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Experimental Implementation of an Invariant Extended Kalman

Filter-based Scan Matching SLAM

Martin Barczyk, Silvère Bonnabel, Jean-Emmanuel Deschaud and François Goulette

Abstract— We describe an application of the Invariant Ex-
tended Kalman Filter (IEKF) design methodology to the scan
matching SLAM problem. We review the theoretical founda-
tions of the IEKF and its practical interest of guaranteeing
robustness to poor state estimates, then implement the filter
on a wheeled robot hardware platform. The proposed design is
successfully validated in experimental testing.

I. INTRODUCTION

Simultaneous Localization and Mapping or SLAM is an

active area of research in robotics due to its use in emerging

applications such as autonomous driving and piloting, search-

and-rescue missions and mobile cartography [1]. SLAM is

fundamentally a sensor fusion problem, and as such it is

typically handled via an Extended Kalman Filter (EKF),

although a number of direct nonlinear designs have also been

proposed e.g. [2], [3], [4], [5], [6].

Applying an EKF to the SLAM problem was first seen

in [7], using a state vector which keeps track of landmark

positions and whose dimension grows as new landmarks

enter into view. Using this technique for experimentally

validated localization and mapping was seen in e.g. [8].

An alternative non-EKF-based approach to SLAM was first

proposed in [9] relying on matching successive scans of

the environment from onboard sensors in order to local-

ize the vehicle and construct a map of the environment.

This second approach was experimentally implemented in

e.g. [10] for autonomously mapping an abandoned mine. The

scan matching-based method uses vehicle odometry to obtain

estimates of the vehicle pose by numerical integration of

the dynamics, known as dead-reckoning [11]. The estimated

poses are then used to localize new scans before matching

them with previous scan(s). This procedure can be seen as

a sensor fusion problem between noisy odometry and scan

matching data, and thus handled by an EKF as proposed

in [12]. We will employ the EKF-based scan matching

approach to SLAM throughout the rest of this paper.

The EKF works by linearizing a system about its estimated

trajectory, then using estimates obtained from an observer

for this linearized model to correct the state of the original

system. In this way the EKF relies on a closed loop which

can be destabilized by sufficiently poor estimates of the

trajectory, known as divergence [13]. Clearly, reducing or

eliminating the dependence of the EKF on the system’s

trajectory would increase the robustness of the overall sys-

tem. An emerging methodology to accomplish this goal is
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the Invariant EKF [14], [15], built on the theoretical foun-

dations of invariant (symmetry-preserving) observers [16],

specialized to the case of Lie groups in [17], [18]. The

IEKF technique has already demonstrated experimental per-

formance improvements over a conventional EKF in aided

inertial navigation designs [19], [20]. Applying the IEKF to

scan matching SLAM was first demonstrated in [21]. The

contribution of the present paper is to design and implement

an IEKF-based scan matching SLAM for a wheeled indoor

robot and experimentally validate the design.

II. MATHEMATICAL PRELIMINARIES

A. System Dynamics

The dynamics of a 6 DoF vehicle are governed by

Ṙ = RS(ω)

ṗ = Rµ
(1)

where R ∈ SO(3) is a rotation matrix measuring attitude

of the vehicle, ω ∈ R
3 is the body-frame angular velocity

vector, S(·) is the 3 × 3 skew-symmetric matrix such that

S(x)y = x× y, the R
3 cross-product, p ∈ R

3 is the position

vector of the vehicle expressed in coordinates of the ground-

fixed frame, and µ is the velocity vector of the vehicle

expressed in body-frame coordinates. We assume ω and µ are

directly measurable using on-board sensors, e.g. via a triaxial

rate gyro and odometers on a wheeled vehicle. The vehicle

state space can be identified as the Special Euclidean group

SE(3) = SO(3) × R
3, where each X ∈ SE(3) is written

as the 4× 4 homogeneous matrix [22]

X =

[

R p
0 1

]

In this way dynamics (1) can be compactly rewritten as

Ẋ = XΩ where Ω =

[

S(ω) µ
0 0

]

(2)

We assume that the pose X of the vehicle can be obtained

by performing the procedure of scan matching described in

Section II-D, such that the output of the system is

Y = X (3)

B. Geometry of SE(3)

The system dynamics (2) evolve on the Lie group SE(3),
which provides access to a number of useful results from

differential geometry.

For any Lie group G, the exponential map exp : Lie(G) →
G maps elements of the Lie algebra to the Lie group, where



Lie(G) ∼= TeG, the tangent space to G at the identity element

e. The following properties of this map will be used in the

sequel:

• exp is a smooth map from Lie(G) to G
• exp restricts to a diffeomorphism from some neighbour-

hood of 0 in Lie(G) to a neighbourhood of e in G
• (expX)−1 = exp(−X)

For the case of G = SE(3) written in homogeneous matrix

coordinates, Lie(SE(3)) ∼= se(3) where the Lie algebra

members ξ ∈ se(3) are written as [22]

ξ =

[

S(vR) vp
0 0

]

:= H

([

vR
vp

])

, vR, vp ∈ R
3 (4)

and exp : se(3) → SE(3) is the standard matrix exponential

eξ := I + ξ +
1

2!
ξ2 + · · ·

The map H : R6 → se(3) defined in (4) is a vector space

isomorphism. Remark that the Ω term in (2) can be written

as Ω = H([ω, µ]).
As stated above, exp restricts to a diffeomorphism from a

neighborhood of 0 in Lie(G) = se(3) to a neighborhood U
of e in G = SE(3). The inverse of exp is the logarithmic

map log : G→ Lie(G) such that log ◦ exp(g) = g, ∀g ∈ U .

The formula for log : SE(3) → se(3) using homogeneous

matrices is [22]

log

[

R p
0 1

]

=

[

S(a) A−1p
0 0

]

, S(a) = θS(ω)

θ = acos

(

traceR− 1

2

)

, S(ω) =
1

2 sin θ
(R−RT )

A = I +
S(a)

‖a‖2
(1− cos ‖a‖) +

S(a)2

‖a‖3
(‖a‖ − sin ‖a‖)

(5)

We now discuss approximations which will be employed

in the sequel. Consider the case where X = eξ is close

to identity. We know the exponential map restricts to a

diffeomorphism from a neighborhood of zero in se(3) to

a neighborhood of identity in SE(3), thus ξ is close to the

matrix 04×4. This means ξ2 and all subsequent terms in eξ

can be dropped as higher-order terms, such that

X ≈ I + ξ, X ∈ SE(3) close to identity (6)

From (expX)−1 = exp(−X) we have

X−1 ≈ I − ξ, X ∈ SE(3) close to identity (7)

Still consideringX close to identity, in (5) we have traceR ≈
3 =⇒ θ ≈ 0 =⇒ a ≈ 0, thus ‖a‖ is small and so

S(a) ≈
θ

2θ
(R− RT ) =

R −RT

2

A ≈ I +
S(a)

‖a‖2
(1− 1) +

S(a)2

‖a‖3
(‖a‖ − ‖a‖) = I

This leads to the projection map π : SE(3) → se(3),

X =

[

R p
0 1

]

=⇒ π(X) =

[

R−RT

2 p
0 0

]

(8)

The map π is defined everywhere but it is the inverse of

exp only when X ∈ SE(3) is close to identity. In this case

with X = eξ we have π(X) = ξ and by (6) we obtain

X − I ≈ π(X), X ∈ SE(3) close to identity (9)

C. Iterative Closest Point algorithm

Assume the vehicle is equipped with sensors which cap-

ture 3-D scans of the environment, either directly using a

time-of-flight LiDAR or indirectly using image-based re-

construction e.g. a Kinect. These scans are represented as

sets of points expressed in coordinates of the body-fixed

frame, known as point clouds. The Iterative Closest Point

(ICP) algorithm [23] is an iterative procedure to find the

δX ∈ SE(3) transformation which aligns cloud A := {ai},

1 ≤ i ≤ NA to cloud B := {bi}, 1 ≤ i ≤ NB by minimizing

the least-squares cost function

NA
∑

i=1

‖δXai − b′i‖
2 where b′i := argmin

bi∈B

‖bi − ai‖
2 (10)

Points {b′i} can be found using an approximate nearest-

neighbour search algorithm. The ICP algorithm guarantees

monotonic convergence to a local minimum of the cost

function (10).

D. Scan Matching algorithms

By construction the vehicle pose X transforms elements

of the 3-D point cloud A = {ai} from the robot-fixed frame

to the ground-fixed frame.

Because successive scans contain elements from the same

scene, we can estimate the pose of the robot X̂ by repeatedly

using the ICP algorithm to compute the transformation δX
between successive point clouds, known as scan matching.

The algorithm proceeds as follows:

1) Define the initial robot pose as X̂ = I and assign the

initial point cloud to A
2) Whenever a new point cloud is available,

a) Transfer contents of cloud A to cloud B
b) Assign the new point cloud to A
c) Compute δX aligning A to B via ICP

d) Let X̂ = X̂δX

3) Goto 2.

There are two issues with this approach. First, if the scanning

rate is not sufficiently fast, the ICP algorithm may compute

an incorrect δX due to convergence to an alternative local

minimum of (10). A second problem is loss of observability:

for certain types of environments e.g. moving along a long

featureless corridor, successive point cloud scans will be

identical such that δX = I , and so the estimated pose will

not get updated despite the robot moving.

A more robust pose estimation scheme makes use of the

on-board inertial sensors. We numerically integrate (2) to

obtain an initial estimate of the current pose X̂ , which is used

to pre-align the scans in the body-fixed frame. The algorithm

proceeds as follows:

1) Assign the initial robot pose X̂ = I and initial point

cloud to B



2) Numerically integrate
˙̂
X = X̂Ω using the current

sensor signals

3) Whenever a new point cloud is available,

a) Assign the new cloud to A and compute X̂−1{bi}
b) Compute δX aligning A to X̂−1{bi} via ICP

c) Update estimated pose as X̂ = X̂δX
d) Using this updated pose compute X̂{ai} and

store the result as B

4) Goto 2.

In this odometry-aided scan matching algorithm cloud

X̂−1{bi} is pre-aligned to A, reducing the risk of the

ICP converging to an incorrect local minimum even at low

scanning rates. Meanwhile in unobservable environments

where the two clouds are indistinguishable, X̂ will still get

updated at step 2.

E. Computing covariance of pose estimates

For the second algorithm in Section II-D, the cost function

to be minimized by the ICP at every new scan is

f(δX) =
∑

‖δXai − X̂−1bi‖
2 (11)

and the corresponding pose estimate output is

Y = X = X̂δX (12)

Assuming that the X̂ obtained from odometry integration is

reasonably accurate, the clouds {ai} and X̂−1{bi} in (11)

will be pre-aligned such that δX will be close to identity.

We can thus employ (6) in (11):

f(ξ) =
∑

‖ai − X̂−1bi + ξai‖
2 (13)

Expanding ξai via (4) gives

ξai = S(vR)ai + vp =
[

−S(ai) I3
]

[

vR
vp

]

and by defining Bi := [S(ai) − I3], x := [vR vp]
T and

yi := ai − X̂−1bi the cost function (13) is rewritten as

f(x) =
∑

‖yi −Bix‖
2 (14)

meaning that as long as the odometry is reasonably accurate,

the ICP will behave as a linear least-squares estimator of x.

Because the ICP aligns successive scans, we first assume

the residuals yi − Bix will have mean zero and be nor-

mally distributed with diagonal covariance σ2I3 representing

additive Gaussian sensor noise on the point cloud. Under

these conditions the covariance of the least-squares estimate

x̂ which minimizes (14) is given by [24]

σ2
[

∑

BT
i Bi

]−1

= σ2

[

N
∑

i=1

[

−S(ai)2 S(ai)
−S(ai) I3

]

]−1

where ai are points of the current cloud in the robot-fixed

frame. However the assumption of independent Gaussian

noises is unrealistic, e.g. indicating that sub-millimeter ac-

curacy can be achieved by scan matching two point clouds

obtained from a Kinect for which σ ≈ 5 cm. We thus

propose as a relevant approximation to rescale the above

covariance matrix as

Nσ2

[

N
∑

i=1

[

−S(ai)2 S(ai)
−S(ai) I3

]

]−1

:= C (15)

We then have x̂ ∼ N (x,C) =⇒ x̂ = x + ν where x̂ =
[v̂R v̂p]

T and ν := [νR νp]
T ∼ N (0, C).

Returning to the pose output (12) and employing (6) with

ξ̂ := H(x̂) via (4) denoting the estimate produced by the

ICP from measured (noisy) data, the corresponding estimated

pose output is

Ym = X̂(I + ξ̂)

Since H is linear ξ̂ = H(x̂) = H(x) +H(ν) := ξ + V thus

Ym = X̂(I + ξ + V ) = X̂(δX + V ) = X + X̂V

Note that XV = X̂δXV = X̂(I + ξ)V = X̂V + X̂ξV ≈
X̂V since ξV is a second-order term, and so the pose output

from odometry-aided measured scan matching is

Ym = X +XV, V = H(ν) =

[

S(νR) νp
0 0

]

(16)

where cov(ν) = C is given by (15).

III. ESTIMATOR DESIGN

A. Invariant Observer

We first design an invariant observer for the noise-free

system (2), (3) by following the method in [16], [18]; a

tutorial presentation is available in [20]. Let G be a Lie

group acting on the system dynamics ẋ = f(x, u) state and

input spaces via the Lie group actions ϕg : G × x → x
and ψg : G × u → u, respectively. This system is termed

G-invariant if

d

dt
ϕg(x) = f(ϕg(x), ψg(u)), ∀g ∈ G

Finding the actions making the system invariant is non-

systematic, although it is based on the physics of the

problem. For dynamics (2), choosing G = SE(3) and

ϕgx = gx, ψgu = u can be directly verified to provide

G-invariance, which we refer to as left invariance since

ϕg = Lg. Left invariance physically represents applying

a constant rigid-body transformation to ground-fixed frame

vector coordinates, for which the governing dynamics (2) still

hold. The property of G-invariance is not unique, for instance

G = SE(3) with ϕgx = xg, ψgu = g−1ug verifies another

G-invariance of (2) known as right, which was employed

in [25], [21]. However we will be employing left invariance

for reasons explained in Section III-B.

The remaining steps for obtaining an invariant observer are

systematic. The actions ϕg , ψg induce a Lie group action

on the output space ρg : G × y → y satisfying the G-

equivariance

ρg(y) = h(ϕg(x), ψg(u)), ∀g ∈ G

where in our case (3) with left invariance gives ρgy = gy.

The subsequent design steps consist of computing the mov-

ing frame, finding the complete set of invariants, obtaining



the invariant output error, invariant estimation error and

invariant frame, and obtaining the structure of the invariant

observer as well as its associated invariant estimation error

dynamics. The details of the steps are fully discussed in [16],

[20] and will not be reprinted here due to space constraints.

For the present system (2), (3) under left invariance, we

obtain the moving frame γ(x) = X ; the complete set of

invariants

I(x, u) = ψγ(x)(u) = Ω, Jh(x, y) = ργ(x)(y) = X−1Y

the invariant output error

E(x̂, u, y) = Jh(x̂, h(x̂, u))− Jh(x̂, y) = I − X̂−1Y

the invariant estimation error

η(x, x̂) = ϕγ(x)(x̂)− ϕγ(x)(x) = X−1X̂ − I

redefined as η = X−1X̂ for convenience; the invariant frame

wR
i = dϕxv

R
i =

[

RS(ei) 0
0 0

]

, wp
i = dϕxv

p
i =

[

0 Rei
0 0

]

and the invariant observer

˙̂
X = X̂Ω+

3
∑

i=1

LR
i

[

R̂S(ei) 0
0 0

]

+
3

∑

i=1

Lp
i

[

0 R̂ei
0 0

]

= X̂Ω+

[

R̂ p̂
0 1

] [

S(LR) Lp

0 0

]

:= X̂Ω + X̂L (17)

where LR ∈ R
3, Lp ∈ R

3 are smooth functions of I(x̂, u),
E(x̂, u, y) such that se(3) ∋ L(I, 0) = 0.

We cannot directly employ E = I − X̂−1Y to form the

gain term L in (17) since I − X̂−1Y /∈ SE(3). Instead we

take L = π(X̂−1Y ) since by (9), X̂−1Y = I ⇐⇒ L = 0 as

required. We add the observer gain matrix K ∈ R
6×6 as

L = H ◦K ◦H−1[π(X̂−1Y )]

With this L the dynamics of η = X−1X̂ compute to

η̇ = X−1XΩX−1X̂ +X−1X̂Ω+X−1X̂L

= Ωη + ηΩ+ ηH ◦K ◦H−1[π(η−1)]
(18)

and stabilizing the (nonlinear) dynamics (18) to η = I by

choice of gains K leads to an asymptotically stable nonlinear

observer (17). The stabilization process is simplified by (18)

not being dependent on the estimated state X̂ ; indeed the fun-

damental feature of the invariant observer is that it guarantees

η̇ = Υ(η, I(x̂, u)) [16, Theorem 2] with I(x̂, u) = Ω in the

present example, which simplifies gain selection over the

general case, but does not make it systematic. For this reason

we will use the Invariant EKF method to obtain stabilizing

gains.

B. Invariant EKF

We first recall the continuous-time EKF algorithm. Given

the nonlinear system ẋ = f(x, u, w), y = h(x, v) where w
and v are the process and output Gaussian noise vectors,

we linearize about (x, u, w, y, v) = (x̂, u, 0, ŷ, 0), a nominal

(noise-free) trajectory of the system, ˙̂x = f(x̂, u, 0), ŷ =
h(x̂, 0), and obtain

δẋ = Aδx+Bw

δy = Cδx+Dv

The Kalman Filter for this linearized time-varying system is

δ ˙̂x = Aδx̂+K(δy − Cδx̂)

K = PCT (DRDT )−1

Ṗ = AP + PAT − PCT (DRDT )−1CP +BQBT

(19)

and δx̂+ x̂ then becomes the estimated state of the original

nonlinear system. The above EKF possesses the estimation

error ε = δx̂− δx dynamics

ε̇ = (A−KC)ε−Bw +KDv

The Invariant EKF is a systematic approach to computing

the gains K of an invariant observer by linearizing its

invariant estimation error dynamics. We first introduce input

and output noise terms ũ = u + w, ỹ = y + v such

that w and v preserve the G-invariance of the system as

ẋ = f(x, ũ − w) and ˙̂x = F (x̂, ũ, y + v). Using these we

compute η̇ = Υ(η, I(x̂, u), w, v) then linearize about η = η,

w = v = 0 to obtain the form

δη̇ = (A−KC)δη −Bw +KDv

We then read off the (A,B,C,D) matrices and employ the

conventional EKF formulas (19) to compute stabilizing gains

K for the invariant observer. The interest of the Invariant

EKF is the reduced dependence of the linearized system on

the estimated system trajectory of the original system, specif-

ically only through the latter’s estimated invariants I(x̂, u).
In our present case I(x̂, u) = Ω thus the (A,B,C,D)
matrices are guaranteed not to depend on the estimated state,

which increases the filter’s robustness to poor state estimates

and precludes divergence (c.f. Section I).

Returning to (2), (3), we first need to introduce w
and v noise terms which preserve G-invariance and G-

equivariance. As discussed in Section III-A the left invari-

ance case corresponds to transforming ground-fixed frame

vector coordinates, and so introducing noise terms expressed

in the body-fixed frame will not affect the invariance of the

system. For inertial sensors we write

Ωm =

[

S(ω) µ
0 0

]

+

[

S(νω) νµ
0 0

]

:= Ω +W

i.e. use an additive sensor noise model, which is standard in

inertial navigation design [11] since cov(W ) can be directly

identified from logged sensor data. This is precisely the

reason why we chose to use the left-invariant version of the

observer in Section III-A. For the output equation we have

obtained (16) where V represents body-frame noise terms

due to the ICP alignment being performed in the body-fixed

frame.



Introducingw and v as ẋ = f(x, ũ−w), ˙̂x = F (x̂, ũ, y+v)
into dynamics (2) and observer (17) we have

Ẋ = X(Ωm −W )

˙̂
X = X̂Ωm + X̂Lm, Lm := H ◦K ◦H−1[π(X̂−1Ym)]

and computing η̇ where η = X−1X̂ gives

η̇ = −X−1X(Ωm −W )X−1X̂ +X−1(X̂Ωm + X̂Lm)

= ηΩm − Ωmη +Wη + ηLm

Linearizing the above around η = η, w = v = 0 we have

η ≈ I + ξ, η−1 ≈ I − ξ by (6), (7) and so

ξ̇ = (I + ξ)Ωm − Ωm(I + ξ) +W (I + ξ) + (I + ξ)Lm

= ξΩm − Ωmξ +W +H ◦K ◦H−1[π(X̂−1Ym)]

and

π(X̂−1Ym) = X̂−1Ym − I = η−1(I + V )− I

= (I − ξ)(I + V )− I = V − ξ

By (4) we define ξ := H([ζR ζp]), Ωm := H([ωm µm]),
W := H([νω νµ]), V := H([νR νp]) and write ξ̇ as

[

ζ̇R
ζ̇p

]

=

[

−S(ωm) 0
−S(µm) −S(ωm)

] [

ζR
ζp

]

+

[

νω
νµ

]

+K

([

νR
νp

]

−

[

ζR
ζp

])

By matching the above with δη̇ = (A−KC)δη−Bw+KDv
we read off

A =

[

−S(ωm) 0
−S(µm) −S(ωm)

]

, B =

[

−I 0
0 −I

]

C =

[

I 0
0 I

]

, D =

[

I 0
0 I

]

Just as predicted, the linearized system matrices do not

depend on the estimated trajectory X̂ but only on Ω =
I(x̂, u). Using (A,B,C,D) with (19) we compute the gain

K of the invariant observer by

Ṗ = AP + PAT − PV −1P +W

K = PV −1

IV. EXPERIMENTAL VALIDATION

A. Hardware Platform

Fig. 1. The Wifibot Lab v4 Robot

The wheeled robot used for our experiments is shown

in Figure 1. The robot is equipped with an Intel Core

i5-based single-board computer, WLAN 802.11g wireless

networking, all-wheel drive via 12V brushless DC motors,

and a Kinect camera providing 3-D point cloud scans of the

environment. The odometry data at 50 Hz and Kinect point

clouds at 5 Hz are passed to the IEKF which estimates the

plane position (x, y) and heading angle ψ of the vehicle.

The robot is also equipped with a Hokuyo UTM-30LX

LiDAR which provides centimeter-level positioning accuracy

through proprietary SLAM code [26]. This LiDAR-derived

data is used solely to provide a reference trajectory when

plotting results.

B. Experimental Results

Fig. 2. First experiment field

1) Straight line trajectory: The first experiment field is the

laboratory shown in Figure 2. The robot begins stationary at

the bottom edge of the picture then advances with constant

velocity in a straight line along the marking on the floor

towards the far door, where it comes to a stop. The motion

was commanded in open-loop and the robot’s trajectory

exhibited a slight veer to the left over the full length. The

state estimates by the IEKF are plotted against the LiDAR-

derived reference states in Figure 3.
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Fig. 3. Estimates for linear trajectory: IEKF (solid), reference (dashed)

Figure 3 illustrates that the IEKF provides coherent esti-

mates: both the forward motion and the left veer are correctly

rendered in the estimates. The RMS discrepancy of the

estimates from the reference trajectory is (4.5, 5.3) cm for

the (x, y) positions and 0.9◦ for the heading angle ψ.



Fig. 4. Second experiment field

2) Circular trajectory: The second experiment consists

of executing a circular trajectory in the environment shown

in Figure 4. The test area was surrounded on all sides

by a bounding wall, and a number of visual landmarks

were placed around the test area to provide better scan

matching conditions during turning maneuvers. The robot

began stationary, executed two concentric counter-clockwise

circles with a constant velocity, and then stopped at its initial

position. The overhead position estimates from the IEKF

are plotted against the LiDAR-derived reference trajectory

in Figure 5.
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Fig. 5. Estimates for circular trajectory: IEKF (solid), reference (dashed)

The IEKF estimates once again follow the LiDAR refer-

ence trajectory; the computed RMS errors for (x, y) and ψ
are (5.1, 3.5) cm and 2.5◦, respectively.

V. CONCLUSIONS

We have described a scan matching SLAM design based

on an Invariant EKF. The proposed approach guarantees

robustness of the filter to poor state estimates X̂ , which

may lead to degraded performance or even destabilize the

filter in the conventional EKF case. The Invariant EKF

was successfully implemented in hardware and performed

well in experiments, making it a promising candidate for

more complex SLAM applications such as mobile outdoor

cartography.
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