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Perturbation of the loop measure

Yves Le Jan Jay Rosen

March 20, 2014

Abstract

The loop measure is associated with a Markov generator. We compute
the variation of the loop measure induced by an infinitesimal variation
of the generator affecting the killing rates or the jumping rates.

1 Introduction

Professor Fukushima’s contribution to probabilistic potential theory was sem-
inal. His book on Dirichlet spaces [7] was the first complete exposition in
which the functional analytic, potential theoretic, and probabilistic aspects
of the theory were considered jointly, as different aspects of the same math-
ematical object. In particular, transformations of the energy form, such as
restriction to an open set, trace on a closed set, change of the equilibrium
(or killing) measure, change of reference measure, etc... have probabilistic
counterparts. In the second chapter, the possibility of superposing different
Dirichlet forms was recognized. The present paper follows this line of research.
But we will focus on Markov loops and bridges rather than Markov paths. We
will present them in the next section. Let us stress however that the existence
of loop or bridge measures seems to require more than the assumption of a
Markov process defined up to polar sets, which is the basic assumption for a
Markov process associated with a Dirichlet form. The existence of a Green
function seems to be required. Our purpose is to compute the variation of
the loop measure induced by an infinitesimal variation of the generator. This
variation may in particular affect the killing rates or the jumping rates. In
the case of symmetric continuous time Markov chains, the question has been
addressed in chapter 6 of [9]. The results are formally close to formulas used
in conformal field theory for operator insertions (see for example [8]). We try
here to extend them to a more general situation, to show in particular that
the bridge measures can be derived from the loop measure.
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2 Background on loop measures

We begin by introducing loop measures for Borel right processes (such as Feller
processes) on a rather general state space S, which we assume to be locally
compact with a countable base. Let X = (Ω,Ft, Xt, θt, P

x) be a transient
Borel right process [12] with cadlag paths (such as a standard Markov process
[1]) with state space S and jointly measurable transition densities pt(x, y)
with respect to some σ-finite measure m on S. We assume that the potential
densities

u(x, y) =

∫ ∞

0
pt(x, y) dt

are finite off the diagonal, but allow them to be infinite on the diagonal. We
do not require that pt(x, y) is symmetric.

We assume furthermore that 0 < pt(x, y) <∞ for all 0 < t <∞ and x, y ∈
S, and that there exists another Borel right process X̂ in duality with X (Cf
[1]), relative to the measure m, so that its transition probabilities P̂t(x, dy) =
pt(y, x)m(dy). These conditions allow us to use material on bridge measures
in [6]. In particular, for all 0 < t < ∞ and x, y ∈ S, there exists a finite
measure Qx,yt on Ft− , of total mass pt(x, y), such that

Qx,yt
(
1{ζ>s} Fs

)
= P x (Fs pt−s(Xs, y)) , (2.1)

for all Fs ∈ Fs with s < t. (We use the letter Q for measures which are not
necessarily of mass 1, and reserve the letter P for probability measures.) Qx,yt
should be thought of as a measure for paths which begin at x and end at y at
time t. When normalized, this gives the bridge measure P x,yt of [6].

We use the canonical representation of X in which Ω is the set of cadlag
paths ω in S∆ = S ∪ ∆ with ∆ /∈ S, and is such that ω(t) = ∆ for all
t ≥ ζ = inf{t > 0 |ω(t) = ∆}. Set Xt(ω) = ω(t). We define a σ-finite measure
µ on (Ω,F) by

∫
F dµ =

∫ ∞

0

1

t

∫
Qx,xt (F ◦ kt) dm(x) dt (2.2)

for all F measurable functions F on Ω. Here kt is the killing operator defined
by ktω(s) = ω(s) if s < t and ktω(s) = ∆ if s ≥ t, so that k−1

t F ⊂ Ft− .
As usual, if F is a function, we often write µ(F ) for

∫
F dµ. µ is σ-finite as

any set of loops in a compact set with lifetime bounded away from zero and
infinity has finite measure.

We call µ the loop measure of X because, when X has continuous paths,
µ is concentrated on the set of continuous loops with a distinguished starting
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point (since Qx,xt is carried by loops starting at x). Moreover, it is shift
invariant. More precisely let ρu denote the loop rotation defined by

ρuω(s) =

{
ω(s+ u mod ζ(ω)), if 0 ≤ s < ζ(ω)
∆, otherwise.

Here, for two positive numbers a, b we define a mod b = a−mb as the unique
positive integer m such that 0 ≤ a−mb < b . µ is invariant under ρu, for any
u. We let Fρ denote the σ-algebra of F measurable functions F on Ω which
are invariant under ρ, that is F ◦ ρu = F for all u ≥ 0. Loop functionals of
interest are mostly Fρ - measurable. Recall that Poisson processes of intensity
µ appear naturally as produced by loop erasure in the construction of random
spanning trees through the Wilson algorithm (see chapter 8 in [9] ). Although
the definition of µ in (2.2), especially the 1

t , may look forbidding, µ often has
a nice form when applied to specific functions in Fρ. A particular function in
Fρ is given by

φ(f) =

∫ ∞

0
f(Xt) dt, (2.3)

where f is any measurable function on S. If fj , j = 1, . . . , k ≥ 2 are non-
negative functions on S, then by [11, Lemma 2.1]

µ




k∏

j=1

φ(fj)


 (2.4)

=
∑

π∈P⊙

k

∫
u(yπ(1), yπ(2)) · · ·u(yπ(k−1), yπ(k))u(yπ(k), yπ(1))

k∏

j=1

fj(yj) dyj

where P⊙
k denotes the set of permutations of [1, k] on the circle. (For example,

(1, 3, 2), (2, 1, 3) and (3, 2, 1) are considered to be one permutation π ∈ P⊙
3 .)

We note however that in general when u is infinite on the diagonal

µ (φ(fj)) = ∞.

For k ≥ 2, the integral (2.4) can be finite if the fi satisfy certain integrabil-
ity conditions: see the beginning of section 3. Consider more generally the
multiple integral

∑

π∈T ⊙

k

∫

0≤r1≤···≤rk≤t
fπ(1)(Xr1) · · · fπ(k)(Xrk). (2.5)
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where T ⊙
k denotes the set of translations π of [1, k] which are cyclic mod k,

that is, for some i, π(j) = j + i, mod k, for all j = 1, . . . , k.
Finite sums of multiple integrals such as these form an algebra (see exercise

11, p.21 in [9]) which generates Fρ, [3].
Finally, let a(x) be a bounded, strictly positive function on S. Define the

time changed process Yt = Xτ(t) where τ(t) =
∫ t
0 a(Ys) ds is the inverse of the

CAF At =
∫ t
0 1/a(Xs) ds. It satisfies the duality assumption relative to the

measure a ·m. It then follows as in [5, section 7.3] that if uX(x, y), uY (x, y)
denote the potential densities of X,Y respectively with respect to m, a · m
respectively, then

uY (x, y) = uX(x, y)/a(y). (2.6)

It follows that µY is the image of µX by the time change.

3 Multiple CAF’s and perturbation of loop mea-

sures

Let M(S) be the set of finite signed Radon measures on B(S). We say that
a norm ‖ · ‖ on M(S) is a proper norm with respect to a kernel u if for all
n ≥ 2 and ν1, . . . , νn in M(S)

∣∣∣
∫ n∏

j=1

u(xj , xj+1)
n∏

i=1

dνj(xi)
∣∣∣ ≤ Cn

n∏

j=1

‖νj‖, (3.1)

(with xn+1 = x1) for some universal constant C < ∞. In Section 6 of [10]
we present several examples of proper norms which depend upon various hy-
potheses about the kernel u.

In particular, the following norm is related to the square root of the gen-
erator of X, which defines the Dirichlet space in the m-symmetric case:

‖ν‖w :=

(∫ ∫ (∫
w(x, y)w(y, z) dν(y)

)2

dm(x) dm(z)

)1/2

, (3.2)

where

w(x, y) =

∫ ∞

0

ps(x, y)√
πs

ds. (3.3)

To see that ‖ν‖w is a proper norm we first note that

u(x, z) =

∫
w(x, y)w(y, z) dm(y) (3.4)
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(It is interesting to note that w is the potential density of the processXTt where
Tt is the stable subordinator of index 1/2. In operator notation (3.4) says that
W 2 = U where W and U are operators with kernels w and u respectively.)

Using (3.4)

n∏

j=1

u(zj , zj+1) =
n∏

j=1

∫
w(zj , λj)w(λj , zj+1) dm(λj) (3.5)

=

n∏

j=1

∫
w(zj , λj)w(λj−1, zj) dm(λj)

in which zn+1 = z1 and λ0 = λn. It follows from this that

∣∣∣
∫ n∏

j=1

u(zj , zj+1)
n∏

j=1

dνj(zj)
∣∣∣ (3.6)

=

∣∣∣∣∣

∫ n∏

j=1

(∫
w(zj , λj)w(λj−1, zj) dνj(zj)

) n∏

j=1

dm(λj)

∣∣∣∣∣

≤
n∏

j=1

(∫ ∫ (∫
w(zj , s)w(t, zj) dνj(zj)

)2

dm(s) dm(t)

)1/2

≤
n∏

j=1

‖νj‖w,

where, for the first inequality, we use repeatedly the Cauchy-Schwarz inequal-
ity.

Lastly, set

Mν(x, z) =

∫
w(x, y)w(y, z) dν(y). (3.7)

Since ‖ν‖w is the L2 norm of Mν , and Mν+ν′ =Mν+Mν′ , we see that ‖ν‖w is
a norm. (This can also be viewed as the Hilbert-Schmidt norm of the operator
defined by the kernel Mν).

We denote by R+ the set of positive bounded Revuz measures ν on S that
are associated with X. This is explained in detail in Section 2.1 of [10]. We
use Lνt to denote the CAF with Revuz measure ν.

Let ‖ · ‖ be a proper norm on M(S) with respect to the kernel u. Set

M+
‖·‖ = {positive ν ∈ M(S) | ‖ν‖ <∞}, (3.8)

and
R+

‖·‖ = R+ ∩M+
‖·‖. (3.9)
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Let M‖·‖ and R‖·‖ denote the set of measures of the form ν = ν1 − ν2 with

ν1, ν2 ∈ M+
‖·‖ or R+

‖·‖ respectively. We often omit saying that both R‖·‖ and

‖ · ‖ depend on the kernel u.
Let ‖ · ‖ be a proper norm for u. For νj ∈ R‖·‖, j = 1, . . . , k, let

Mν1,...,νk
t =

∑

π∈T ⊙

k

∫

0≤r1≤···≤rk≤t
dL

νπ(1)
r1 · · · dLνπ(k)rk . (3.10)

We refer to Mν1,...,νk
t as a multiple CAF. Let

Qx,y (F ) =

∫ ∞

0
Qx,yt (F ◦ kt) dt. (3.11)

We have the following analogue of [9, Proposition 5] and [10, Lemma 2.1].

Lemma 3.1 For any measures νj ∈ R+
‖·‖, j = 1, . . . , k ≥ 2,

µ(Mν1,...,νk
∞ ) =

∫
u(y1, y2) · · ·u(yk−1, yk)u(yk, y1)

k∏

j=1

dνj(yj), (3.12)

Qx,y(Mν1,...,νk
∞ ) (3.13)

=
∑

π∈T ⊙

k

∫
u(x, y1)u(y1, y2) · · ·u(yk−1, yk)u(yk, y)

k∏

j=1

dνπ(j)(yj),

and if ν ∈ R+
‖·‖

µ(Mν1,...,νk
∞ Lν∞) (3.14)

=

k∑

i=1

∫ 

i−1∏

j=1

u(yj , yj+1)




u(yi, x)u(x, yi+1)




k∏

j=i+1

u(yj , yj+1)




k∏

j=1

dνj(yj) dν(x)

=

∫
Qx,x(Mν1,...,νk

∞ ) dν(x),

with yk+1 = y1.
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The proof of (3.12) follows that of [10, Lemma 2.1], noticing that the crucial
step [10, (2.23)-(2.28)] used the fact that the set of permutations of [1, k] is
invariant under translation mod k. Since T ⊙

k is invariant under translation
mod k, the same proof will work here. The proof of (3.13), which is much
easier, follows that of [10, Lemma 4.2]. The first equality in (3.14) follows
from (3.12) and the fact that

Mν1,...,νk
∞ Lν∞ =

k∑

i=1

M
ν1,...,νi−1,ν,νi,...,νk
∞ , (3.15)

which is easily verified using Lν∞ =
∫∞
0 dLνt . The second equality in (3.14)

then follows by comparing with (3.13).

Let now X(ǫ), ǫ ≥ 0, X(0) = X, be a family of Markov processes with
potential densities u(ǫ)(x, y), and let µ(ǫ) denote the loop measure for X(ǫ).
Assume that we can use the same proper norm ‖ · ‖ for all u(ǫ). Let

u′(0)(x, y) =
du(ǫ)(x, y)

dǫ
|ǫ=0, (3.16)

and assume that ‖·‖ is also a proper norm for u′(0). Then using the last Lemma
we have formally, that is, assuming we can justify interchanging derivative and
integral in the second equality,

d

dǫ
µ(ǫ)(M

ν1,...,νk
∞ )

∣∣∣
ǫ=0

(3.17)

=
d

dǫ

∫
u(ǫ)(y1, y2) · · ·u(ǫ)(yk−1, yk)u(ǫ)(yk, y1)

k∏

j=1

dνj(yj)
∣∣∣
ǫ=0

=
k∑

i=1

∫
u(y1, y2) · · ·u′(0)(yi, yi+1) · · ·u(yk, y1)

k∏

j=1

dνj(yj)

=
∑

π∈T ⊙

k

∫
u(y1, y2) · · ·u(yk−1, yk)u

′
(0)(yk, y1)

k∏

j=1

dνπ(j)(yj)

where we have set yk+1 = y1.
Assume now that for some distribution F on S × S we have

u′(0)(yk, y1) =

∫

S×S
u(yk, x)F (x, y)u(y, y1) dm(x) dm(y). (3.18)
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Let A‖·‖ denote the space spanned by the multiple CAF’s with νj ∈ R‖·‖.
Note it is an algebra. Then comparing (3.17) and (3.13) we would obtain

dµ(ǫ)(A)

dǫ
|ǫ=0 =

∫

S×S
F (x, y)Qy,x(A) dm(x) dm(y), (3.19)

for all A ∈ A‖·‖.
In the following sections we present specific examples where this heuristic

approach is made rigorous.

4 Perturbation of Lévy processes

Let X be a transient Lévy process in Rd with characteristic exponent ψ so
that, as distributions

u(x, y) =

∫
eiλ(y−x)

ψ(λ)
dλ. (4.1)

In [10] we showed that ‖ · ‖ψ,2 is a proper norm for u where

‖ν‖2ψ,2 =
∫ (

1

|ψ| ∗
1

|ψ| (λ)
)

|ν̂(λ)|2 dλ. (4.2)

Let κ be a Lévy characteristic exponent, so that the same is true for ψ+ǫκ,
and let X(ǫ) be the Lévy process with characteristic exponent ψ + ǫκ. We let
u(ǫ)(x, y) denote the potential of X(ǫ) so that, as distributions

u(ǫ)(x, y) =

∫
eiλ(y−x)

ψ(λ) + ǫκ(λ)
dλ. (4.3)

If we assume that
|κ(λ)| ≤ C|ψ(λ)| (4.4)

for some C <∞, then for ǫ > 0 sufficiently small

‖ν‖ψ+ǫκ,2 ≤ C ′‖ν‖ψ,2, (4.5)

for some C ′ <∞. Thus ‖ · ‖ψ,2 is a proper norm for u(ǫ).
Let F be the distribution given by

F (x, y) =

∫
eiλ(y−x)κ(λ) dλ, (4.6)

and let Q̂λ1,λ2(A) denote the Fourier transform of Qx,y(A) in x, y.
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Theorem 4.1 If (4.4) holds, then

dµ(ǫ)(A)

dǫ
|ǫ=0 = −

∫

Rd×Rd
Qy,x(A)F (x, y) dm(x) dm(y) (4.7)

= −
∫
Q̂λ,−λ(A) κ(λ) dλ.

for all A ∈ A‖·‖ψ,2.

Proof of Theorem 4.1: It suffices to show that for any ν1, . . . , νk ∈
R+

‖·‖ψ,2

d

dǫ

∫ k∏

j=1

u(ǫ)(yj , yj+1)

k∏

j=1

dνj(yj)
∣∣∣
ǫ=0

(4.8)

= −
k∑

i=1

∫ 

i−1∏

j=1

u(yj , yj+1)




(∫

Rd×Rd
u(yi, x)F (x, y)u(y, yi+1) dm(x) dm(y)

)




k∏

j=i+1

u(yj , yj+1)




k∏

j=1

dνj(yj),

with yk+1 = y1.
Using (4.3) we see that

I(ǫ) =:

∫ k∏

j=1

u(ǫ)(yj , yj+1)
k∏

j=1

dνj(yj) (4.9)

=

∫ ∫ k∏

j=1

ei(yj+1−yj) ·λj
1

ψ(λj) + ǫκ(λj)
dλjdνj(yj)

=

∫ 


k∏

j=1

∫
e−i(λj−λj−1) · yj dνj(yj)




k∏

j=1

1

ψ(λj) + ǫκ(λj)
dλj

where λ0 = λn. We take the Fourier transforms of the {νj} to see that

∫ k∏

j=1

u(ǫ)(yj , yj+1)
k∏

j=1

dνj(yj) (4.10)

=

∫ k∏

j=1

ν̂j(λj − λj−1)
1

ψ(λj) + ǫκ(λj)
dλj .
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We have

1

ψ(λj) + ǫκ(λj)
=

1

ψ(λj)
− ǫ

κ(λj)

ψ2(λj)
+ ǫ2

κ2(λj)

ψ2(λj)(ψ(λj) + ǫκ(λj))
. (4.11)

Substituting this into (4.11) we can write the result as

I(ǫ) = I(0)− ǫJ +K(ǫ), (4.12)

where

J =
k∑

i=1

∫



k∏

j=1

j 6=i

1

ψ(λj)




κ(λi)

ψ2(λi)

k∏

j=1

ν̂j(λj − λj−1) dλj , (4.13)

and K(ǫ) is the sum of all remaining terms.
We now show that J is precisely the right hand side of (4.8), and that

|K(ǫ)| = O(ǫ2), (4.14)

which will complete the proof of our Proposition.
For the first point, using the relation between Fourier transforms and con-

volutions we have
∫

Rd×Rd
u(yi, x)F (x, y)u(y, yi+1) dm(x) dm(y) (4.15)

=

∫
eiλi(yi+1−yi)

κ(λi)

ψ2(λi)
dλi.

Using this in the right hand side of (4.8) and proceeding as in (4.9)-(4.10) we
indeed obtain J . As for (4.14), K(ǫ) is the sum many terms each of which has
a factor of ǫm for some m ≥ 2. We need only show that the corresponding
integrals are bounded uniformly in ǫ. For example, consider the term which
arises when using the last term in (4.11) for all j. This term is ǫ2k times

K̃(ǫ) =:

∫ k∏

j=1

ν̂j(λj − λj−1)
κ2(λj)

ψ2(λj)(ψ(λj) + ǫκ(λj))
dλj . (4.16)

By our assumption (4.4), for sufficiently small ǫ

|K̃(ǫ)| ≤ C ′

∫ k∏

j=1

|ν̂j(λj − λj−1)|
1

|ψ(λj)|
dλj (4.17)

≤ C ′′
k∏

j=1

‖νj‖ψ,2,
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by repeated use of the Cauchy-Schwarz inequality, as in our proof in [10] that
‖ · ‖ψ,2 is a proper norm for u.

5 Perturbation by multiplicative functionals

Let mt be a continuous decreasing multiplicative functional of X, with mt ≤ 1
for all t and mζ = 0. By [12, Theorem 61.5], there is a right process X̃t with
transition semigroup

P̃tf(x) = P x(f(Xt)mt) =

∫
Qx,yt (mt)f(y) dm(y), (5.1)

where Qx,yt are the bridge measures (2.1) for our original process X and the
second equality is [6, (2.8)]. Thus X̃ has transition densities

p̃t(x, y) =: Qx,yt (mt), (5.2)

and using [6, (2.8)] once more we can verify that these satisfy the Chapman-
Kolmogorov equations. It follows from the construction in [12, Theorem 61.5]
that if X has cadlag paths so will X̃. Let rt(ω)(s) = ω(t− s)−, 0 ≤ s ≤ t be
the time reversal mapping. If we set m̂t = mt ◦ rt, then it is easy to check
that m̂t is a multiplicative functional as above, see [2, p. 359]. If X̂ is the
dual process for X as described in Section 2, with bridge measures Q̂x,yt then
as above there exists a process Y with transition densities Q̂x,yt (m̂t). By [6,
Corollary 1]

Q̂x,yt (m̂t) = Q̂x,yt (mt ◦ rt) = Qy,xt (mt), (5.3)

which shows that Y is dual to X̃.
We now show that if Q̃x,yt are the bridge measures for X̃, then

Q̃x,yt (F ) = Qx,yt (F mt), for F ∈ Fs, s < t. (5.4)

To see this, using the fact that mt is continuous and decreasing, we have for
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F ∈ Fs, s < t

Q̃x,yt (F ) = P̃ x
(
FQXs,yt−s (mt−s)

)
(5.5)

= lim
t∗↑t

P̃ x
(
FQXs,yt−s (mt∗−s)

)

= lim
t∗↑t

P̃ x
(
FPXs (mt∗−s pt−t∗(Xt∗−s, y))

)

= lim
t∗↑t

P x
(
FmsP

Xs (mt∗−s pt−t∗(Xt∗−s, y))
)

= lim
t∗↑t

P x (Fmsmt∗−s ◦ θs pt−t∗(Xt∗ , y))

= lim
t∗↑t

P x (Fmt∗ pt−t∗(Xt∗ , y))

= lim
t∗↑t

Qx,yt (F mt∗) = Qx,yt (F mt),

which proves (5.4).
If At is a CAF, then mt = e−At is a continuous decreasing multiplicative

functional of X. Let X(ǫ) denote the Markov process X̃ with mt = e−ǫL
ν
t . If

µ(ǫ) denotes the loop measure for X(ǫ), and µ the loop measure for X, it now
follows from (2.2) and (5.4) that

µ(ǫ) (A) = µ
(
Ae−ǫL

ν
∞

)
. (5.6)

Theorem 5.1 If ν ∈ R+
‖·‖, for some proper norm ‖ · ‖, then

dµ(ǫ)(A)

dǫ
|ǫ=0 = −µ(Lν∞A) = −

∫

S
Qx,x(A) dν(x) (5.7)

for all A ∈ A‖·‖.

Proof: It suffices to prove this for A of the formMν1,...,νk
∞ with νj ∈ R+

‖·‖,

1 ≤ j ≤ k. Since 0 ≤ e−x − 1 + x ≤ x2/2 for x ≥ 0, it follows from (5.6) that

|µ(ǫ)(Mν1,...,νk
∞ )− µ(Mν1,...,νk

∞ )− ǫµ(Lν∞M
ν1,...,νk
∞ )| ≤ ǫ2µ

(
(Lν∞)2Mν1,...,νk

∞

)
.

(5.8)

µ
(
(Lν∞)2A

)
is bounded by our assumption about the proper norm ‖ · ‖, so

the first equality in (5.7) follows. The second equality is (3.14).

It follows from (5.2) that X(ǫ) has potential densities

u(ǫ)(x, y) =

∫ ∞

0
Qx,yt (e−ǫL

ν
t ) dt ≤ u(x, y). (5.9)
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Then, using [6, Lemma 1]

u′(0)(x, y) = −
∫ ∞

0
Qx,yt (Lνt ) dt (5.10)

= −
∫ ∞

0

∫ t

0

∫
ps(x, z)pt−s(z, y) dν(z) ds dt

= −
∫
u(x, z)u(z, y) dν(z).

In view of this, Theorem 5.1 is another example of our heuristic formula (3.19),
where the distribution F on S × S of (3.18) is δ(x− y) dν(x).

For use in the next section we now recast Theorem 5.1. For νj ∈ R+
‖·‖,

1 ≤ j ≤ k let

I(ǫ) =

∫ k∏

j=1

u(ǫ)(yj , yj+1)

k∏

j=1

dνj(yj). (5.11)

Since
∫ ∏k

j=1 u(ǫ)(yj , yj+1)
∏k
j=1 dνj(yj) = µ(ǫ)(M

ν1,...,νk
∞ ) by (3.12), it follows

from Theorem 5.1 and (3.14) that

lim
ǫ→0

I(ǫ)− I(0)

ǫ
(5.12)

= −
k∑

i=1

∫ 

i−1∏

j=1

u(yj , yj+1)


u(yi, x)u(x, yi+1)




k∏

j=i+1

u(yj , yj+1)




k∏

j=1

dνj(yj) dν(x).

In the next section we will also use the following observation. If mt =

e−ǫ
∫ t
0 c(s) ds then m̂t = mt ◦ rt = mt. Hence if X̂ is the dual process for X as

described in Section 2, it follows from (5.3) that Y , the dual process to X(ǫ),

is the process (X̂)(ǫ) obtained by perturbing X̂ by the same multiplicative
functional mt. In particular

û(ǫ)(x, y) = u(ǫ)(y, x). (5.13)

6 Perturbation by addition of jumps

Let j(x, y) be a nonnegative m ⊗ m-integrable function on S × S. We will
assume that

c(x) =:

∫
j(x, y)m(dy) =

∫
j(y, x)m(dy). (6.1)
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c(x) is integrable and we will assume moreover that it is bounded and strictly
positive. Then

G(x, dy) =:
1

c(x)
j(x, y)m(dy) (6.2)

is a probability kernel on S ×B(S). c(x) will govern the rate at which we will
add jumps to the process, which may depend on the position x of the process,
and G(x, dy) will describe the distribution of the jumps from position x.

In more detail, define the CAF

At =

∫ t

0
c(Xs) ds, (6.3)

and let τt be the right continuous inverse of At. Let λ be an independent mean
1 exponential. We define a new process Yt to be equal to Xt for t < τλ, and
then re-birthed at a random point independent of λ, distributed according
to G(Xτλ , dy), with this process being iterated. We use Uc,G to denote the
potential operator of Y .

Let

‖ν‖u2,∞ := |ν|(S) ∨ sup
x

∫ (
u2(x, y) + u2(y, x)

)
d|ν|(y), (6.4)

where |ν| is the total variation of the measure ν. This is a proper norm for u,
see [10, (3.25)].

We use µ(ǫ) to denote the loop measure associated to Y , where we have
replaced c by ǫc.

Theorem 6.1 Assume that

sup
z

∫
u(z, y)dm(y) <∞, sup

z

∫
u(y, z)dm(y) <∞. (6.5)

Then µ(ǫ) is well defined for ǫ small enough and

dµ(ǫ)(A)

dǫ
|ǫ=0 =

∫

S×S
(Qy,x(A)−Qx,x(A)) c(x)G(x, dy) dm(x), (6.6)

for all A ∈ A‖·‖
u2,∞

.

Before proving this theorem, we first show that Uǫc,G has densities uǫc,G(x, y)
for ǫ sufficiently small. Note first that by (6.1)-(6.2)

∫
c(z)G(z, dy) dm(z) =

∫
j(z, y) dm(y) dm(z) = c(y) dm(y), (6.7)
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and since we assumed that c is bounded it follows from (6.5) that

sup
x

∫
c(z)G(z, dy)u(y, x) dm(z) = sup

x

∫
c(y)u(y, x) dm(y) <∞. (6.8)

Let λ1, λ2, . . . be a sequence of independent mean 1 exponentials, and set
Tj =

∑j
i=1 λj . Using the fact that τt+u = τt + τu ◦ θτt we see that

Wc,G,nf(x) =: P x

(∫ τ(Tn+1)

τ(Tn)
f (Yt) dt

)
(6.9)

= P x

((∫ τ(λn+1)

0
f (Yt) dt

)
◦ θτ(Tn)

)

= P x

(
P Yτ(Tn)

(∫ τ(λn+1)

0
f (Xt) dt

))

= P x

(∫
G(Y −

τ(Tn)
, dz)P z

(∫ τ(λn+1)

0
f (Xt) dt

))
.

We have

P xλ

(∫ τλ

0
f (Xt) dt

)
(6.10)

= P xλ

(∫ ∞

0
1{t<τλ}f (Xt) dt

)

= P xλ

(∫ ∞

0
1{At<λ}f (Xt) dt

)

= P x
(∫ ∞

0
e−Atf (Xt) dt

)
.

Hence setting

Vcf(x) = P x
(∫ ∞

0
e−Atf (Xt) dt

)
, (6.11)

and writing Gh(x) =
∫
S G(z, dy)h(y) for any nonnegative or bounded function

h, we have shown that

Wc,G,nf(x) = P x
(∫

G(Y −
τ(Tn)

, dz)Vcf(z)

)
(6.12)

= P x
(
GVcf(Y

−
τ(Tn)

)
)
.
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Using once again the fact that τt+u = τt+τu◦θτt and the Markov property,
we see that for any h

P x
(
h(Y −

τ(Tn)
)
)

= P x
((
h(Y −

τ(λn)
)
)
◦ θτ(Tn−1)

)
(6.13)

= P x
(
P
Yτ(Tn−1)

(
h(Y −

τ(λn)
)
))

= P x
(∫

G(Y −
τ(Tn−1)

, dz)P z
(
h(X−

τ(λn)
)
))

.

Using the change of variables formula, [4, Chapter 6, (55.1)], and the fact that
X−
t = Xt for a.e. t, we see that

P zλ
(
h(X−

τλ
)
)
= P zλ (h(Xτλ)) = Ex

(∫ ∞

0
e−th (Xτt) dt

)
(6.14)

= P z
(∫ Aζ

0
e−th (Xτt) dt

)

= P z
(∫ ∞

0
e−Ash (Xs) dAs

)

= P z
(∫ ∞

0
e−Ash (Xs) c(Xs) ds

)

= Vc(ch)(z).

Thus we can write (6.13) as

P x
(
h(Y −

τ(Tn)
)
)
= P x

(
GVc c h(Y

−
τ(Tn−1)

)
)
. (6.15)

Iterating this we obtain

P x
(
h(Y −

τ(Tn)
)
)

= P x
(
GVc c h(Y

−
τ(Tn−1)

)
)

(6.16)

= P x
(
(GVc c)

2 h(Y −
τ(Tn−2)

)
)

= · · ·
= P x

(
(GVc c)

n−1 h(Y −
τ(λ))

)

= Vc c(GVc c)
n−1 h(x),

where the last step used (6.14). Applying this to (6.12) we have that

Wc,G,nf(x) = Vc c(GVc c)
n−1GVcf(x) = Vc (cGVc)

n f(x). (6.17)
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It follows from (5.9) that Vc has a density which we write as vc(x, y), and
therefore Wc,G,n has the density

wc,G,n(x, y) =

∫
vc(x, z1)G(z1, dz2)vc(z2, z3) · · · (6.18)

· · ·G(z2n−3, dz2n−2)vc(z2n−2, z2n−1)G(z2n−1, dz2n)vc(z2n, y)
n∏

j=1

c(z2j−1) dm(z2j−1).

By (6.5) it follows from (5.9) that

sup
z

∫
vc(z, y)dm(y) ≤M, (6.19)

and thus by (6.18) that

sup
z

∫
wc,G,n(z, y)dm(y) ≤ CnMn+1. (6.20)

Replacing c by ǫc we have shown that for ǫ sufficiently small

Uǫc,Gf(x) =
∞∑

n=0

ǫn Vǫc (cGVǫc)
n f(x) (6.21)

for all bounded measurable f . Hence Uǫc,G has a density

uǫc,G(x, y) =

∞∑

n=0

ǫn
∫
vǫc(x, z1)G(z1, dz2)vǫc(z2, z3) · · · (6.22)

· · ·G(z2n−3, dz2n−2)vǫc(z2n−2, z2n−1)G(z2n−1, dz2n)vǫc(z2n, y)
n∏

j=1

c(z2j−1) dm(z2j−1),

with

sup
z

∫
uǫc,G(z, y)dm(y) <∞. (6.23)

We can also write this as

uǫc,G(x, y) =
∞∑

n=0

ǫn
∫
vǫc(x, z1)j(z1, z2)vǫc(z2, z3) · · · (6.24)

· · · j(z2n−3, z2n−2)vǫc(z2n−2, z2n−1)j(z2n−1, z2n)vǫc(z2n, y)

2n∏

j=1

dm(zj).
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Similar expansions can be given for the semigroup which has therefore a
density:

pǫc,G,t(x, y) =

∞∑

n=0

ǫn
∫

0≤t1≤···≤tn≤t
qt1(x, z1)c(z1)G(z1, dz2)qt2−t1(z2, z3) · · ·

· · · c(z2n−1)G(z2n−1, dz2n)qt−tn(z2n, y)
n∏

j=1

dm(z2j−1) dtj , (6.25)

where qt denotes the kernel of the semigroup associated with the process killed
at rate ǫc.

To see this let

Wc,G,n,tf(x) =: P x (f (Yt) ; τ(Tn) < t < τ(Tn+1)) . (6.26)

Using the fact that τt+u = τt + τu ◦ θτt we have

= P x
(
f (Yt) ; τ(Tn) < t < τ(Tn+1)

∣∣∣τ(Tn)
)

(6.27)

= P x
((
f
(
Yt−τ(Tn)

)
; t− τ(Tn) < τ(λn+1)

)
◦ θτ(Tn)

∣∣∣τ(Tn)
)

= P x
(
P Yτ(Tn)

(
f
(
Xt−τ(Tn)

)
; t− τ(Tn) < τ(λn+1)

) ∣∣∣τ(Tn)
)

= P x
(∫

G(Y −
τ(Tn)

, dz)

P zλn+1

(
f
(
Xt−τ(Tn)

)
; t− τ(Tn) < τ(λn+1)

) ∣∣∣τ(Tn)
)
.

Conditional on τ(Tn) we have

P xλ
(
f
(
Xt−τ(Tn)

)
; t− τ(Tn) < τ(λ)

)
(6.28)

= P xλ
(
f
(
Xt−τ(Tn)

)
; At−τ(Tn) < λ

)

= P x
(
e−At−τ(Tn)f

(
Xt−τ(Tn)

))
.

Hence setting
Pc,tf(x) = P x

(
e−Atf (Xt)

)
, (6.29)

we have shown that

Wc,G,n,tf(x) = P x
(∫

G(Y −
τ(Tn)

, dz)Pc,t−τ(Tn)f(z)

)
(6.30)

= P x
(
GPc,t−τ(Tn)f(Y

−
τ(Tn)

)
)
.
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Using once again the fact that τt+u = τt + τu ◦ θτt and the strong Markov
property, we see that for any h

P x
(
h(Y −

τ(Tn)
, t− τ(Tn))

∣∣∣τ(Tn−1)
)

(6.31)

= P x
((
h(Y −

τ(λn)
, t− τ(Tn−1)− τ(λn))

)
◦ θτ(Tn−1)

∣∣∣τ(Tn−1)
)

= P x
(
P
Yτ(Tn−1)

(
h(Y −

τ(λn)
, t− τ(Tn−1)− τ(λn))

) ∣∣∣τ(Tn−1)
)

= P x
(∫

G(Y −
τ(Tn−1)

, dz)P z
(
h(X−

τ(λn)
, t− τ(Tn−1)− τ(λn))

) ∣∣∣τ(Tn−1)

)
.

Using the change of variables formula, [4, Chapter 6, (55.1)], and the fact that
X−
t = Xt for a.e. t, we see that conditionally on τ(Tn−1)

P zλn

(
h(X−

τλn
, t− τ(Tn−1)− τ(λn))

)
(6.32)

= P zλn
(
h(Xτλn

, t− τ(Tn−1)− τ(λn))
)

= Ex
(∫ ∞

0
e−rh (Xτr , t− τ(Tn−1)− τr) dr

)

= P z
(∫ Aζ

0
e−rh (Xτr , t− τ(Tn−1)− τr) dr

)

= P z
(∫ ∞

0
e−Ash (Xs, t− τ(Tn−1)− s) dAs

)

=

∫ ∞

0
P z
(
e−Ash (Xs, t− τ(Tn−1)− s) c(Xs)

)
ds

=

∫ ∞

0
Pc,s(ch(·, t− s− τ(Tn−1)))(z) ds.

Combining this with (6.31) we have

P x
(
h(Y −

τ(Tn)
, t− τ(Tn))

)
(6.33)

=

∫
P x
(
GPc,snch(Y

−
τ(Tn−1)

, t− sn − τ(Tn−1))
)
dsn.
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Iterating this we obtain, conditionally on τ(Tn−1), then τ(Tn−2), · · ·

P x
(
h(Y −

τ(Tn)
), t− τ(Tn))

)
(6.34)

=

∫
P x
(
GPc,snch(Y

−
τ(Tn−1)

, t− sn − τ(Tn−1))
)
dsn

=

∫
P x
(
GPc,sn−1cGPc,snch(Y

−
τ(Tn−2)

, t− sn − sn−1 − τ(Tn−2))
)
dsn−1 dsn

= · · ·

=

∫
P x


GPc,s2c · · ·GPc,snch(Y −

τ(λ), t−
n∑

j=2

sj − τ(λ))




n∏

j=2

dsj

=

∫
Pc,s1cGPc,s2c · · ·GPc,snch(x, t−

n∑

j=1

sj)
n∏

j=1

dsj

where the last step used (6.32). Applying this to (6.30) we have that

Wc,G,n,tf(x) =

∫
Pc,s1cGPc,s2c · · ·GPc,sncGPc,t−∑n

j=1 sj
f(x)

n∏

j=1

dsj . (6.35)

(6.25) then follows as in the proof of (6.22).
Let

Ĝ(x, dy) =
1

c(x)
j(y, x)m(dy). (6.36)

By (6.1), Ĝ(x, dy) is a probability kernel on S ×B(S). We now add jumps to
the dual process X̂, where c(x) will again govern the rate of jumps but we use
Ĝ(x, dy) to describe the distribution of the jumps from position x. Performing
the same calculation as before, but with the dual process and using (6.24) and
(5.13), we see that the two processes obtained by adding jumps have dual
potential kernels:

ûǫc,Ĝ(x, y) = uǫc,G(y, x) (6.37)

The same will be true for the associated resolvents and semigroups. The
duality assumptions are verified and we can therefore define a loop measure
associated with these processes.

We use µ(ǫ) to denote the loop measure associated to Y , where we have
replaced c by ǫc.

The next Lemma is needed for the proof of Theorem 6.1.
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Lemma 6.1 Assume (6.5) (which implies (6.8)). Then for any positive mea-
sure ν and ǫ sufficiently small.

sup
z

∫
uǫc,G(z, y)dν(y) ≤ C sup

z

∫
u(z, y)dν(y), (6.38)

and
‖ν‖u2

ǫc,G
,∞ ≤ C‖ν‖u2,∞, (6.39)

Proof of Lemma 6.1: (6.38) follows immediately from (6.22) and (5.9).
It also follows from (6.22) that for a positive measure ν
∫
u2ǫc,G(x, y) dν(y) (6.40)

=
∞∑

m,n=0

ǫm+n

∫
Vǫc (cGVǫc)

m (x, y)Vǫc (cGVǫc)
n (x, y) dν(y)

=
∞∑

m,n=0

ǫm+n

∫
Vǫc (cGVǫc)

m−1 cG(x, dz1)Vǫc (cGVǫc)
n−1 cG(x, dz2)

(∫
vǫc(z1, y)vǫc(z2, y) dν(y)

)
.

Hence for ǫ small enough

sup
x

∫
u2ǫc,G(x, y) dν(y) (6.41)

≤
∞∑

m,n=0

ǫm+n sup
x

∫
Vǫc (cGVǫc)

m−1 cG(x, dz1)Vǫc (cGVǫc)
n−1 cG(x, dz2)

sup
z1,z2

(∫
vǫc(z1, y)vǫc(z2, y) dν(y)

)

≤ C‖ν‖u2,∞.
Similarly

∫
u2ǫc,G(y, x) dν(y) (6.42)

=

∞∑

m,n=0

ǫm+n

∫
Vǫc (cGVǫc)

m (y, x)Vǫc (cGVǫc)
n (y, x) dν(y)

=
∞∑

m,n=0

ǫm+n

∫
(cGVǫc)

m (z1, x) (cGVǫc)
n (z2, x) dm(z1) dm(z2)

(∫
vǫc(y, z1)vǫc(y, z2) dν(y)

)
.
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Using (6.8) it follows that for ǫ small enough

sup
x

∫
u2ǫc,G(x, y) dν(y) (6.43)

≤
∞∑

m,n=0

ǫm+n sup
x

∫
(cGVǫc)

m (z1, x) (cGVǫc)
n (z2, x) dm(z1) dm(z2)

sup
z1,z2

(∫
vǫc(y, z1)vǫc(y, z2) dν(y)

)

≤ C‖ν‖u2,∞.

It follows from [10, Lemma 3.3] that ‖ν‖u2,∞ is a proper norm for uǫc,G,n.
Theorem 6.1 follows from the next Lemma.

Lemma 6.2 Under the assumptions of Lemma 6.1, for any ν1, . . . , νk ∈ R+
‖·‖

u2,∞

d

dǫ

∫ k∏

j=1

uǫc,G(yj , yj+1)
k∏

j=1

dνj(yj)
∣∣∣
ǫ=0

(6.44)

=

k∑

i=1

∫ 

i−1∏

j=1

u(yj , yj+1)



(
−
∫
u(yi, x)u(x, yi+1)c(x) dm(x)

+

∫

S×S
u(yi, z1)c(z1)G(z1, dz2)u(z2, yi+1) dm(z1)

)




k∏

j=i+1

u(yj , yj+1)




k∏

j=1

dνj(yj),

with yk+1 = y1.

Proof of Lemma 6.2: Set

I(ǫ) =
∫ k∏

j=1

uǫc,G(yj , yj+1)

k∏

j=1

dνj(yj) (6.45)

with yk+1 = y1.
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We can write (6.22) as

uǫc,G(x, y) (6.46)

= vǫc(x, y) + ǫ

∫
vǫc(x, z1)c(z1)G(z1, dz2)vǫc(z2, y) dm(y1)

+ǫ2
∫
vǫc(x, z1)c(z1)G(z1, dz2)vǫc(z2, y)c(z2)G(z2, dz3)uǫc,G(z3, y) dm(y1) dm(y3)

= vǫc(x, y) + ǫVǫccGVǫc(x, y) + ǫ2VǫccGVǫccGUǫc,G(x, y),

with operator notation.
We substitute this in (6.45) and collect terms to obtain

I(ǫ) = I(ǫ) + ǫ
k∑

i=1

Ji(ǫ) +K(ǫ), (6.47)

where

I(ǫ) =

∫ k∏

j=1

vǫc(yj , yj+1)

k∏

j=1

dνj(yj) (6.48)

Ji(ǫ) (6.49)

=

∫ 

i−1∏

j=1

vǫc(yj , yj+1)


VǫccGVǫc(yi, yi+1)




k∏

j=i+1

vǫc(yj , yj+1)




k∏

j=1

dνj(yj),

and K(ǫ) represents all the remaining terms. Noting that I(0) = I(0), we can
write (6.47) as

I(ǫ)− I(0) = I(ǫ)− I(0) + ǫ

k∑

i=1

Ji(ǫ) +K(ǫ). (6.50)

Note also that I(ǫ) of (6.48) is a special case of the I(ǫ) of (5.11) with
ν(dx) = c(x) dm(x). Hence by (5.12)

lim
ǫ→0

I(ǫ)− I(0)

ǫ
(6.51)

= −
k∑

i=1

∫ 

i−1∏

j=1

u(yj , yj+1)



(∫

u(yi, x)u(x, yi+1)c(x) dm(x)

)




k∏

j=i+1

u(yj , yj+1)




k∏

j=1

dνj(yj).
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Since vǫc(x, y) ↑ u(x, y) as ǫ ↓ 0, it follows by the Monotone Convergence
Theorem that

lim
ǫ→0

Ji(ǫ) (6.52)

=

∫ 

i−1∏

j=1

u(yj , yj+1)




(∫

S×S
u(yi, z1)c(z1)G(z1, dz2)u(z2, yi+1) dm(z1)

)




k∏

j=i+1

u(yj , yj+1)




k∏

j=1

dνj(yj).

To complete the proof of our Lemma it remains to show that

lim
ǫ→0

K(ǫ)

ǫ
= 0. (6.53)

However every term in K(ǫ) comes with a pre-factor of ǫm for some m ≥ 2,
so we need only bound the integrals uniformly in ǫ. For this we will use
Lemma 6.1. We illustrate this with the most complicated term, which has the
pre-factor ǫ2k:

∫ k∏

j=1

VǫccGVǫccGUǫc,G(yj , yj+1)

k∏

j=1

dνj(yj) (6.54)

=

∫
vǫc(y1, x1)cGVǫccGUǫc,G(x1, y2) · · ·

vǫc(yk−1, xk−1)cGVǫccGUǫc,G(xk−1, yk)

vǫc(yk, xk)cGVǫccGUǫc,G(xk, y1)

k∏

j=1

dνj(yj) dm(xj)

=

∫
cGVǫccGUǫc,G(x1, y2)vǫc(y2, x2) · · ·

cGVǫccGUǫc,G(xk−1, yk) vǫc(yk, xk)

cGVǫccGUǫc,G(xk, y1)vǫc(y1, x1)

k∏

j=1

dνj(yj) dm(xj),
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where the last step is just a rearrangement. We can rewrite this as

∫ (∫
cGVǫccGUǫc,G(x1, y2)vǫc(y2, x2) dν2(y2)

)
· · · (6.55)

(∫
cGVǫccGUǫc,G(xk−1, yk) vǫc(yk, xk) dνk(yk)

)

(∫
cGVǫccGUǫc,G(xk, y1)vǫc(y1, x1) dν1(y1)

) k∏

j=1

dm(xj).

Then by Lemma 6.1, and the fact that vǫc ≤ u

∫
cGVǫccGUǫc,G(x1, y2)vǫc(y2, x2) dν2(y2) (6.56)

=

∫
c(x1)G(x1, dz1)vǫc(z1, z2)c(z2)G(z2, dz3)uǫc,G(z3, y2)vǫc(y2, x2) dν2(y2) dm(z2)

≤
∫
c(x1)G(x1, dz1)vǫc(z1, z2)c(z2)G(z2, dz3) dm(z2)

sup
z3,x2

∫
uǫc,G(z3, y2)vǫc(y2, x2) dν2(y2)

≤ C‖ν2‖u2,∞
∫
c(x1)G(x1, dz1)vǫc(z1, z2)c(z2)G(z2, dz3) dm(z2).

(6.57)

Using (6.19), the fact that c is bounded and the fact that G(·, dz) is a proba-
bility density

∫
c(x1)G(x1, dz1)vǫc(z1, z2)c(z2)G(z2, dz3) dm(z2) ≤ Cc(x1). (6.58)

Thus (6.55) is bounded independently of ǫ by

C

∫ k∏

j=1

c(xj) dm(xj) <∞ (6.59)

since c(x) is integrable.
The other terms of K(ǫ) can be bounded similarly.

25



References

1. R. Blumenthal and R. Getoor, Markov Processes and Potential Theory,
Academic Press, New York, 1968. 2

2. K. L. Chung and J. Walsh, Markov Processes, Brownian Motion and Time
Symmetry, second edition, Springer, New York, 2005. 5

3. Y. Chang, Multi-occupation field generates the Borel sigma-field of loops.
arXiv:1309.1558 [math.PR] 2

4. C. Dellacherie, and P.-A. Meyer, (1982). Probabilities and Potential B.
North Holland Publishing Company, Amsterdam. 6, 6

5. P. J. Fitzsimmons and J, Rosen, Markovian loop soups: permanental pro-
cesses and isomorphism theorems, arxiv.org/pdf/1211.5163.pdf 2

6. P. Fitzsimmons, J. Pitman, and M. Yor, Markovian bridges: construction,
Palm interpretation, and splicing. Seminar on Stochastic Processes, 1992,
E. Cinlar and K.L. Chung and M.J. Sharpe editors, 101-134, Birkhuser,
Boston (1993). 2, 2, 5, 5, 5

7. M. Fukushima, Y. Oshima and M. Takeda, Dirichlet Forms and Symmet-
ric Markov Processes. Walter de Gruyter, New York, 1994. 1

8. K. Gawedski, Lectures on conformal field theory, IAS, Princeton, (2009).
www.math.ias.edu/QFT/fall/ 1

9. Y. Le Jan, Markov paths, loops and fields. École d’Été de Probabilités de
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