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Decentralized optimal control of a car platoon with guaranteed string stability

This paper presents new decentralized optimal strategies for Cooperative Adaptive Cruise Control (CACC) of a car platoon under string-stability constraints. Two related scenarios are explored in the article: in the first one, a linearquadratic regulator in the presence of measurable disturbances is synthesized, and the string-stability of the platoon is enforced over the controller's feedback and feedforward gains. In the second scenario, H2-a n dH ∞-performance criteria, respectively accounting for the desired group behavior and the stringstability of the platoon, are simultaneously achieved using the recently-proposed compensator blending method. An analytical study of the impact of actuation/communication delays and uncertain model parameters on the stability of the multi-vehicle system, is also conducted. The theory is illustrated via numerical simulations.

I. INTRODUCTION A. Motivation and related work

Traffic congestion has become a serious issue in modern cities' life. In 2010, congestion caused urban Americans to travel 4.8 billion hours more and to purchase an extra 1.9 billion gallons of fuel, for a congestion cost of $101 billion [START_REF] Schrank | TTI's 2011 Urban Mobility Report[END_REF]. Because of such a big impact on productivity, pollution and human welfare, a considerable effort has been devoted in the last decades toward devising innovative systems which may reduce traffic jams and improve driver's safety and comfort. This research activity, together with numerous "intelligent highway" initiatives in the U.S. (e.g., California PATH research program), Japan and Europe, has led to the development of Adaptive Cruise Control (ACC) systems, currently available in numerous sedans, and lately to the design of Cooperative Adaptive Cruise Control (CACC) systems which extend the functionality of ACC by leveraging the information exchanged via vehicle-to-vehicle and/or vehicle-to-infrastructure wireless communication.

T h ei d e ao fu s i n goptimization-based policies for CACC is not new and dates back at least to the end of 90s. In [START_REF] Sheikholeslam | Longitudinal Control of a Platoon of Vehicles with no Communication of Lead Vehicle Information: A System Level Study[END_REF] the longitudinal control of each car is computed using a gradient-based descent algorithm, and no communication with the leading vehicle of the platoon is needed. In [START_REF] Stanković | Decentralized Overlapping Control of a Platoon of Vehicles[END_REF] a decentralized overlapping controller is developed using the inclusion principle: possible extensions to the basic scenario are also discussed, comprising the use of reduced-order observers for estimating the state of the preceding vehicle and the identification of suitable stability-preserving conditions. A similar control framework is adopted in [START_REF] Guo | Autonomous Platoon Control Allowing Range-Limited Sensors[END_REF], where the authors analyze the impact of range-limited sensing, assuming that the lead car broadcasts its state information, i.e. its speed and acceleration information, to all platoon members. Recently, we have witnessed a growing interest in CACC based on Model Predictive Control (MPC). In [START_REF] Naus | Explicit MPC design and performance evaluation of an ACC Stop-&-Go[END_REF] an explicit MPC controller for "Stop-&-Go" ACC is synthesized, and its performance is evaluated by distinguishing between comfort of the resulting longitudinal vehicle behavior and behavior due to the traffic constraints. A similar MPC approach is considered in [START_REF] Naus | A Model Predictive Control Approach to Design a Parameterized Adaptive Cruise Control[END_REF], where the tuning of the cruise controller is made simple by the parameterization of multiple performance indices. In [START_REF] Li | Model Predictive Multi-Objective Vehicular Adaptive Cruise Control[END_REF], a multi-objective MPC-based CACC strategy is developed for multiple trucks and tested in realistic traffic conditions. An analogous setup is considered in [START_REF] Marzbanrad | Space control law design in adaptive cruise control vehicles using model predictive control[END_REF], where the performance of MPC is compared with that of a PD and a sliding-mode controller, in a real driving cycle.

A significant stream of research in the CACC literature has also focused on robustness and stability issues, and notably on the so-called string stability of a car platoon. A platoon is said string stable under an assigned control policy, if oscillations are attenuated upstream the traffic flow. In [START_REF] Liu | Effects of communication delay on string stability in vehicle platoons[END_REF], [START_REF] Swaroop | A review of Constant Time Headway Policy for Automatic Vehicle Following[END_REF], early studies were conducted concerning the effect of communication delays on the string stability. A similar analysis has been recently carried out in [START_REF] Naus | String-Stable CACC Design and Experimental Validation: A Frequency-Domain Approach[END_REF] in the frequency domain with heterogeneous vehicles, under a simple PD control. In [START_REF] Middleton | String Instability in Classes of Linear Time Invariant Formation Control with Limited Communication Range[END_REF], sufficient conditions are given that imply a lower bound on the peak of the frequencyresponse magnitude of the transfer function mapping a disturbance to the leading vehicle to a vehicle in the chain. This bound quantifies the effect of spacing policy, intervehicle communication policy, and vehicle settling response performance. Finally, in [START_REF] Öncü | Cooperative Adaptive Cruise Control: Tradeoffs Between Control and Network Specifications[END_REF], the problem of regulating inter-vehicle distances in a car platoon is approached from a networked-system perspective. Tradeoffs between CACC performance and network specifications are pointed out, and a study of the impact of network-induced effects on string stability is conducted.

B. Original contributions and organization

After an introductory section devoted to the modeling of the car platoon that we adapted from [START_REF] Li | Model Predictive Multi-Objective Vehicular Adaptive Cruise Control[END_REF], Sect. III presents original results concerning the decentralized optimal CACC of a team of n vehicles under string-stability constraints and a constant-time headway spacing policy. The CACC problem is approached here from two different perspectives. In the first scenario, an infinite-time linear-quadratic regulator in the presence of measurable disturbances is synthesized and the string-stability of the platoon is enforced over the regulator's feedback and feedforward gains. In the second scenario, we simultaneously achieve H 2 -a n dH ∞ -performance criteria, which respectively dictate the desired group behavior and string-stable behavior of the platoon, by using the compensator blending method recently proposed in [START_REF] Blanchini | Simultaneous performance achievement via compensator blending[END_REF]. This method is more intuitive and simpler to implement than the classical recursive approaches to mixed H 2 H ∞ optimal control [START_REF] Colaneri | Control theory and design: an RH 2 and RH∞ viewpoint[END_REF], lately used in [START_REF] Maschuw | Control Design for Generalized Platoon Problems[END_REF] to design a constant-spacing CACC strategy for a chain of trucks.

It is worth pointing out here that unlike the MPC methods described in Sect. I-A, state and input constraints cannot be handled by the strategies described in this paper. However, differently from those methods, the relative simplicity of our 
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Fig. 1. Hierarchical control architecture of vehicle i. In the lower-level controller, a switching logic is adopted to avoid simultaneous actions from the drive train and braking system (see [START_REF] Li | Model Predictive Multi-Objective Vehicular Adaptive Cruise Control[END_REF] for more details).

control design procedures allowed us to establish insightful analytical conditions for the solvability of the optimal CACC problem with string stability, both in the "nominal case" and in the presence of actuation/communication delays and, for the first time, uncertain model parameters.

In Sect. IV, the proposed theoretical results are illustrated via numerical simulations, and finally, in Sect. V, the main contributions of the paper are summarized and possible avenues for future research are outlined.

II. MODELING OF THE PLATOON A. Compensation of nonlinear longitudinal dynamics

In this paper we consider a platoon of n identical cars moving in one dimension, where vehicle 1 is the leader of the platoon and v 1 , a 1 , ..., v n , a n denote the velocity and acceleration of the n cars, respectively. In the following, we will assume that a 1 is an assigned acceleration profile.

As it is known, the longitudinal dynamics of a car is nonlinear and its main features include the static nonlinearity of engine torque maps, time-varying gear position and aerodynamic drag force. Following [START_REF] Li | Model Predictive Multi-Objective Vehicular Adaptive Cruise Control[END_REF], we will avail ourselves of a hierarchical controller for each vehicle, consisting of a lower-level and an upper-level controller, as illustrated in Fig. 1. The lower-level controller determines the value of the accelerator pedal position (a i, accl ) and brake pressure (P i, brk )o fi-th car, i ∈{ 2,...,n}, so that the desired acceleration a i,des is tracked by the actual acceleration a i . On the other end, the upper level controller determines the desired longitudinal acceleration according to the intervehicle and vehicle i's internal variables, which include the engine speed, gear ratio and car's speed and acceleration. We assume that the internal variables are all measured by the on-board car sensors (cf. Fig. 1).

The inter-vehicle variables are the relative distance d i between vehicle i -1 and vehicle i and the speed error ∆v i = v i-1 -v i , which are measured by a radar mounted in front of the car. When designing the lowerlevel controller, one of the challenges is the presence of several nonlinearities coming from engine, transmission, and aerodynamic drag. To compensate for them, following [START_REF] Li | Model Predictive Multi-Objective Vehicular Adaptive Cruise Control[END_REF], the inverse-dynamics control design method is used here. The lower-level controller together with vehicle i, then yield a new plant with input a i, des and output a i , called Generalized Vehicle Longitudinal Dynamic (GVLD) system, described by,

a i (s)= K L T L s +1 a i, des (s),i ∈{2,...,n}, (1) 
where K L > 0 is the system gain (ideally equal to 1), and T L is the time constant of GVLD.

B. Car-following model

In order to design the upper-level controller, a carfollowing model is built by combining the GVLD system and the inter-vehicular longitudinal dynamics. For the intervehicular dynamics, two state variables are of interest: the clearance error ∆ d i (t)=d i (t) -d i, des (t) and the speed error ∆v i ,w h e r ed i, des (t) denotes driver's desired intervehicle distance (cf. [START_REF] Li | Model Predictive Multi-Objective Vehicular Adaptive Cruise Control[END_REF]). Various models for d i, des have been proposed in the literature: in this paper, we adopt the popular constant-time headway spacing policy d i, des (t)= τ h v i (t)+d 0 ,whereτ h is the nominal time headway and d 0 is the desired distance at standstill [START_REF] Naus | String-Stable CACC Design and Experimental Validation: A Frequency-Domain Approach[END_REF].

Note that d 0 can be regarded as an extension of the length ℓ i of vehicle i (cf. [START_REF] Naus | String-Stable CACC Design and Experimental Validation: A Frequency-Domain Approach[END_REF] and see Fig. 2), and we can redefine the vehicle's length as ℓ ′ i = ℓ i + d 0 . Hence, d 0 will be neglected in the rest of the paper. By collecting the intervehicular dynamics and equation ( 1) together, we end up with the following linear time-invariant system [START_REF] Li | Model Predictive Multi-Objective Vehicular Adaptive Cruise Control[END_REF],

ẋi = Ax i + B u i + G z i ,i ∈{2,...,n}, (2) 
where

A = 01-τ h 00 -1 00 -1/T L , B = 0 0 K L /T L , G = 0 1 0 , (3) 
x i =[ ∆ d i , ∆ v i ,a i ] T ∈ IR 3 is the state of the system, u i = a i, des ∈ IR is the control input, and z i = a i-1 ∈ IR is a measurable disturbance.
In the following, we will assume the transmission of the acceleration a i-1 from vehicle i -1 to vehicle i. III. STRING-STABLE OPTIMAL CACC In this section, we present two decentralized optimal CACC strategies (see Sect. III-A and Sect. III-B, respectively), which preserve the string stability of the car platoon.

A. LQ regulation with guaranteed string stability

In order to specify the desired behavior of the platoon, let us introduce the following optimal control problem,

min ui ∞ 0 x T i Qx i + ru 2 i dt, s.t. ẋi = Ax i + B u i + G z i , i ∈{2,...,n}, (4) 
where Q 0 and r>0 are suitable weights on the state x i and input u i of system (2). This is an infinitetime linear-quadratic (LQ) regulation problem in the presence of the measurable disturbance z i . If we assume that z i is constant (cf. [START_REF] Stanković | Decentralized Overlapping Control of a Platoon of Vehicles[END_REF]), this problem admits the following closedform solution [START_REF] Anderson | Optimal Control: Linear Quadratic Methods[END_REF]Sect. 4.3],

u * i = -r -1 B T (Px i + q i ), (5) 
ℓ i d 0 ℓ ′ i = ℓ i + d 0 Veh icle i -1
Veh icle i Fig. 2. Two vehicles in the platoon: ℓ i is the actual length of vehicle i, d 0 is the desired distance at standstill, and ℓ ′ i = ℓ i + d 0 is the "extended length" of vehicle i that we will use in our analysis in Sect. III.

where P 0 is the solution of the algebraic Riccati equation, PA + A T P -r -1 PBB T P + Q = 0, and q i =[ ( A -r -1 BB T P) T ] -1 PGz i . Note that the control law (5) can be rewritten more compactly as,

u * i = k T x i + k F z i , (6) where 
k T =[ k 1 ,k 2 ,k 3 ] -r -1 B T P, k F -r -1 B T [(A -r -1 BB T P) T ] -1 PG. (7) 
By substituting equation (6) into system (2), we finally obtain the following closed-loop dynamics,

ẋi =( A + Bk T ) x i +( B k F + G) z i , (8) 
which is the basis for our forthcoming developments.

The following definition introduces the notion of string stability used through the paper.

Definition 1 (String stability [START_REF] Naus | String-Stable CACC Design and Experimental Validation: A Frequency-Domain Approach[END_REF]): Consider the following transfer function,

Λ i (s)= a i (s) a i-1 (s) ,i ∈{2,...,n}, (9) 
where a i (s) and a i-1 (s), as in Sect. II-A, denote the Laplace transforms of the acceleration signals a i (t) and a i-1 (t), respectively. A sufficient condition for the string stability of a platoon of n identical cars is that,

Λ i (jω) ∞ ≤ 1,i ∈{2,...,n}, (10) 
where

Λ i (jω) ∞ sup ω |Λ i (jω)| denotes the H ∞ norm
of the transfer function in [START_REF] Liu | Effects of communication delay on string stability in vehicle platoons[END_REF]. ⋄ In other words, the longitudinal dynamics of a platoon is string stable whether oscillations are not amplified upstream the traffic flow. The next proposition provides sufficient conditions on the feedback and feedforward control gains in [START_REF] Li | Model Predictive Multi-Objective Vehicular Adaptive Cruise Control[END_REF], for the string stability of the car platoon. These conditions are successively extended to the case of constant communication delays among the vehicles and within the individual GVLD systems.

Proposition 1 (String-stability conditions): Consider system [START_REF] Marzbanrad | Space control law design in adaptive cruise control vehicles using model predictive control[END_REF]. The car platoon is string stable if the following two inequalities are satisfied:

(K L k 3 -1) 2 2 T L K L (τ h k 1 + k 2 ) -K 2 L k 2 F ≥ 0 , 2k 1 (K L k 3 -1) + k 1 K L (τ 2 h k 1 +2(τ h k 2 + k F )) ≥ 0 . (11) 
Proof: The last of the three (scalar) differential equations in [START_REF] Marzbanrad | Space control law design in adaptive cruise control vehicles using model predictive control[END_REF], is:

ȧi = KL k3-1 TL a i + KL TL k 1 ∆ d i + k 2 ∆ v i + k F a i-1 .
In the Laplace domain (assuming a i (0) = 0), this equation becomes:

s -KL k3-1 TL a i (s)= KL TL k 1 ∆ d i (s) + k 2 ∆v i (s)+k F a i-1 (s) . ( 12 
)
Note now that

∆ d i (s)= ai-1(s)-ai(s) s 2 -τ h ai(s) s , ∆ v i (s)= ai-1(s)-ai(s) s . ( 13 
)
By plugging (13) into [START_REF] Middleton | String Instability in Classes of Linear Time Invariant Formation Control with Limited Communication Range[END_REF] and collecting similar terms together, after simple algebraic manipulations, we get:

Λ i (s)= K L (k 1 + k 2 s + k F s 2 ) T L s 3 -(K L k 3 -1)s 2 +(τ h k 1 + k 2 )K L s + K L k 1 . ( 14 
)
If we now impose the condition |Λ i (jω)|≤1, ∀ ω>0,w e end up with the following inequality in the variable ω:

T 2 L ω 4 +[(K L k 3 -1) 2 -2 T L K L (τ h k 1 + k 2 ) -K 2 L k 2 F ] ω 2 + 2K L k 1 (K L k 3 -1) + [(τ h k 1 + k 2 ) 2 +2k 1 k F -k 2 2 ]K 2 L ≥ 0. (15 
) As u f ficient condition for the nonnegativity of the fourthorder polynomial on the left-hand side of [START_REF] Colaneri | Control theory and design: an RH 2 and RH∞ viewpoint[END_REF], is that all its coefficients are nonnegative. This leads to [START_REF] Naus | String-Stable CACC Design and Experimental Validation: A Frequency-Domain Approach[END_REF].

Note that it is generally possible to enforce the conditions in [START_REF] Naus | String-Stable CACC Design and Experimental Validation: A Frequency-Domain Approach[END_REF] by properly tuning the weights Q and r in [START_REF] Guo | Autonomous Platoon Control Allowing Range-Limited Sensors[END_REF].

Next, we will try to repeat the previous analysis in the more challenging scenario in which the signal z i = a i-1 is transmitted between vehicle i -1 and vehicle i with a constant delay θ, and that a constant actuator's communication delay φ is present in the GVLD system. It is immediate to verify that under these conditions, equation ( 2), for i ∈{2,...,n}, transforms into:

ẋi (t)=Ax i (t)+B u i (t -φ)+G z i (t -θ). (16) 
Let us now choose a control input of the form,

u i (t)=k T x i (t)+k F z i (t -θ). (17) 
Following the same outline of the proof of Prop. 1, from ( 16) we obtain [s-KL k3 e -φs -1

TL ] a i (s)= KL TL e -φs k 1 ∆ d i (s)+ k 2 ∆ v i (s)+k F a i-1 (s) e -θs
. By using (13), we get the transfer function:

Λ i (s)= K L e -φs (k 1 + k 2 s + k F s 2 e -θs ) T L s 3 + s 2 + K L e -φs [-k 3 s 2 +(k 1 τ h + k 2 )s + k 1 ]
.

If we now impose |Λ i (jω)|≤1, ∀ ω>0, we obtain the following quasipolynomial inequality in the variable ω:

T 2 L ω 4 +2K L k 3 T L sin(φω) ω 3 +[1+(k 2 3 -k 2 F )K 2 L -2K L cos(φω)(k 3 + T L (k 1 τ h + k 2 ))] ω 2 -2[k 2 k F K 2 L sin(θω)+K L sin(φω)(k 1 (τ h -T L )+k 2 )] ω + K L [-k 2 2 K L +2k 1 K L k F cos(θω)+ 2K L k 1 k 3 + K L (k 1 τ h + k 2 ) 2 -2k 1 cos(φω)] ≥ 0. ( 18 
)
The study of the feasibility of ( 18) is made complicated by the presence of the sinusoidal and cosinusoidal terms, and suitable approximations to these functions need to be introduced in order to establish conditions on the gains of controller [START_REF] Anderson | Optimal Control: Linear Quadratic Methods[END_REF], similar to those in [START_REF] Naus | String-Stable CACC Design and Experimental Validation: A Frequency-Domain Approach[END_REF]. A simple option, consists of using the following Maclaurin series expansions of the cosine and sine functions cos(αω) ≃ 1 -(αω) 2 /2!, sin(αω) ≃ αω -(αω) 3 /3!, α ∈{θ, φ}, under the assumption of "small" αω. Inequality (18) can thus be rewritten as:

-1 3 K L k 3 T L φ 3 ω 6 + T 2 L +2K L k 3 T L φ + K L [k 3 + T L (k 1 τ h + k 2 )] θ 2 + 1 3 [k 2 k F K 2 L θ 3 + K L (k 1 (τ h -T L )+k 2 )φ 3 ] ω 4 + (K L k 3 -1) 2 -2 T L K L (τ h k 1 + k 2 ) -K 2 L k 2 F -K 2 L k F θ (2k 2 + θk 1 ) -2K L [k 2 + k 1 (τ h -T L )] φ + K L k 1 φ 2 ω 2 +2K L k 1 (K L k 3 -1) + k 1 K 2 L [τ 2 h k 1 +2(τ h k 2 + k F )] ≥ 0. ( 19 
) As u f ficient condition for the nonnegativity of the six-order polynomial on the left-hand side of (19), is that all its coefficients are nonnegative, from which we deduce the following four inequalities:

T 2 L +2K L k 3 T L φ + K L [k 3 + T L (k 1 τ h + k 2 )] θ 2 + 1 3 [k 2 k F K 2 L θ 3 + K L (k 1 τ h + k 2 -k 1 T L )φ 3 ] ≥ 0 , (K L k 3 -1) 2 -2 T L K L (τ h k 1 + k 2 ) -K 2 L k 2 F -K 2 L k F θ • (2k 2 + θk 1 ) -2K L [k 2 + k 1 (τ h -T L )] φ + K L k 1 φ 2 ≥ 0 , 2k 1 (K L k 3 -1) + k 1 K L (τ 2 h k 1 +2(τ h k 2 + k F )) ≥ 0 .
These inequalities are approximate sufficient conditions for the string stability of the car platoon in the presence of the constant communication delays θ and φ.

B. Simultaneous H 2 -and H ∞ -performance achievement via compensator blending

In this section, we present a decentralized CACC strategy alternative to that considered in Sect. III-A. By relying on the compensator blending method proposed in [START_REF] Blanchini | Simultaneous performance achievement via compensator blending[END_REF], we are here interested in jointly solving two problems: minimize the H 2 -performance index in ( 4) and achieve an H ∞ criterium (cf. equation ( 10)) accounting for the string-stable behavior of the platoon. We will separately design the H 2 and H ∞ control laws

u i = k T 2 x i , u i = k T ∞ x i , i ∈{2,.
..,n},a n d obtain a (dynamic) compensator of the form,

K i : żi = A K,i z i + B K,i x i , u i = C K,i z i + D K,i x i , ( 20 
)
which simultaneously fulfills the H 2 and H ∞ criteria.

To this end, let us introduce the following system,

G i : ⎧ ⎨ ⎩ ẋi = Ax i + B u i + x i (0) z i,2 + G z i,∞ , y i,2 = C 2 x i + D 2 u i ,i ∈{2,...,n}, y i,∞ = C ∞ x i , where z i, 2 (t)= δ(t), C 2 = Q 1/2 0 1×3 , D 2 = 0 3×1 r 1/2 , z i, ∞ (t)=z i (t), C ∞ =[001 ] ,
x i (0) is the initial state, δ(t) is the Dirac's delta, 0 1×3 is an 1 × 3 vector of zeros, and the subscripts "2"a n d" ∞" refer to the H 2 -a n dH ∞ -performance indices, respectively. Note that the compensator blending procedure in [START_REF] Blanchini | Simultaneous performance achievement via compensator blending[END_REF], is valid under the assumption of a stabilizable pair (A, B) (in our specific case, (A, B) is indeed controllable, cf. ( 3)), and of full column-rank matrices

[x i (0) G], i ∈{ 2,...,n}.
An additional requirement is that k 2 and k ∞ are stabilizing.

Since the regulator k 2 can be easily synthesized, in what follows we will limit ourselves to the design of the more challenging

k ∞ =[ k ∞,1 ,k ∞,2 ,k ∞,3
] T (which we cannot straightforwardly calculate using state-of-the-art methods owing to our peculiar choice of the output matrix C ∞ ). Note that the characteristic polynomial of matrix,

A = A + Bk T ∞ = ⎡ ⎣ 01-τ h 00 -1 KLk∞,1 TL KLk∞,2 TL KLk∞,3-1 TL ⎤ ⎦ , (21) is det(λI 3 -A)=λ 3 - KLk∞,3-1 TL λ 2 + KL TL (k ∞,1 τ h + k ∞,2 ) λ + KL TL k ∞,1 , (22) 
where I 3 denotes the 3 × 3 identity matrix. Hence, from the Routh-Hurwitz stability criterion, A is Hurwitz (and thus k is stabilizing), if the following four inequalities are satisfied:

∞ -2 -1 0 1 2 2 0 -2 -2 -1 1 2 0 k ∞,1 k ∞,2 k ∞,3
K L k ∞,3 < 1,k ∞,1 τ h + k ∞,2 > 0,k ∞,1 > 0, (K L k ∞,3 -1)(k ∞,1 τ h + k ∞,2 )+k ∞,1 T L < 0. (23) 
Moreover, we have that (cf. equation ( 14)):

Λ i (s)=C ∞ (s I 3 -A) -1 G = K L (k ∞,1 + k ∞,2 s) T L s 3 -(K L k ∞,3 -1)s 2 +(τ h k ∞,1 + k ∞,2 )K L s +K L k ∞,1
.

If, as in the proof of Prop. 1, we now impose that |Λ i (jω)|≤1, ∀ ω>0, for string stability, we end up with the following two inequalities (which coincide with those in [START_REF] Naus | String-Stable CACC Design and Experimental Validation: A Frequency-Domain Approach[END_REF] for k F =0), which add to those in (23):

(K L k ∞,3 -1) 2 -2 T L K L (τ h k ∞,1 + k ∞,2 ) ≥ 0, 2k ∞,1 (K L k ∞,3 -1) + k ∞,1 K L τ h (τ h k ∞,1 +2k ∞,2 ) ≥ 0.
(24) Note that (23)-(24) define the set S⊂IR 3 of all feasible regulators k ∞ : as illustrated in the example of Fig. 3, S is a nonconvex set. Since S contains infinite gain vectors, one needs an optimal criterion to select k ∞ , such as, e.g., minimizing any vector norm. In the numerical simulations in Sect. IV-B, we chose the k ∞ with minimum squared 2-norm.

Given the regulator k 2 and a regulator k ∞ ∈S,b yu s i n g Procedure 2.1 in [START_REF] Blanchini | Simultaneous performance achievement via compensator blending[END_REF], the matrices A K,i , B K,i , C K,i , D K,i of the compensator in (20) can be simply computed as, We conclude this section with Prop. 2, which provides sufficient conditions for k ∞ to be stabilizing when the parameters K L and T L are not exactly known (e.g., because of an inaccurate identification of the GVLD system).

D K,i C K,i B K,i A K,i = k T 2 k T ∞ V 2,i V ∞ I 3 I 3 Z 2,i Z ∞ -1 , (25) where V 2,i Z 2,i (A + Bk T 2 ), V ∞ Z ∞ (A + Bk T ∞ ), (26) and Z 2,i [0 3×1 Z 2 ][x i (0) E 2,i ] -1 , Z ∞ [0 3×1 Z ∞ ][G E ∞ ] -1 . (27) 
E 2,i , E ∞ ∈ IR 3×2 in (27) are such that matrices [x i (0) E 2,i ], i ∈{ 2,...,n}, [G E ∞ ],
Proposition 2 (Stabilizing k ∞ with uncertain K L , T L ): Let us suppose that the parameters K L and T L of the GVLD system (1) are not exactly known, and lie within the intervals K L,m ≤ K L ≤ K L,M , T L,m ≤ T L ≤ T L,M where K L,m , K L,M , T L,m and T L,M are known positive constants. Then, matrix A in (21) is Hurwitz if the following inequalities are satisfied:

K L,M k ∞,3 < 1,k ∞,1 τ h + k ∞,2 > 0,k ∞,1 > 0, (K L,m k ∞,3 -1)(k ∞,1 τ h + k ∞,2 )+k ∞,1 T L,M < 0, (K L,M k ∞,3 -1)(k ∞,1 τ h + k ∞,2 )+k ∞,1 T L,m < 0. ( 28 
)
Proof: Note that the roots of the third-order polynomial (22) coincide with the roots of polynomial,

TL KL λ 3 + 1 KL -k ∞,3 λ 2 +(k ∞,1 τ h + k ∞,2 )λ + k ∞,1 . (29)
The range of variation of the coefficients of the third-and second-order term in (29), is

TL,m KL,M ≤ TL KL ≤ TL,M KL,m , 1 KL,M - k ∞,3 ≤ 1 KL -k ∞,3 ≤ 1 KL,m -k ∞,3
. From Kharitonov's theorem, then we have that the interval polynomial (29) is Hurwitz if and only if the following four extreme polynomials are Hurwitz,

p 1 (λ)= T L,M K L,m λ 3 + 1 K L,m -k ∞,3 λ 2 +(k ∞,1 τ h + k ∞,2 )λ + k ∞,1 , p 2 (λ)= T L,m K L,M λ 3 + 1 K L,M -k ∞,3 λ 2 +(k ∞,1 τ h + k ∞,2 )λ + k ∞,1 , p 3 (λ)= T L,m K L,M λ 3 + 1 K L,m -k ∞,3 λ 2 +(k ∞,1 τ h + k ∞,2 )λ + k ∞,1 , p 4 (λ)= T L,M K L,m λ 3 + 1 K L,M -k ∞,3 λ 2 +(k ∞,1 τ h + k ∞,2 )λ + k ∞,1 .
The application of the Routh-Hurwitz stability criterion to these polynomials, leads to (28).

Note that the inequalities in (28) reduce to those in (23) for K L = K L,m = K L,M and T L = T L,m = T L,M , as expected.

IV. SIMULATION RESULTS

Simulation experiments have been carried out to study the performance of the control strategies described in Sect. III-A and Sect. III-B. The desired behavior of the platoon is specified in both cases by the following three performance metrics for i ∈{2,...,n} (cf. [START_REF] Li | Model Predictive Multi-Objective Vehicular Adaptive Cruise Control[END_REF]):

1) Distance and velocity tracking:

C T, i = r ∆d ∆ d 2 i + r ∆v ∆ v 2
i where r ∆d , r ∆v are positive gains. 2) Driver's comfort: C C, i = r u u 2 i where r u is a positive gain.

3) Driver's car following: C D, i = r a (a ref,i -a i ) 2 where a ref,i is the reference acceleration calculated according to the linear driver's car-following model V ra -κV ra -κDra -κV ra ra ,r = r u .

a ref,i = κ D ∆ d i + κ V ∆ v i ,

A. LQ regulation with guaranteed string stability

Figs. 4(a)-(c) shows the simulation results relative to the approach described in Sect. III-A. A platoon of 5 vehicles was simulated for 50 seconds, with a 1 (t)=1 .5 m/s 2 for t ∈ [20, 22) and a 1 (t)=0m/s 2 otherwise, and with initial conditions x 2 (0) = [11, 1.5, 3.2] T , x 3 (0) = [10, -2, 3.5] T , x 4 (0) = [12, 1.5, 3.3] T , x 5 (0) = [10.5, -3, 3.5] T .T h e other selected parameters, are τ h =1 .8s, T L =0 .5s, K L =1 , k D =0.02, k V =0.25 and r ∆d = r ∆v =4, r a = 0.1, r u =18(note that in CACC of cars, τ h is typically in the subsecond time scale in the literature [START_REF] Naus | String-Stable CACC Design and Experimental Validation: A Frequency-Domain Approach[END_REF]: in our simulations, we selected a slightly larger τ h for improving the readability of our plots). Using [START_REF] Li | Model Predictive Multi-Objective Vehicular Adaptive Cruise Control[END_REF], we obtained a feedback control gain k =[ 0 .4714, 0.7182, -0.6038] T and a feedforward control gain k F = -0.3110. Figs. 4(a)-(c) show the time evolution of ∆ d i , ∆ v i and a ref,i -a i , and Fig. 5 (top) the time history of u i for i ∈{ 2,...,5} and of a 1 .N o t e that with our parameters' selection, the inequalities in [START_REF] Naus | String-Stable CACC Design and Experimental Validation: A Frequency-Domain Approach[END_REF] are satisfied and the platoon is string stable. If, instead, we set r ∆d =1and keep all the other parameters unchanged, the second condition in [START_REF] Naus | String-Stable CACC Design and Experimental Validation: A Frequency-Domain Approach[END_REF] is not fulfilled anymore, thus possibly leading to a string-unstable behavior.

B. Compensator blending method

Figs. 4(d)-(f) show the simulation results relative to the approach described in Sect. III-B. In order to compare the performance of the controller designed with the compensator blending method and the LQ regulator, we repeated the simulation experiment of Sect. IV-A with the same initial conditions and parameters. We set k 2 = k =[ 0 .4714, 0.7182, -0.6038] T and determined the H ∞ regulator by numerically solving in Matlab with an interior-point algorithm (the barrier method), the optimization problem min k∞ ∈S k ∞ , from which the dynamic compensators K i , i ∈{2,...,5}, were computed using (25) and (26). with our choice of k ∞ ), we can notice that the compensator blending method results in a smaller control effort.

V. C ONCLUSIONS AND FUTURE WORK In this paper we have proposed two novel decentralized optimal strategies for Cooperative Adaptive Cruise Control (CACC) of a car platoon under string-stability constraints. Some variations to the basic problem setup have also been explored and the results of numerical simulations have been provided to support our theoretical findings.

Note that the feedforward part of controller [START_REF] Naus | A Model Predictive Control Approach to Design a Parameterized Adaptive Cruise Control[END_REF] does not include anticipatory characteristics for variable disturbances z i . Any adjustment to this controller to get improved transient response usually involves lead-lag networks to replace the constant gain k F [START_REF] Anderson | Optimal Control: Linear Quadratic Methods[END_REF]: the design of such networks will be considered in future works. In future research, we are also going to verify whether a static controller which optimally switches between k 2 and k ∞ may possibly outperform the dynamic regulator based on the compensator blending method, we are going to study the case of time-varying communication delays θ(t) and φ(t) [START_REF] Gu | Stability of time-delay systems[END_REF], and to test the control strategies developed in this paper in more advanced simulation environments (e.g., in IPG's "CarMaker").
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  andr a , κ D , κ V are positive gains. The combination of C T, i , C C, i and C D, i yields the following weight matrices in the quadratic cost function in (4):Q = r ∆d +κ 2D ra κD κV ra -κDra κD κV ra r∆v+κ2 

2 2 (,

 2 the initial condition is k ∞ (0) = [1, 0, 0] T ∈S ),which yielded k ∞ =[ 0 .2360, 0.2622, 0.1457] T . The application of the blending procedure to k 2 and k ∞ ,l e du st o Z 2,2 = 0.1298 0.6483 -0.7502 02×3 , Z 2,3 = -0.1855 0.5255 0.8303 02×3 , Z 2,4 = 0.1197 0.6648 -0.7373 02×3 , Z 2,5 = -0.2616 0.1887 0.9466 02×3
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 425 Fig. 5. Time evolution of u i (t), i ∈{2,...,5}, for: (top) the LQ regulator, (bottom) the regulator based on the compensator blending method.

  respectively, are invertible, and Z 2 , Z ∞ ∈ IR 3×2 are such that matrix

	xi(0) G E2,i E∞
	03×1 03×1 Z2 Z∞

∈ IR 6×6 , i ∈{2,...,n}, is invertible.
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