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This study addresses the experimental and theoretical investigations of guided elastic waves

propagation in piezo-magnetic multi-layered structure. The structure is composed of a 20�TbCo2(5nm)/

FeCo(5nm) nanostructured multi-layer deposited between two Aluminum (Al) Inter-Digitals Transducers

forming a surface acoustic wave delay line, on a Y-cut LiNbO3 substrate. We compare the calculated

and measured phase velocity variation under the action of the external magnetic field orientation and

magnitude. We find quantitative agreement between the measured and modeled phase velocity shift for

all external magnetic field configurations (hard axis and easy axis) and for different shape modes of

elastic waves at their first and third harmonic operation frequencies. The shear horizontal mode exhibits

a maximum phase velocity shift close to 20% for a ratio close to 1 between magneto-elastic film

thickness and wavelength. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4868530]

Recent developments in physics and technology allow

the elaboration of new magneto-electro-elastic materials such

as multilayered piezoelectric-piezomagnetic composites.1

Their large magnetoelectric coefficient, compared to one of

the single phase materials, recently attracted a large number

of studies,2–4 and they are now widely used in the develop-

ment of sensors, actuators, magnetic-electric energy convert-

ing devices, and solid state memories.5–8

High frequency Surface Acoustic Waves (SAW) propa-

gation in piezoelectric- piezomagnetic composites, and

particularly Rayleigh9,10 or Love waves11 in thin magneto-

strictive films deposited on a piezoelectric substrate, has

been studied long ago to develop tunable filters. There has

recently been a renewed interest in this topic, due to the dis-

covery that it is possible to drive spin pumping with SAW.12

Most of these works have been made with magnetic material

with low magnetostriction, such as Nickel, and/or without

any indication regarding the magnetic state of the thin film.

However, due to the magneto-elastic coupling, its elastic

properties greatly depend on the magnetic state and on the

applied magnetic field. It was also shown that in magnetoe-

lastic films exhibiting in-plane uniaxial anisotropy, a high

susceptibility to the external driving field can be obtained in

the vicinity of a field-induced Spin Reorientation Transition

(SRT).13 To exploit these properties for RF applications, we

investigate the propagation of SAW along the surface of pie-

zoelectric substrate on which such a magnetostrictive thin

film is deposited. We develop a theoretical description of the

tunability of the SAW velocities, based on the derivation of

an equivalent piezomagnetic material of a magnetostrictive

thin film and use it in conjunction with a numerical method

to compute propagation constants, i.e., dispersion curves,

and mode shapes of elastic waves in layered piezoelectric-

piezomagnetic composites deposited on a substrate.14 This

model can be used for different structures, such as composite

membranes or films on a substrate, constituted of a large

number of piezoelectric- piezomagnetic layers, and for an

applied external magnetic field of any intensity and

direction. Moreover, magnetization curves measured on real

magnetic thin films can be introduced in calculations.

In this Letter, theoretical predictions are compared with

the velocity variations, for both the Rayleigh and shear hori-

zontal waves, measured in a sample realized in our labora-

tory: As shown on Fig. 1, a 300 lm wide and 200 nm thick

20�TbCo2(5 nm)/FeCo(5 nm) nanostructured uni-axial thin film

is deposited by RF-Sputtering on a Y-cut LiNbO3 substrate

between two interdigitized transducers (IDT) with 16 lm

digits. SAWs propagate along the X axis, which is also the

easy axis (EA) of the magnetic film. The frequency response

of the signal transmitted between the two IDT, i.e., the S21

characteristic, measured with a network analyzer (Agilent

8753) after deposition of the TbCo2/FeCo thin film, is dis-

played in Fig. 2. The first and third harmonics of the

Rayleigh wave and of the first shear horizontal mode appear

clearly on this electrical characteristic at 232, 696, 271, and

822 MHz, respectively. The magnetization of the nanostruc-

tured TbCo2/FeCo thin film has been measured with a vibrat-

ing Sampling Magnetometer (VSM). Magnetization remains

in the plane of the field and the results obtained along the

FIG. 1. Schematic description of the sample constituted of an uniaxial

200 nm 20�TbCo2(5nm)/FeCo(5nm) nanostructured thin film deposited on a

Y-cut LiNbO3 substrate, and the associated coordinates system.a)Electronic mail: olivier.boumatar@iemn.univ-lille1.fr
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easy and hard axis (HA) of the film are displayed in Fig. 3:

they confirm the uni-axial anisotropy.

We consider a magneto-elastic wave in a ferromagnetic

thin film deposited on a piezoelectric substrate and magne-

tized to saturation. In this case, the amplitude of the magnet-

ization M is a constant Ms. The coupled equations for the

mechanical and magnetic systems, i.e., the equations of

motion and the Landau-Lifshitz equations, have the form15

q
@2ui

@t2
¼ @Tij

@xj
; (1)

@M

@t
¼ �cl0½M �Hef f �; (2)

where c is the gyromagnetic ratio, ui is the ith component of

the particle displacement, and xi denotes the Eulerian coordi-

nates. The effective internal magnetic field Heff and the stress

tensor Tij are given by

Hef f ¼ H � 1

l0

@U

@M
; (3)

Tij ¼
@U

@Eij
; (4)

where H is the Maxwellian magnetic field, and Ekl is the

strain tensor

Ekl ¼
1

2

@uk

@xl
þ @ul

@xk

� �
: (5)

Here, U is the local internal energy density which can be

written as the sum of a magnetic anisotropy, a magnetoelas-

tic, and an elastic components. The magnetocrystalline ani-

sotropy energy is given by Uan ¼ �K1a2
1, where

a1 ¼ M1=Ms are the direction cosines of M with respect to

the induced EA (the Ox axis here). K1 is the magnetic anisot-

ropy constant linked to the anisotropy field HA by

K1 ¼ l0MsHA=2, where l0 ¼ 4p10�7 F=m is the magnetic

permeability of vacuum. The magneto-elastic coupling

energy has the form Ume ¼ bijklaiajEkl, where bijkl are the

magneto-elastic constants and ai ¼ Mi=Ms are the direction

cosines of M with respect to the chosen coordinates system.

The elastic energy is given by Ue¼ 1/2 Cijkl Eij Ekl, where

Cijkl are the second-order elastic constants. Linearizing the

system of Eqs. (1) and (2) around a ground state position,

which is dependent on the direction and intensity of the

external applied magnetic field, we arrive at the piezomag-

netic equations given by

q
@2ui

@t2
¼ @rij

@xj
; (6)

@bi

@xi
¼
@ l0 hi þ mið Þ
� �

@xi
¼ 0; (7)

with

rij ¼ Cijkl þ DCijkl

� � @uk

@xl
� qlijhl; (8)

bi ¼ qikl
@uk

@xl
þ lilhl; (9)

where the effective magnetic permeability and elastic con-

stants are given by

lil ¼ l0 dil þ vilð Þ; (10)

DCijkl ¼ bijmn M0
nqmkl þM0

mqnkl

� �
: (11)

The expressions of the piezomagnetic constants qijk and mag-

netic susceptibilities vil can be found in Ref. 16.

In the case of an uniaxial magnetostrictive thin film,

supposed elastically and magneto-elastically isotropic, the

magnetization is always in the plane of the film. Neglecting

the influence of the static elastic strains, we obtain

l ¼
l11 l12 0

l12 l22 0

0 0 l33

2
4

3
5; (12)

DC ¼

DC11 DC11 0 0 0 DC16

DC11 DC11 0 0 0 �DC16

0 0 0 0 0 0

0 0 0 DC44 DC45 0

0 0 0 DC45 DC55 0

DC16 �DC16 0 0 0 DC66

2
666666664

3
777777775
;

(13)

FIG. 2. Frequency response of the realized interdigitized transducer for sur-

face acoustic wave on LiNbO3 after deposition of the TbCo2/FeCo thin film

in the frequency range [150–900] MHz showing the first (R1) and third har-

monics (R3) of the Rayleigh wave, and the first (SH1) and third harmonics

(SH3) of shear horizontal mode.

FIG. 3. Magnetization along the easy (dashed line) and hard axis (solid line)

of the 200 nm nanostructured TbCo2/FeCo thin film measured with a

Vibrating Sample Magnetometer.
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q ¼
q11 �q11 0 0 0 q16

q21 �q21 0 0 0 q26

0 0 0 q34 q35 0

2
664

3
775; (14)

where the non zero components of the permeability, elastic

stiffness corrections, and piezomagnetic constants tensors

are given in Tables I, II and III, respectively. In these expres-

sions, bc;2 ¼ b1111 is the magneto-elastic coupling coefficient

of the isotropic film, and

U0hh ¼ l0MsðHAð1� sin2u0Þ þ H cosðu0 � wÞ þ HmeÞ;
U0uu ¼ l0MsðHAð1� 2sin2u0Þ þ H cosðu0 � wÞ þ HmeÞ;

(15)

where Hme ¼ ðbc;2Þ2=ðl0MsC44Þ is the magneto-elastic field.

When the static external magnetic field is in the plane of

the thin film, in a direction perpendicular to its EA, a phase

transition, called SRT, appears at a field magnitude of HA.13

Under the SRT sinu0 can be replaced by H/HA in all the

expression of the effective piezomagnetic constants. Above

the SRT, sinu0 ¼ 0, and the effective constants of the equiv-

alent piezomagnetic material simplify considerably. Some of

the elastic constant variation expressions, DC11 and DC66,

have been derived by other authors17 for a similar thin film

configuration, using a less general method. Introducing the

notation h¼H/HA, our expressions of DC66 and DC11 corre-

spond perfectly to the shear modulus variation (Dc) and the

traction modulus variation (Da), respectively, obtained by

these authors.

The velocities of the two first modes of the sample, i.e.,

the Rayleigh wave and the first shear horizontal wave, have

been measured as a function of the intensity of an external

magnetic field applied along the hard axis of the magnetostric-

tive thin film. In Figs. 4 and 5, the experimental results (dots)

are compared to the theoretical predictions obtained with the

described effective piezomagnetic material model, in conjunc-

tion with a numerical Legendre/Laguerre polynomial expan-

sion method to compute propagation constants and mode

shapes of elastic waves in layered piezoelectric- piezomagnetic

composites deposited on a substrate.14 The considered elastic,

magneto-elastic, and magnetic properties of the thin film are as

follows: C11¼ 113.7 GPa, C44¼ 31.3 GPa, bc;2 ¼ �8 MPa,

Ms¼ 800 kA/m, HA¼ 200 Oe, Hme¼ 20 Oe. Except the elastic

constants, taken from the literature, these properties have been

measured in our laboratory.2 The variation of the orientation of

the magnetization, i.e., the angle u0, is determined from the

magnetization curve displayed in Fig. 3. It is assumed that as

the magnetic field decreases from a saturated state along the

HA, the magnetization homogeneously rotates towards the EA

in a “Stoner-Wohlfarth” fashion as it was discussed by Klimov

et al.18 The measured velocity variations of the first shear hori-

zontal mode is 0.2%, which corresponds, as the film thickness

is only 1.3% of the wavelength, to a variation of the elastic

properties of the thin film of the order of 20%.

TABLE I. Non zero components of the effective permeability tensor.

l11 ¼ l0 þ
l0M2

s sin2u0

U0uu

l12 ¼ �
l0M2

s sin2u0

2U0uu

l22 ¼ l0 þ
l0M2

s

U0uu
1� sin2u0

� �
l33 ¼ l0 þ

l0M2
s

U0
hh

TABLE II. Non zero components of the effective elastic stiffness correction

tensor.

DC11 ¼ � 4 bc;2ð Þ2cos2u0sin2u0

U0uu

DC16 ¼ bc;2ð Þ2sin4u0

2U0uu

DC44 ¼ � bc;2ð Þ2sin2u0

U0hh

DC45 ¼ � bc;2ð Þ2sinu0cosu0

U0
hh

DC55 ¼ � bc;2ð Þ2cos2u0

U0hh

DC66 ¼ � bc;2ð Þ2cos22u0

U0uu

TABLE III. Non zero components of the effective piezomagnetic constant

tensor.

q11 ¼ � 2bc;2l0Mscosu0sin2u0

U0uu

q21 ¼ 2bc;2l0Mscos2u0sinu0

U0uu

q34 ¼ � bc;2l0Mssinu0

U0hh

q35 ¼ � bc;2l0Mscosu0

U0
hh

q16 ¼
bc;2l0Ms 1�2sin2u0ð Þsinu0

U0uu

q26 ¼ �
bc;2l0Mscosu0 1�2sin2u0ð Þ

U0uu

FIG. 4. Comparison between theoretical calculation (solid line) and experi-

mental results (dots) for the variations of the Rayleigh wave’s velocity as a

function of the amplitude of a magnetic field applied along the hard axis.

FIG. 5. Comparison between theoretical calculation (solid line) and experi-

mental results (dots) for the variations of the first shear horizontal mode’s

velocity as a function of the amplitude of a magnetic field applied along the

hard axis.
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The results obtained now for the variations of the third

shear horizontal mode’s velocity as a function of the ampli-

tude of an external magnetic field applied along the hard

axis, and of the Rayleigh wave’s velocity for an external

magnetic field applied along the EA, are displayed in Fig. 6.

For the third shear horizontal mode, the velocity variations

are three times the one measured for the fundamental mode,

corresponding to the same 20% variation of the elastic con-

stants. Moreover, the Rayleigh wave velocity variations are

only 0.016% when the magnetic field is applied along the

EA. This is 2.5 times less than the variations measured for

the same mode when the magnetic field is applied along the

hard axis, i.e., in the case of a SRT, demonstrating the impor-

tance of the magnetic state on these velocity variations as a

function of the external magnetic field intensity.

In conclusion, we developed a theoretical model for the

SAW velocity variations as a function of an external mag-

netic field in a thin film deposited on a piezoelectric substrate

that is in good agreement with experimental results. The var-

iations of the elastic properties in a magnetostrictive film can

be huge and up to 20%. Optimized films with higher magne-

toelastic coefficients bc;2 and a lower anisotropic field can

further increase these variations. Magnetoelastic materials

such as Metglas alloys are currently under investigation to

develop a sensitive magnetic sensor using tunable magneto-

acoustic phononic crystals.19

We acknowledge support from the French Agence

Nationale de la Recherche Project 2010 BLAN 923-01.
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