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ABSTRACT

Several tropical cyclone forecasting centers issue uncertainty information with regard to their official track

forecasts, generally using the climatological distribution of position error. However, such methods are not

able to convey information that depends on the situation. The purpose of the present study is to assess the skill

of the Ensemble Prediction System (EPS) from the European Centre for Medium-Range Weather Forecasts

(ECMWF) at measuring the uncertainty of up to 3-day track forecasts issued by the Regional Specialized

Meteorological Centre (RSMC) La Réunion in the southwestern Indian Ocean. The dispersion of cyclone

positions in the EPS is extracted and translated at the RSMC forecast position. The verification relies on

existing methods for probabilistic forecasts that are presently adapted to a cyclone-position metric. First, the

probability distribution of forecast positions is compared to the climatological distribution using Brier scores.

The probabilistic forecasts have better scores than the climatology, particularly after applying a simple cal-

ibration scheme. Second, uncertainty circles are built by fixing the probability at 75%. Their skill at detecting

small and large error values is assessed. The circles have some skill for large errors up to the 3-day forecast

(and maybe after); but the detection of small radii is skillful only up to 2-day forecasts. The applied meth-

odology may be used to assess and to compare the skill of different probabilistic forecasting systems of cyclone

position.

1. Introduction

Although tropical cyclone (TC) track forecasts have

been steadily improving for several decades (Avila et al.

2006), some uncertainty still remains. A part of this

uncertainty is due to an inherent predictability bound

(Fraedrich and Leslie 1989; Plu 2011) that future

improvements in numerical models and in forecasting

techniques will not be able to overcome. End users of TC

forecasts, such as risk managers and public agencies, need

both reliable track forecasts and an estimation of the

forecast uncertainty. In the southwestern Indian Ocean

(SWIO), the Regional Specialized Meteorological Centre

of La Réunion (Météo-France) issues TC forecasts and

warnings to the countries in this area for up to a 3-day lead

time. RSMC La Réunion has developed a new technique

to measure and to display the uncertainty of its official

track forecast. The main purpose of the present article is

a presentation and verification of this technique.
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Most RSMCs (Miami, Florida; Tokyo, Japan; and

Hawaii) and Tropical Cyclone Warning Centers currently

display uncertainty ‘‘cones’’ around their official track

forecasts, using a climatological method based on their

area of responsibility. For each forecast lead time, an

uncertainty circle is built whose radius is taken as a fixed

quantile (e.g., 67% for Miami, 70% for Tokyo) of the

distribution of direct position error (DPE) computed over

several previous seasons. The Joint Typhoon Warning

Center (JTWC) in Hawaii produces uncertainty cones

whose radii are the sum of the climatological average

DPE and the forecasted 34-kt wind radius.

However, a fixed climatological error is not a suffi-

cient measure of the uncertainty of a TC track since such

tracks are expected to be sensitive to internal and ex-

ternal factors. Tropical cyclone motion is indeed driven

by the evolution of its intensity, its structure, and its

environment; and by the complex interactions between

these factors. Since the first studies on TC motion (as

compiled by Emanuel 2003), many mechanisms have

been highlighted by researchers: advection by the envi-

ronmental steering flow (Chan and Gray 1982), drifting by

the planetary b (Rossby 1948) and similarly by the envi-

ronmental gradient of vorticity (Shapiro 1992), asymme-

tries in the inner TC structure (Shapiro and Franklin

1998), and complex interactions between the TC struc-

ture and its environment (Chan et al. 2002) that are

sensitive to many physical processes (Chan 2005). It is

therefore expected that these complex interactions result

in a high dependency of the TC track predictability on the

cyclone features and on its environment. Forecasting

a situation-dependent uncertainty should thus be of sig-

nificant added value.

The purpose of the present article is to demonstrate the

skill of the uncertainty circles built around the official

RSMC La Réunion TC track forecast, computed from

the Ensemble Prediction System (EPS) of the European

Centre for Medium-Range Weather Forecasts (ECMWF).

The area swept out by the circles at successive forecast

lead times forms an uncertainty cone. The main reason

why the EPS of ECMWF has been chosen is that it is

recognized as one of the best among global ensemble

systems (Buizza et al. 2005; Bourke et al. 2005). In addi-

tion, some specifics are dedicated to TC forecasts: the

singular vectors used for computing the initial perturba-

tions are targeted on a TC (Puri et al. 2001) and they are

computed along a tangent-linear model using diabatic

physics (Barkmeijer et al. 2001).

Very few studies have been dedicated to the verifica-

tion of ensemble track forecasts. Recently, Yamaguchi

et al. (2009) demonstrated that the spread of the Japan

Meteorological Agency (JMA) ensemble in the north-

west Pacific may be used as an indicator of the DPE of the

ensemble mean. A confidence level of the forecast posi-

tion is deduced from the ensemble spread. A clear spread–

skill relationship appears between the ensemble spread

and the error of the ensemble mean. Majumdar and

Finocchio (2010) found a similar relationship for ensem-

bles in the North Atlantic. Furthermore, they showed

some first probabilistic results on uncertainty circles de-

duced from ensemble forecasts. Some verification is per-

formed using as a reference, the analyzed position of the

TC a posteriori; this is usually called the best-track anal-

ysis. The measure of how often the best-track analysis is

inside the uncertainty circle suggests that the EPS is able

to discriminate between large and small error values.

From these first promising results obtained in different

TC basins, the present article aims at going further. The

uncertainty circles built from the EPS will be assessed

according to a metric relevant to TC position. The prob-

abilistic verification method will aim at testing whether

these uncertainty circles better describe the distribution of

the RSMC forecast than the climatological circles. The

method will show

d some probabilistic scores associated with the distribu-

tion of position error deduced from the EPS and
d whether the uncertainty circles are able to discrimi-

nate between large and small forecast errors.

The outline of the article follows the presentation of

these issues. After an overview on the data, the method-

ology, and the calibration, section 2 presents some scores

associated with the probability distribution of forecast po-

sitions. Section 3 describes the construction of uncertainty

circles at a fixed probability value and their skill at esti-

mating the DPE. The article ends with a brief conclusion.

2. Probabilistic forecast of TC positions

a. Data

The data sample is composed of the tracks of TCs of all

intensities over the southwest Indian Ocean (between the

equator and 408S, from the African coast to 908E), during

the seasons 2007–08 and 2008–09. A total of 225 forecast

tracks are available until the 3-day lead time. The ob-

served TC positions are from the official RSMC best-track

dataset. The RSMC forecast tracks result from a manually

analyzed forecasting process, which relies on output from

several numerical weather prediction models (from, e.g.,

Météo-France, ECMWF, the Met Office, and from dif-

ferent U.S. agencies) and some ensemble means. Con-

sensus forecasts (Goerss 2000) that gather all or part of the

numerical forecast tracks are used and they generally

improve the RSMC forecast.
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The TC positions forecasted by the EPS members are

obtained from the ECMWF’s tracking algorithm (de-

scribed by van der Grijn 2002). The EPS was modified

during the sample period; however, these changes are

expected to have little impact on the spread of TC track

forecasts. In particular its resolution remained the same

(T399 until the 10-day lead time), and the method for

computing the targeted TC initial perturbations (Puri

et al. 2001) did not change.

The distribution of DPE, sometimes and hereafter

called the distribution of climatological error, is mea-

sured by the distance between the RSMC forecast and

the RSMC best-track position at the corresponding lead

time. This distribution of DPE is computed over the

2007–08 and 2008–09 seasons.

b. Definition of a probability distribution of forecast
position

The output from an ensemble includes the probability

distribution of the forecast, usually displayed as the

probability of a given meteorological parameter at a

given point (rainfall, wind, etc). Concerning the position

of a TC, an ensemble forecast provides the successive

positions of the TC for each of the members that predict

this TC. To be mathematically and visually manageable,

this ensemble of TC positions at a given forecast lead time

is converted into a probability distribution of forecast po-

sition p(y), defined by a set of concentric circles of differ-

ent radii (Fig. 1). The radii are obtained from the ensemble

forecast positions and then the circles are translated to the

RSMC forecast position. If n (among the total ensemble

size 51) EPS members have detected a TC, the radius of

the circle of probability p(y) is obtained by interpolation of

the quantile p(y) among the distribution of the geodesic

distances of the n members from the n-mean position.

To summarize, the distribution of probability for

a forecast lead time is represented by concentric circles

centered on the RSMC forecast position with radii de-

duced from the ensemble spread (Fig. 1). As emphasized

by Majumdar and Finocchio (2010), the use of circles

leads to an isotropic distribution. The probability distri-

bution is centered on the RSMC forecast position, which

is assumed to be the most probable one. This is consistent

with the fact that the RSMC forecasts perform globally

FIG. 1. Example of the construction of the distribution of forecast position probabilities at

a given forecast lead time (here 48 h). The official RSMC forecast track is plotted in black, with

the forecast position at 48 h indicated by a boldface black dot. The radii of the circles of dif-

ferent probabilities (%) are deduced from the n EPS positions (small crosses) by interpolation

of the quantile p among the distribution of geodesic distance of the n members from the n-mean

position. The circles describing the probability distribution are obtained after translation of

their centers at the official RSMC forecast position, represented by the black arrow.
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better than any individual numerical model and their con-

sensus. Since the skill of the ensemble forecasts is sensitive

to the position error of the circle center (Majumdar and

Finocchio 2010), it is also important to ensure that the

forecast position used as the circle center has a good level

of skill.

The probability of forecast position may be handled

mathematically to compute objective probabilistic scores.

FIG. 2. Reliability diagrams for (top left) 12-h up to (bottom right) 72-h lead times showing the relationship between p(ojy) and p(y)

(black curve), the linear regression used for calibration (gray thin line), and the diagonal calibrated curve (gray thick line). An example of

calibration for 48 h is shown for a 75% probability; the radius is such that the circle contains 68% of the EPS members.
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For a given circle of radius r around the RSMC forecast

position, the probability that the forecast is inside this

circle is noted p(y), where y refers to the event where the

forecast position is inside the circle. Verification is ach-

ieved a posteriori by looking at whether the observed

best-track position is inside the circle, defined by the

event o. For a large sample of forecasts and the associated

circles of probability p(y), the number of times the veri-

fying analysis is inside this circle p(y) yields an observed

conditional probability noted as p(ojy).

The definition of the probability distributions p(y) and

p(ojy) enables us to apply the existing verification methods

of probabilistic forecasts (Wilks 2006). The following

sections will deal with the verification of the probabilistic

forecasts of TC positions.

c. Reliability and calibration of the probabilistic
forecasts

One of the first properties that is expected from a

probabilistic forecast is that the forecast probability

equals the observed probability; that is, when the forecast

predicts an event with probability p%, it actually happens

p% of the time. This property is measured by the re-

liability of the forecast (Wilks 2006). At every forecast

lead time, the observed probability p(ojy) is computed for

a given forecast probability p(y), and the plots of p(ojy)

as a function of p(y), called reliability diagrams (Fig. 2), are

used to diagnose the biases of the probabilistic forecast.

A perfectly reliable forecast would imply the reliability

diagram follows the diagonal line p(ojy) 5 p(y). When

p(ojy) . p(y) [p(ojy) , p(y)], the spread in the ensemble

is smaller [larger] than that in the observations.

The reliability diagrams are in general quite close to

the diagonal lines (Fig. 2). The most striking exception is

for the 12-h lead time, for which there is a large bias for the

small frequencies: the EPS dispersion for the smaller radii

is too low. This flaw vanishes rapidly at longer lead times.

For a 24-h lead time and after, the forecast probability is

always lower than the observed probability. Overall, the

curves are quite close to the diagonal lines, which suggests

that the EPS dispersion is linked to the RSMC error dis-

tribution. The direct shifting of the EPS probability circles

to the RSMC forecast position is thus a relevant method.

If the reliability of the forecast is not perfect, then a

calibration should be applied. Since all of the reliability

diagrams follow approximately a line (Fig. 2), a simple

two-step calibration method may be applied to them:

d each curve on the reliability diagrams is approximated

by a linear regression function p(ojy) 5 ap(y) 1 b (Fig.

2) and
d this function is used for calibrating the probability p(y)

associated with radius r, that is, the calibrated probability

associated with radius r, is taken to be p9(y) 5 [ap(y) 1 b].

The operational implementation of such a calibration

would be straightforward. For instance, for 48-h forecasts,

a circle associated with 75% probability should be the

smallest circle containing 68% of the EPS members (Fig. 2).

FIG. 3. Cumulated frequency of DPE representing the climatological distribution of DPE for 12

to 72 h lead times.
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d. Probabilistic scores

An objective evaluation of probabilistic forecasts may

be achieved by probabilistic scores. Given a threshold

radius r, the probability distributions p(y) and p(ojy) are

estimated for the ensemble forecast, with and without

calibration. The Brier score measures the distance be-

tween the distribution of a probabilistic forecast and the

distribution of the observations. Taking the K forecasts

of the sample, it is expressed as

FIG. 4. Brier scores from (top left) 12-h up to (bottom right) 72-h lead times for the climatological forecast (thick gray curve), the

uncalibrated EPS forecast (black dashed curve), and the calibrated EPS forecast (black solid curve).
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BS(r) 5
1

K
�
K

k51
[yk(r) 2 ok(r)]2, (1)

where yk(r) is the forecast probability associated with

radius r and ok(r) is 1 (0) if the verifying best-track

analysis of the k forecast is inside (outside) the probability

circle of radius r. For the purpose of comparison, the

scores of the climatological forecasts are also computed,

for which yk(r) is the same for all k and it is deduced

from the DPE distribution (Fig. 3) at each forecast lead

time.

FIG. 5. Cloud points of the DPE as a function of the PR from (top left) 12-h up to (bottom right) 72-h lead times. The linear regressions

(black line) and the correlation coefficients R2 are indicated.
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The Brier score encompasses some information about

the reliability of the forecast (i.e., comparison of the

observation and forecast distributions) and its resolution

(i.e., how close each individual ensemble forecast is to

the observation). A Brier score approaching zero indi-

cates a situation where the distance between the distri-

bution of a probabilistic forecast and the distribution of the

observations approaches zero, or where the probabilistic

FIG. 6. Cumulated frequency of DPE for (top left) 12-h up to (bottom right) 72-h terms lead times conditioned on the predicted radius

being lower than its first quartile [PR , QPR(0.25), black solid line], being lower than its median [PR , QPR(0.5), black dashed line], and

unconditionally (gray thick line).
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forecast is perfectly reliable (it matches the observed

probability) and it has a perfect resolution (it is able to

adapt its spread to the situation).

For every lead time and for the probabilistic and the

climatological forecasts, the Brier scores are plotted as a

function of the radius r (Fig. 4). The calibrated probabilistic

forecast is better (e.g., lower Brier scores) than the cli-

matology at almost every radii and at every range. The

only exceptions are for the large radii at a lead time of

12 h and for small radii at lead times of 60 and 72 h. In

these cases, the results may not be significant because the

sample is small (their frequency is available in Fig. 3).

FIG. 7. As in Fig. 6, but for PR . QPR(0.75) (black solid line) and PR . QPR(0.5) (black dashed line).
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When the uncalibrated forecast score is worse than the

climatological forecast, the calibrated forecast is better

or similar to the latter. The simple calibration method

that is used is therefore relevant.

The probabilistic scores demonstrate that the EPS

probabilistic forecast brings some valuable informa-

tion about the distribution of the actual TC position

versus climatology. The issues that will be addressed

next are

d how to represent the uncertainty around the forecast

position and
d how to measure the skill of this method at estimating

the size of the DPE.

3. Construction and validation of uncertainty
circles

a. A definition of uncertainty circles

To represent graphically the uncertainty of the fore-

cast position, the probability will be set to a fixed value,

similarly to the existing climatological methods used by

operational centers. An uncertainty circle is then given by

a single predicted radius (PR), associated with this cali-

brated probability, centered at the RSMC forecast posi-

tion. A probability value of 75% has been chosen among

other possibilities (e.g., 50% or 67%). One of the reasons

for choosing this 75% value is that the EPS seems to be

rather well calibrated at this point (Fig. 2). In addition, as

suggested by the results of Majumdar and Finocchio

(2010), only slight statistical differences are expected be-

tween the 50%, 67%, and 75% probability circles. Since

the purpose here is to measure the uncertainty, the rele-

vant information is the size of the circle rather than the

probability value, provided it is fixed.

The validation processes of the uncertainty circles and

of the PR should employ different methods from the

above-mentioned probabilistic verification. By definition,

what is expected from uncertainty circles is a measure of

the uncertainty, that is when the PR is large (small), the

error should be large (small). Like previous studies

(Yamaguchi et al. 2009; Majumdar and Finocchio 2010),

the link between the DPE and the PR will be assessed on

a statistical basis to more precisely measure the skill at

detecting large and small forecast errors.

b. Spread–skill relationship

A first step is to relate the PR to the DPE (Fig. 5) in

order to find a relationship between the spread (PR) and

skill (DPE). The cloud points are rather spread out, but

some correlation may be found. The highest correlation

values (R2 ’ 0.4) exist between the 24- and 48-h lead

times, and then correlation vanishes after 60 h. This

result suggests a moderate relationship between the PR

and the DPE until 60 h.

A more informative diagnostic is to determine whether

predicting a large (or small) radius has an impact on the

distribution of the forecast error. A measure for this is the

conditional probability distribution of DPE for a PR be-

ing lower or higher than a fixed value. At every forecast

lead time, such conditional distributions are compared to

the unconditional DPE distributions. Let Qf(x) be the

quantile x of the distribution f ( f is DPE or PR). Figure 6

shows the cumulated frequencies of DPE conditioned on

PR , QPR(0.5) and to PR , QPR(0.25), as well as the

unconditional one. For every lead time, the conditional

distributions appear to the left of the unconditional ones,

which means that when the PR is small, the DPE actually

tends to be small. The DPE conditioned on PR ,

QPR(0.25) generally indicates a smaller radii than the

DPE conditioned on PR , QPR(0.5), which means that

there is some skill at discriminating between a small PR

and a very small one. Similar conclusions apply to the cu-

mulated frequencies of DPE conditioned on PR .

QPR(0.5) and PR . QPR(0.75) (Fig. 7): there is some skill at

detecting large DPE when the PR is large. In addition, large

radii versus very large radii seem to be more effectively

discriminated than small versus very small radii: the curves

between the conditional distributions tend to be more sep-

arated for large radii (Fig. 7) than for small radii (Fig. 6).

These results confirm that the spread of the EPS has

some skill at detecting the forecast uncertainty of the

RSMC forecast. Majumdar and Finocchio (2010) sug-

gested that the EPS spread could be useful in discrimi-

nating between large and small forecast errors of the

TABLE 1. Contingency table (%) for the detection of small errors

[PR , QPR(0.5) with DPE , QDPE(0.5)] for a 36–h lead time.

PR , QPR(0.5) PR $ QPR(0.5)

DPE , QDPE(0.5) 34% 16%

DPE $ QDPE(0.5) 16% 34%

TABLE 2. As in Table 1, but for the detection of very small errors

[PR , QPR(0.25) with DPE , QDPE(0.25)].

PR , QPR(0.25) PR $ QPR(0.25)

DPE , QDPE(0.25) 13% 12%

DPE $ QDPE(0.25) 12% 63%

TABLE 3. As in Table 1, but for the detection of very large errors

[PR . QPR(0.75) with DPE . QDPE(0.75)].

PR . QPR(0.75) PR # QPR(0.75)

DPE . QDPE(0.75) 12% 13%

DPE # QDPE(0.75) 13% 62%
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ensemble mean. The present results prove that the spread

of the EPS is also skillful at detecting small and large

errors in the RSMC forecast.

c. Detection rate of the amplitude of DPE

The skill of the present method at detecting large and

small errors may be quantitatively estimated. The following

decision rule is applied to the size of the uncertainty

circles: if the PR is lower than a given quantile, then it is

decided that the forecast DPE will be lower than the cor-

responding quantile. The decision rule and the associated

contingency tables are defined for three cases: PR ,

QPR(0.5) with DPE , QDPE(0.5) (detection of small

error; Table 1), PR , QPR(0.25) with DPE ,

QDPE(0.25) (detection of very small error; Table 2), and

PR . QPR(0.75) with DPE . QDPE(0.75) (detection of

very large error; Table 3). They are shown for 36-h lead

time, but they have been computed for all lead times.

The contingency table for the detection of large errors

[PR . QPR(0.5) with DPE . QDPE(0.5)] is also given by

Table 1.

These tables lead to input data for computing some

probability scores, namely, the probability of detection

(POD) and the false alarm rate (FAR) associated with the

detection of large and small error values. For instance,

the POD associated with the event ,Q(0.25) measures

how often the radius is predicted to be very small [PR ,

QPR(0.25)] when the error is verified to be very small

[DPE , QDPE(0.25)]. Similarly, the FAR associated with

the event ,Q(0.25) measures how often the DPE is not

very small [above QDPE(0.25)] when the PR is very small

[below QPR(0.25)]. Among two forecast systems, the

better one has the higher POD and the lower FAR. To

demonstrate the skill of the EPS uncertainty circles, the

POD and FAR are compared to a no-skill forecast. Since

the climatological circles are case independent, they do

not give any information about the detection of the size of

the DPE. Therefore, the forecast skill is obtained by

comparison with a random forecast, obtained by picking

up a PR value among the climatological DPE distribution

(Fig. 3). The POD and FAR values for the events ,QDPE

and .QDPE of such a random forecast may be easily

computed. A skillful forecast should have a higher POD

and a lower FAR than this random forecast.

The POD and FAR associated with the events ,Q(0.5),

,Q(0.25), and .Q(0.75) for the ensemble method are

plotted in Fig. 8, together with the scores of a random

forecast. The scores for the event .Q(0.5) are the same as

the ones of ,Q(0.5). To illustrate the meaning of the

scores, take the event ,Q(0.5) for a 36-h lead time. The

POD value (65%, according to Fig. 8) implies that 65% of

the small error was actually detected. The FAR (35%,

according to Fig. 8) implies that 35% of the small error

FIG. 8. POD (solid lines) and FAR (dashed lines) as a function of

the forecast lead time for the EPS forecast (black lines) and

a random forecast (gray lines) with no skill: (top) ,Q(0.25),

(middle) ,Q(0.5), and (bottom) .Q(0.75).
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forecasts were not observed. These scores are better than

a random forecast (POD 5 50%, FAR 5 50%). Thus, the

POD and FAR scores emphasize the skill of the uncer-

tainty circles at estimating the DPE. A similar interpre-

tation applies to the very large [.Q(0.75)] and the very

small [,Q(0.25)] circles.

The scores are always better for the ensemble method

than for the random forecast, but they are sometimes

very close. The discrimination of DPE apart from its

median value Q(0.5) by the PR is valuable for all lead

times, but it is close to the random value at 72 h. The

POD and FAR associated with the detection of very

large DPE [.Q(0.75)] are always around 50%. The

scores for the detection of very small DPE are better

than the random forecast until 36 h, but then they jump

to values that are close to the random forecast. There-

fore, the uncertainty circles are valuable in detecting

a large error at least until a 72 h lead time; and they are

able to detect small uncertainty until a 48 h lead time.

4. Conclusions

A method of construction of uncertainty circles around

an official TC track forecast, using the ECMWF EPS, has

been described and assessed. The circles are calibrated by

using a simple scheme. A validation in two steps is per-

formed, first by the computation of scores on the prob-

ability distribution of forecast position and second by

measuring the skill at forecasting whether the position

error will be large or small. The main conclusions of this

work are that

d the Brier scores associated with the calibrated proba-

bility distribution given by the EPS are better than the

ones from a climatological forecast, and calibration is

useful and sometimes necessary to obtain valuable

scores;
d the uncertainty circles, defined by the radius of a cali-

brated probability 75%, are well correlated with the

DPE until 60 h;
d the conditional distributions of DPE to the radii of

uncertainty circles demonstrate that the method is

skillful at discriminating between large and small fore-

cast errors; and
d the size of the PR is able to indicate a small or a large

DPE at least until 72 h, but this skill becomes small

from 48 h and beyond for the smallest values of DPE.

A result of particular interest is that the EPS is not

only skillful at measuring the EPS ensemble mean error

(Majumdar and Finocchio 2010), but also the RSMC

position error. This suggests that the EPS spread is able to

measure an intrinsic part of the forecast uncertainty, with

acknowledgment that the RSMC track forecasts and the

EPS forecasts are not totally independent. The good re-

sults presented in this article will lead to the operational

implementation in the near future of the uncertainty cir-

cles by RSMC La Réunion based on the ECMWF EPS.

Track forecasts with uncertainty cones will also be ex-

tended until the 5-day lead time.

Although the EPS of ECMWF is dedicated to medium-

range forecasts and has generally good scores for lead

times of several days, the detection of small TC forecast

position errors has little skill after a 48-h lead time. It is

still an open question whether this flaw is due to the

ECMWF EPS itself, to the method of building circles, or

to an intrinsic property of TC track predictability. The

comparison of different ensemble systems would provide

some information to answer this question. The method

proposed in the present article, particularly the Brier

scores and the detection scores of large and small radii,

draw a framework that we can use to quantify and to

compare different probabilistic forecasting systems of TC

position. The impacts of the future evolutions of the EPS

on TC track forecasts may be measured, and EPS fore-

casts issued from different centers, including those from

the recently improved system of Météo-France, may be

compared. It would also be interesting to assess the value

of a multi-ensemble system such as The Observing System

Research and Predictability Experiment (THORPEX)

Interactive Grand Global Ensemble (TIGGE; Bougeault

et al. 2010).

The method builds uncertainty circles, but other shapes

may be more suitable and could result in better scores.

For instance, an ellipsis with an axis along the track would

discriminate among the along- and the cross-track errors.

Another issue to consider is when ensemble track fore-

casts splits into several directions. In such a case, a single

RSMC track forecast described by an uncertainty circle

may not be relevant. The assessment of different un-

certainty shapes would require more refined methods.
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