote PE (f) (.) this polynomial.

It can be proved that (x, y) → PE (f) (x, y) satisfies

f(x, y) = PE (f) (x, y) =
∑

(xi,yi)∈E

f (xi, yi)Qi (E , (x, y))
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where the polynomials Qi (E , (x, y)) do not depend on f. Indeed we may
make Qi (E , .) explicit; see e.g. [9] p 248-251.

Consider E a finite subset of the compact set S := ×2
i=1 [ai, bi]. Let the

points (xi, yi) in E be

(
xij , yij

)

ij = 0, ..., gj − 1 and j = 1, 2.
Define the elementary Lagrange polynomial in two variables by

li1i2 (x, y) := li1 (x) li2 (y) (21)

where

li1 (x) :=

g1−1∏
h1 6=i1, h1=0

(x− xh1)

g1−1∏
h1 6=i1, h1=0

(xi1 − xh1)

, li2 (z) :=

g4−1∏
h2 6=i2, h2=0

(z − zh2)

g4−1∏
h2 6=i2, h2=0

(zi2 − zh2)

are the elementary Lagrange polynomials with respect to the coordinates
x and y.

Clearly

li1i2 (x, y) =

{
1 if (x, y) = (xi1 , yi2)
0 otherwise

.

The set

{li1i2 (x, y) : ij = 0, ..., gj − 1, j = 1, 2}
is a basis for the linear space of all polynomials with partial degree with

respect to the coordinate xj less or equal gj − 1, for j = 1, 2.
The Gram matrix associated with this basis

(li1i2 (x, y))i1=0,...,g1−1,.i2=0,...,g2−1

is therefore invertible; by uniqueness we have

Qi (E , (x, y)) = li1i2i (x, y) .

Therefore
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PE (f) (x, y) := L (PE (f)) (x, y)

where we wrote

L (PE (f)) (x, y) =

g1−1∑

i1=0

g2−1∑

i2=0

f (xi1 , yi2) li1 i2 (x, y) . (22)

The above formula (22) holds true since the nodes (xil, yik) belong to a rect-
angle (see [9]).

The polynomial L (PE (f)) (x, y) is called the bivariate Lagrange polyno-
mial. The points in E are the nodes for the interpolation of f.

When f is not a polynomial but merely a function defined on S, which
can be extended by continuity on an open set O which contains S, then the
Lagrange interpolation scheme may be used as an approximation scheme on
O; see [3].

By uniqueness we adopt the notation

PE (f) (x, y) = L (PE (f)) (x, y) = f (x, y) .

We now assume the following model

Z :=
Y (x, y)− f (x, y)

σ

where Z is a r.v. totally known in distribution with finite expectation
E(Z) and finite variance η2; the scale parameter σ > 0 is unknown and does
not depend on x, y; the coefficients of P (x, y), ai1i2 ∈ R, are also unknown.
We will see that the optimal design does not depend on the constants σ2 nor
η2.

Denote

ε (x, y) := σZ − σE (Z)

whose variance equals η2σ2.
It holds

Y (x, y) = f (x, y) + σE (Z) + ε (x, y) .

We assume further that f (x, y) can be observed only on a subset S in
R2. In the setting of accelerated runs, this subset S is the stressed domain;
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it will be assumed that it is a rectangle [a1, b1]× [a2, b2] in R2, a choice
which is achievable by the experimenter. This shape allows for an important
simplification for the definition and the calculation of the optimal design.

The lexicographic order on R2 is defined as follows; for (x, y) and (z, t)
in R2 × R2, (x, y) . (z, t) iff x ≤ z, y ≤ t.

Denote a := (a1, a2) be the point in R2 which describes the threshold be-
tween the standard operational values of the environment and the stressed
conditions. With respect to a the stressed region is a rectangle [a,b] north-
east with respect to a, with south-west corner at a, whereas the unstressed
domain is the south west quadrant U with north east corner at a. We denote
u a point in

U :=
{
(x, y)∈ R2: (x, y). a

}
.

We intend to find an optimal design in order to estimate the value of
the polynomial f at point u, hence we look for E and for the number of
observations on any of the points in E , in such a way to make the variance
of the estimate of P (u) minimal.

Let (xi1 , yi2) ∈ S be a node, i.e. a stress configuration. We con-
sider now the set of trials under this configuration. Denoting i:= (i1, i2) ∈
×2

j=1 {0, ..., gj − 1} , we define n(i) be the total number of replications of the
measurement Y at point (xi1 , yi2) . We denote Y (i) the vector of these mea-
surements; We assume that the coordinates of Y (i) are ordered; this is the
common procedure when looking at lifetimes of a number n(i) of identical sys-
tems operating in parallel during the trial. So Y (i) :=

(
Y(1) (i) , ..., Y(n(i)) (i)

)

is an ordered sample obtained from an i.i.d. sample with size n(i).

The system of equations which represents the observations is therefore

(1)





y(1) (xi1 , yi2) = f (xi1 , yi2) + σE (Z) + ε1 (xi1 , yi2)
...........................................................................
y(k) (xi1 , yi2) = f (xi1 , yi2) + σE (Z) + εk (xi1 , yi2)
.............................................................................
y(n(i)) (xi1 , yi2) = f (xi1 , yi2) + σE (Z) + εn(i) (xi1 , yi2)

.

It holds

g1−1∑

i1=0

g2−1∑

i2=0

n (i) = M1
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with M1 ∈ N� {0} a fixed number.
We assume that the vectors of measurements Y (i) and Y (h) are inde-

pendent for i 6= h.
The system (1) may be written as

Y (i) = Xθ + ε (i)

where X is the matrix with n (i) rows and 2 columns

X (i) :=




1 E (Z)
. .
1n(i) E (Z)




and θ is a column vector with two rows

θ :=

(
f (xi1 , yi2)
σ

)
.

Finally

ε (i) :=




ε1 (i)
.

εn(i) (i)


 , Y (i) :=




y(1) (xi1 , yi2)
.
y(n(i)) (xi1 , yi2)


 .

Denote

Ω−1 (i) :=
(
cov
(
y(a) (i) , y(b) (i)

))−1

a,b

which we assume to exist for all i. In the above display, Ω−1 (i) is a matrix
of order n(i); the matrix Ω (i) is not the identity matrix of order n (i) since
the vector of observations is ordered according to its coordinates.

Ω−1 (i) :=




ω1,1 . ω1,n(i)

. . .
ωn(i),1 . ωn(i),n(i)


 .

The expected value of the measurement Y at point (xi1 , yi2) equals f (xi1 , yi2)+
σE (Z) . Denote mi1,i2 its GLS estimator

mi := mi1,i2 =
[(
X ′ (i) Ω−1 (i)X (i)

)]−1
X ′ (i) Ω−1 (i)Y (i) .
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This estimator is strongly consistent.
We now define the estimator outside of the nodes.
Observe that for u := (x, y)

L (PE (f)) (x, y) + σE (Z) := f (x, y) + σE (Z)

=
∑

(xi,yi)∈E

(f (xi, yi) + σE (Z)) li1 i2 (x, y) .

Denote m(u) the resulting estimator of f (u) + σE (Z)

m(u) :=
∑

(xi,yi)∈E

mi li1 i2 (u)

=
∑

(xi,yi)∈E

mi li1 (x) li2 (y) .

This factorization relies on the fact that S is a rectangle. We now eval-
uate the variance of the unbiased estimator m(u); by independence of the
measurements on the nodes

V ar (m(u)) =
2∑

i=(i1,i2)

(li1 (x) li2 (y))2 var (mi)

=
∑

i=(i1,i2)

(li1 (x) li2 (y))2G
(
σ2η2,Ω−1 (i) , X ′ (i)

)
,

where

G
(
σ2η2,Ω−1 (i) , X ′ (i)

)
:= σ2η2

(
X ′ (i) Ω−1 (i)X (i)

)−1
X ′ (i) . (23)

Note that var (L (PE (f)) (x, y)) → 0, for n (i) → ∞, due to the fact
that the generalized lest-squares estimator is consistent under the present
conditions.

The optimal design results as the solution to the following optimization
problem,





min
∑

i=(i1,i2)
( li1 i2 (x, y))2G (σ2η2,Ω−1 (i) , X ′ (i))

u ∈ U
M1 =

∑
i n (i) .

39



where the minimization is held on all choices of the set of measurements
(nodes) E and all frequencies n (i) .

Although the problem generally has a numerical solution, in some prac-
tical cases it is possible to obtain and analytic solution.

We explore a special case.
Define

Γ :=

n(i)∑

m,u

ωm,u.

Let E (Z) = 0 and the distribution of Y be symmetric around E (Y (u)).
In this case, G (σ2η2,Ω−1 (i) , X ′ (i)) becomes:

G1 := G
(
σ2η2,Ω−1 (i) , X ′ (i)

)
=

σ2η2

Γ

which depends on i through Γ; (See [14] for the proof).
In some cases G1 may be simplified as follows,

G2 := g
(
σ2η2,Ω−1 (i) , X ′ (i)

)
=

σ2η2

n (i)
. (24)

Indeed a necessary and sufficient condition for G2 is




1
.
1




′

Ω (i) =




1
.
1




′

.

(see [4]).

In many cases the function G takes on the form

σ2η2

αn (i) + β
(1 + o (1))

where α,β are constants depending on the (known) distribution of the
random variable Z, extending (24); see [2].

The problem of determining the optimal design becomes

{
min

∑
(i1,i2)

(l(i1,i2)(u))
2

αn(i)+β

M1 =
∑

i n (i) , n (i) ∈ R+.
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where the minimum holds on the choice of the nodes E and on the fre-
quencies. Fix (xi1 , yi2) and apply the Theorem of Karush-Kuhn-Tucker to

{
min

∑
(i1,i2)

(l(i1,i2)(u))
2

αn(i)+β

M1 =
∑

i n (i) , n (i) ∈ R+
.

where the minimization is held on the frequencies n (i) . We obtain

[n∗ (i)] =

∣∣l(i1,i2) (u)
∣∣
(
αM1 + β

2∏
j=1

gj

)

∑
(i1,i2)=0

∣∣l(i1,i2) (u)
∣∣ − β.

Clearly, n∗ (i) depends on the (xi1 , yi2)’s. We substitute n∗ (i) in the
variance formula, i.e. in

l∑

i=0

(
l(i1,i2) (u)

)2 σ2η2

αn (i) + β
,

with l := (g1 − 1) (g2 − 1) to obtain

V ar (m(u)) =
σ2η2

αM1 + β

(
2∏

j=1

gj

)
(

l∑

i=0

∣∣l(i1,i2) (u)
∣∣
)2

.

The optimal design hence will not depend on the value of σ2η2. Optimizing
with respect to the (xi1 , yi2)

′ s under the constraint u ∈ U , yields

min{
(xi1

,yi2)i1,i2

}
∑

i=0

∣∣l(i1,i2) (u)
∣∣ .

This is the same as the following two problems with one variable

min

gj−1∑

ij=0

∣∣l(i1,i2) (u)
∣∣ , j = 1, 2.

With a := (a1, a2), the minimization is held when j = 1 on the abscissas
xj ’s all larger than a1 and smaller than b1 and on the ordinates yj’s, all larger
than a2 and smaller than b2 when j = 2, since
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∑

i=0

∣∣∣l(i1,i2) (u)
∣∣∣ =

g1−1∑

i1=0

|li1 (u1)|
g2−1∑

ik=0

|li2 (u2)| (25)

with u:= (u1, u2) .

Now minimizing the product in (25) results in two independent minimiza-
tions, one for each of the two factors, under the corresponding constraint on
the respective terms u1 and u2. It follows that the optimal design is the
combination of two Hoel Levine marginal optimal designs.

Therefore the solution coincides with the previously obtained one, namely
the Hoel Levine design of Section 2, i.e.

s∗j (ij) =
aj + bj

2
+

bj − aj
2

cos

(
gj − 1− ij
gj − 1

π

)
, ij = 0, ..., gj − 1, j = 1, 2

with S := [a1, b1]× [a2, b2] .
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