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Abstract. This paper is devoted to results on the
Moser-Trudinger-Onofri inequality, or Onofri inequality for
brevity. In dimension two this inequality plays a role sim-
ilar to the Sobolev inequality in higher dimensions. After
justifying this statement by recovering the Onofri inequal-
ity through various limiting procedures and after reviewing
some known results, we state several elementary remarks.

We also prove various new results. We give a proof of
the inequality using mass transportation methods (in the
radial case), consistently with similar results for Sobolev’s
inequalities. We investigate how duality can be used
to improve the Onofri inequality, in connection with the
logarithmic Hardy-Littlewood-Sobolev inequality. In the
framework of fast diffusion equations, we establish that
the inequality is an entropy–entropy production inequal-
ity, which provides an integral remainder term. Finally we
give a proof of the inequality based on rigidity methods
and introduce a related nonlinear flow.

1 Introduction

In this paper we consider the Moser-Trudinger-Onofri inequality, or Onofri

inequality, for brevity. This inequality takes any of the three following

forms, which are all equivalent.

⊲ The Euclidean Onofri inequality:

1

16 π

∫

R2

|∇u|2 dx ≥ log

(∫

R2

eu dµ

)

−
∫

R2

u dµ . (1)
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Here dµ = µ(x) dx denotes the probability measure defined by

µ(x) = 1
π (1 + |x|2)−2, x ∈ R

2.

⊲ The Onofri inequality on the two-dimensional sphere S
2:

1

4

∫

S2

|∇v|2 dσ ≥ log

(∫

S2

ev dσ

)

−
∫

S2

v dσ . (2)

Here dσ denotes the uniform probability measure, that is, the mea-

sure induced by Lebesgue’s measure on the unit sphere S
2 ⊂ R

3

divided by a 4π factor.

⊲ The Onofri inequality on the two-dimensional cylinder C = S
1 × R:

1

16 π

∫

C

|∇w|2 dy ≥ log

(∫

C

ew ν dy

)

−
∫

C

w ν dy . (3)

Here y = (θ, s) ∈ C = S
1 × R and ν(y) = 1

4π (cosh s)−2 is a weight.

These three inequalities are equivalent. Indeed, on S
2 ⊂ R

3, let us consider

the coordinates (ω, z) ∈ R
2 × R such that |ω|2 + z2 = 1 and z ∈ [−1, 1].

Let ρ := |ω| and define the stereographic projection Σ : S2 \ {N} → R
2 by

Σ(ω) = x = r ω/ρ and

z =
r2 − 1

r2 + 1
= 1− 2

r2 + 1
, ρ =

2 r

r2 + 1
.

The North Pole N corresponds to z = 1 (and is formally sent at infinity)

while the equator (corresponding to z = 0) is sent onto the unit sphere

S
1 ⊂ R

2. Whereas on the cylinder C, we can consider the Emden-Fowler

transformation using the coordinates θ = x/|x| = ωρ and s = − log r =

− log |x|. The functions u, v and w in (1), (2) and (3) are then related by

u(x) = v(ω, z) = w(θ, s) .

2 A review of the literature

Inequality (2) has been established in [Moser (1970/71)] without a sharp

constant, based on the Moser-Trudinger inequality which was itself proved

in [Trudinger (1968); Moser (1970/71)], and in [Onofri (1982)] with a sharp

constant. For this reason it is sometimes called theMoser-Trudinger-Onofri

inequality in the literature. The result of E. Onofri strongly relies on a

paper of T. Aubin, [Aubin (1979)], which contains a number of results

of existence for inequalities of Onofri type on manifolds (with unknown

optimal constants). Also based on the Moser-Trudinger inequality, one has
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to mention [Osgood et al. (1988)] which connects Inequality (2) with the

Lebedev-Milin inequalities.

Concerning the other equivalent forms of the inequality, we may refer

to [Dolbeault et al. (2008)] for (3) while it is more or less a standard result

that (1) is equivalent to (2); an important result concerning this last point

is the paper of E. Carlen and M. Loss, [Carlen and Loss (1992)], which will

be considered in more detail in Section 5. Along the same line of thought,

one has to mention [Beckner (1993)], which also is based on the Funk-Hecke

formula for the dual inequality, as was E. Lieb’s work on Hardy-Littlewood-

Sobolev inequalities on the sphere, [Lieb (1983)].

The optimal function can be identified using the associated Euler-

Lagrange equation, see [Hong (1986), Lemma 3.1] which provides details

that are somewhat lacking in Onofri’s original paper. We may also re-

fer to [Dolbeault et al. (2009), Theorem 12] for multiplicity results for a

slightly more general equation than the one associated with (1).

Another strategy can be found in the existing literature. In [Ghigi

(2005)], A. Ghigi provides a proof based on the Prékopa-Leindler inequality,

which is also explained in full detail in the book [Ghoussoub and Moradifam

(2013), Chapters 16-18] of N. Ghoussoub and A. Moradifam. Let us men-

tion that the book contains much more material and tackles the issues

of improved inequalities under additional constraints, a question that was

raised in [Aubin (1979)] and later studied in [Chang and Yang (1988, 1987);

Ghoussoub and Lin (2010)].

Symmetrization, which allows to prove that optimality in (1), (2) or (3)

is achieved among functions which are respectively radial (on the Eu-

clidean space), or depend only on the azimuthal angle (the latitude, on

the sphere), or only on the coordinate along the axis (of the cylinder) are

an essential tool to reduce the complexity of the problem. For brevity,

we shall refer to the symmetric case when the function set is reduced

to one of the above cases. Symmetrization results are widespread in the

mathematical literature, so we shall only quote a few key papers. A stan-

dard reference is the paper of [Baernstein and Taylor (1976)] and in par-

ticular [Baernstein and Taylor (1976), Theorem 2] which is a key result

for establishing the Hardy-Littlewood-Sobolev inequalities on the sphere

and its limiting case, the logarithmic Hardy-Littlewood-Sobolev inequal-

ity. By duality and by considering the optimality case, one gets a sym-

metry result for the Onofri inequality, that can be found for instance in

[Carlen and Loss (1992)]. It is also standard that the kinetic energy (Dirich-

let integral) is decreased by symmetrization (a standard reference in the
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Euclidean case can be found in [Lieb and Loss (2001), Lemma 7.17]; also

see [Brothers and Ziemer (1988), p. 154]) and the adaptation to the sphere

is straightforward. Historically, this was known much earlier and one can

for instance quote [Moser (1970/71)] (without any justification) and [Aubin

(1976), Lemma 1 and 2, p. 586]. This is precisely stated in the context of

the Onofri inequality on S
2 in [Ghigi (2005), Lemma 1], which itself refers to

[Baernstein (1994), Corollary 3 p. 60] and [Kawohl (1985)]. A detailed state-

ment can be found in [Ghoussoub and Moradifam (2013), Lemma 17.1.2].

Competing symmetries is another aspect of symmetrization that we will

not study in this paper and for which we refer to [Carlen and Loss (1992)].

In [Rubinstein (2008a)], Y.A. Rubinstein gives a proof of the Onofri in-

equality that does not use symmetrization/rearrangement arguments. Also

see [Rubinstein (2008b)] and in particular [Rubinstein (2008b), Corollary

10.12] which contains a reinforced version of the inequality. Another proof

that went rather unnoticed is used in the paper of E. Fontenas [Fontenas

(1997)]. This approach is based on the so-called Γ2 or carré du champ

method. In the symmetric case the problem can be reduced to an inequal-

ity involving the ultraspherical operator that we will consider in Section 7:

see (12), with λ = 1. As far as we know, the first observation concerning

this equivalent formulation can be found in [Bentaleb (1993)], although no

justification of the symmetrization appears in this paper. In a series of re-

cent papers, [Dolbeault et al. (2014, 2013a,b,c,d,e)] two of the authors have

clarified the link that connects the carré du champ method with rigidity

results that can be found in [Bidaut-Véron and Véron (1991)] and earlier

papers. Even better, their method involves a nonlinear flow which produces

a remainder term, which will be considered in Section 7.2.

Spherical harmonics play a crucial but hidden role, so we shall not

insist on them and refer to [Beckner (1993)] and, in the symmetric

case, to [Ghoussoub and Moradifam (2013), Chapter 16] for further de-

tails. As quoted in [Ghoussoub and Moradifam (2013)], other variations on

the Onofri-Moser-Trudinger inequality were given in [Adachi and Tanaka

(2000); Carleson and Chang (1986); Flucher (1992); McLeod and Peletier

(1989); Chang and Yang (1988, 1987)]. The question of dimensions higher

than d = 2 is an entire topic by itself and one can refer to [Beckner (1993);

Branson et al. (2007); Okikiolu (2008); del Pino and Dolbeault (2013)] for

some results in this direction. Various extensions of the Moser-Trudinger

and Moser-Trudinger-Onofri inequalities have been proposed, which are out

of the scope of this paper; let us simply mention [Lam and Lu (2013)] as a

contribution in this direction and refer the interested reader to references
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therein.

In this paper, we will neither cover issues related to conformal invari-

ance, that were central in [Onofri (1982)], nor motivations arising from

differential geometry. The reader interested in understanding how Onofri’s

inequality is related to the problem of prescribing the Gaussian curvature

on S
2 is invited to refer to [Chang (1987), Section 3] for an introductory

survey, and to [Chang and Yang (1988, 1987, 2003)] for more details.

Onofri’s inequality also has important applications, for instance

in chemotaxis: see [Gajewski and Zacharias (1998); Calvez and Corrias

(2008)] in the case of the Keller-Segel model.

As a conclusion of this review, we can list the main tools that we have

found in the literature:

(T1) Existence by variational methods,

(T2) Symmetrization techniques which allow to reduce the problem for (1)

to radial functions,

(T3) Identification of the solutions to the Euler-Lagrange equations (among

radially symmetric functions),

(T4) Duality with the logarithmic Hardy-Littlewood-Sobolev inequality and

study of the logarithmic Hardy-Littlewood-Sobolev inequality based on

spherical harmonics and the Funk-Hecke formula,

(T5) Convexity methods related with the Prékopa-Leindler inequality,

(T6) Γ2 or carré du champ methods,

(T7) Limiting procedures based on other functional inequalities.

With these tools we may try to summarize the strategies of proof that have

been developed. The approach of E. Onofri is based on (T1)+(T2)+(T3),

while (T4), (T5), (T6) and (T7) have been used in four independent and

alternative strategies of proofs. None of them is elementary, in the sense

that they rely on fundamental, deep or rather technical intermediate results.

In this paper, we intend to give new methods which, although not being

elementary, are slightly simpler, or open new lines of thought. They also

provide various additional terms which are all improvements. Several of

them are based on the use of nonlinear flows, which, as far as we know,

have not been really considered up to now, except in [Dolbeault (2011);

Dolbeault and Jankowiak (2014)]. They borrow some key issues from at

least one of the above mentioned tools (T1-7) or enlarge the framework.

(1) Limiting procedures based on other functional inequalities than Onofri’s
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one, as in (T7), will be considered in Section 3.1. Six cases are stud-

ied, none of them being entirely new, but we thought that it was quite

interesting to collect them. They also justify why we claim that “the

Onofri inequality plays in dimension two a role similar to the Sobolev

inequality in higher dimensions.” Other preliminary results (lineariza-

tion, and (T2): symmetry results) will be considered in Sections 3.2

and 3.3.

(2) Section 4 is devoted to a mass transportation approach of Onofri’s

inequality. Because of (T5), it was to be expected that such a technique

would apply, at least formally (see Section 4.1). A rigorous proof is

established in the symmetric case in Section 4.2 and the consistency

with a mass transportation approach of Sobolev’s inequalities is shown

in Section 4.3. We have not found any result in this direction in the

existing literature. (T2) is needed for a rigorous proof.

(3) In Section 5, we will come back to duality methods, and get a first

improvement to the standard Onofri inequality based on a simple ex-

pansion of a square. This has of course to do with (T4) and (T5) but

Proposition 4 is, as far as we know, a new result. We also introduce

the super-fast (or logarithmic) diffusion, which has striking properties

in relation with Onofri’s inequality and duality, but we have not been

able to obtain an improvement of the inequality as it has been done in

the case of Sobolev’s inequalities in [Dolbeault and Jankowiak (2014)].

(4) In Section 6, we observe that in dimension d = 2, the Onofri inequality

is the natural functional inequality associated with the entropy–entropy

production method for the fast diffusion equation with exponent m =

1/2. It is remarkable that no singular limit has to be taken. Moreover,

the entropy–entropy production method provides an integral remainder

term which is new.

(5) In the last section (Section 7), we establish rigidity results. Existence

of optimal functions is granted by (T1). Our results are equivalent to

whose obtained with Γ2 or carré du champ methods. This had already

been noticed in the literature (but the equivalence of the two methods

has never been really emphasized as it should have been). For the sake

of simplicity, we start by a proof in the symmetric case in Section 7.1.

However, our method does not a priori require (T2) and directly pro-

vides essential properties for (T3), that is, the uniqueness of the solu-

tions up to conformal invariance (for the critical value of a parameter,

which corresponds to the first bifurcation point from the branch of the

trivial constant solutions). Not only this point is remarkable, but we
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are also able to exhibit a nonlinear flow (in Section 7.2) which unifies

the various approaches and provides a new integral remainder term.

Our main results in this perspective are collected in Section 7.3.

3 Preliminaries

3.1 Onofri’s inequality as a limit of various interpolation

inequalities

Onofri’s inequality appears as an endpoint of various families of interpo-

lation inequalities and corresponds to a critical case in dimension d = 2

exactly like Sobolev’s inequality when d ≥ 3. This is why one can claim

that it plays in dimension two a role similar to the Sobolev inequality in

higher dimensions. Let us give some six examples of such limits, which are

probably the easiest way of proving Onofri’s inequality.

3.1.1 Onofri’s inequality as a limit of interpolation inequalities

on S
2

On the sphere S
2, one can derive the Onofri inequality from a family of

interpolation inequalities on S
2. We start from

q − 2

2
‖∇f‖2L2(S2) + ‖f‖2L2(S2) ≥ ‖f‖2Lq(S2) , (4)

which holds for any f ∈ H1(S2). See [Bidaut-Véron and Véron (1991);

Beckner (1993); Dolbeault et al. (2013a)]. Proceeding as in [Beckner

(1993)] (also see [Dolbeault et al. (2008)]), we choose q = 2 (1 + t),

f = 1 + 1
2 t v, for any positive t and use (4). This gives

(

1

4 t

∫

S2

|∇v|2 dσ + 1 +
1

t

∫

S2

v dσ +
1

4 t2

∫

S2

|v|2 dσ
)1+t

≥
∫

S2

∣

∣

∣

∣

1 +
1

2 t
v

∣

∣

∣

∣

2 (1+t)

dσ .

By taking the limit t → ∞, we recover (2).

3.1.2 Onofri’s inequality as a limit of Gagliardo-Nirenberg in-

equalities

Consider the following sub-family of Gagliardo-Nirenberg inequalities

‖f‖L2p(Rd) ≤ Cp,d ‖∇f‖θL2(Rd) ‖f‖1−θ
Lp+1(Rd)

, (5)
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with θ = θ(p) := p−1
p

d
d+2−p (d−2) , 1 < p ≤ d

d−2 if d ≥ 3 and 1 < p <

∞ if d = 2. Such an inequality holds for any smooth function f with suffi-

cient decay at infinity and, by density, for any function f ∈ Lp+1(Rd) such

that ∇f is square integrable. We shall assume that Cp,d is the best possible

constant. In [del Pino and Dolbeault (2002)], it has been established that

equality holds in (5) if f = Fp with

Fp(x) = (1 + |x|2)− 1
p−1 ∀ x ∈ R

d , (6)

and that all extremal functions are equal to Fp up to multiplication by a

constant, a translation and a scaling. If d ≥ 3, the limit case p = d/(d− 2)

corresponds to Sobolev’s inequality and one recovers the results of T. Aubin

and G. Talenti in [Aubin (1976); Talenti (1976)], with θ = 1: the optimal

functions for it are, up to scalings, translations and multiplications by a

constant, all equal to Fd/(d−2)(x) = (1 + |x|2)−(d−2)/2, and

Sd = (Cd/(d−2), d)
2 .

We can recover the Euclidean Onofri inequality as the limit case d = 2,

p → ∞ in the above family of inequalities, in the following way:

Proposition 1. [Dolbeault (2011)] Assume that u ∈ D(R2) is such that
∫

R2 u dµ = 0 and let

fp := Fp

(

1 +
u

2 p

)

,

where Fp is defined by (6). Then we have

1 ≤ lim
p→∞

Cp,2

‖∇fp‖θ(p)L2(R2) ‖fp‖
1−θ(p)
Lp+1(R2)

‖fp‖L2p(R2)
=

e
1

16 π

∫
R2

|∇u|2 dx

∫

R2 eu dµ
.

We recall that µ(x) := 1
π (1 + |x|2)−2, and dµ(x) := µ(x) dx.

Proof. For completeness, let us give a short proof. We can rewrite (5) as

∫

R2 |f |2p dx
∫

R2 |Fp|2p dx
≤
(

∫

R2 |∇f |2 dx
∫

R2 |∇Fp|2 dx

)

p−1

2
∫

R2 |f |p+1 dx
∫

R2 |Fp|p+1 dx

and observe that, with f = fp, we have:

(i) limp→∞

∫

R2 |Fp|2p dx =
∫

R2

1
(1+|x|2)2 dx = π and

lim
p→∞

∫

R2

|fp|2p dx =

∫

R2

F 2p
p (1 + u

2p )
2p dx =

∫

R2

eu

(1 + |x|2)2 dx ,
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so that
∫

R2 |fp|2p dx/
∫

R2 |Fp|2p dx converges to
∫

R2 e
u dµ as p → ∞.

(ii)
∫

R2 |Fp|p+1 dx = (p− 1)π/2, limp→∞

∫

R2 |fp|p+1 dx = ∞, but

lim
p→∞

∫

R2 |fp|p+1 dx
∫

R2 |Fp|p+1 dx
= 1 .

(iii) Expanding the square and integrating by parts, we find that

∫

R2

|∇fp|2 dx =
1

4p2

∫

R2

F 2
p |∇u|2 dx−

∫

R2

(1 + u
2p )

2 Fp ∆Fp dx

=
1

4p2

∫

R2

|∇u|2 dx+
2π

p+ 1
+ o(p−2) .

Here we have used
∫

R2 |∇Fp|2 dx = 2π
p+1 and the condition

∫

R2 u dµ = 0

in order to discard one additional term of the order of p−2. On the other

hand, we find that

(

∫

R2 |∇fp|2 dx
∫

R2 |∇Fp|2 dx

)

p−1

2

∼
(

1 +
p+ 1

8 π p2

∫

R2

|∇u|2 dx
)

p−1

2

∼ e
1

16π

∫
R2

|∇u|2 dx

as p → ∞. Collecting these estimates concludes the proof.

3.1.3 Onofri’s inequality as a limit of Sobolev inequalities

Another way to derive Onofri’s inequality is to consider the usual optimal

Sobolev inequalities in R
2, written for an Lp(R2) norm of the gradient, for

an arbitrary p ∈ (1, 2). This method is inspired by [del Pino and Dolbeault

(2013)], which is devoted to inequalities in exponential form in dimensions

d ≥ 2. See in particular [del Pino and Dolbeault (2013), Example 1.2]. In

the special case p ∈ (1, 2), d = 2, let us consider the Sobolev inequality

‖f‖p
L

2 p
2−p (R2)

≤ Cp ‖∇f‖pLp(R2) ∀ f ∈ D(R2) , (7)

where equality is achieved by the Aubin-Talenti extremal profile

f⋆(x) =
(

1 + |x|
p

p−1

)− 2−p

p ∀x ∈ R
2 .

The extremal functions were already known from the celebrated papers by

T. Aubin and G. Talenti, [Aubin (1976); Talenti (1976)]. See also [Bliss

(1930); Rosen (1971)] for earlier related computations, which provided the

value of some of the best constants. It is easy to check that f⋆ solves

−∆pf⋆ = 2

(

2− p

p− 1

)p−1

f
2 p

2−p
−1

⋆ ,

9



hence

‖∇f⋆‖pLp(R2) =
1

Cp
‖f⋆‖p

L
2 p
2−p (R2)

= 2

(

2− p

p− 1

)p−1

‖f⋆‖
2 p

2−p

L
2 p
2−p (R2)

,

so that the optimal constant is

Cp =
1

2

(

p− 1

2− p

)p−1(
p2 sin(2 π/p)

2 (p− 1) (2− p)π2

)

p

2

.

We can study the limit p → 2− in order to recover the Onofri inequality

by considering f = f⋆
(

1 + 2−p
2 p u

)

, where u is a given smooth, compactly

supported function, and ε = 2−p
2 p . A direct computation gives

lim
p→2−

∫

R2

f
2 p

2−p dx =

∫

R2

eu

(1 + |x|2)2 dx = π

∫

R2

eu dµ ,

and
∫

R2

|∇f |p dx = 2 π (2 − p)

[

1 + 2−p
2

∫

R2

u dµ

]

+ (2−p
2 p )p

∫

R2

|∇u|2 dx+ o((2− p)2) ,

as p → 2−. By taking the logarithm of both sides of (7), we get

2− p

2
log

(
∫

R2

eu dµ

)

∼ 2− p

2
log





∫

R2 f
2 p

2−p dx
∫

R2 f
2 p

2−p

⋆ dx





≤ log

(

∫

R2 |∇f |p dx
∫

R2 |∇f⋆|p dx

)

= log

(

1 + 2−p
2

∫

R2

u dµ+ 2−p
32 π

∫

R2

|∇u|2 dx+ o(2 − p)

)

Gathering the terms of order 2 − p, we recover the Euclidean Onofri in-

equality by passing to the limit p → 2−.

3.1.4 The radial Onofri inequality as a limit when d → 2

Although this approach is restricted to radially symmetric functions, one of

the most striking way to justify the fact that the Onofri inequality plays in

dimension two a role similar to the Sobolev inequality in higher dimensions

goes as follows. To start with, one can consider the Sobolev inequality ap-

plied to radially symmetric functions only. The dimension d can now be
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considered as a real parameter. Then, by taking the limit d → 2, one can re-

cover a weaker (i.e. for radial functions only) version of the Onofri inequal-

ity. The details of the computation, taken from [Dolbeault and Jankowiak

(2014)], follow.

Consider the radial Sobolev inequality

sd

∫ ∞

0

|f ′|2 rd−1 dr ≥
(∫ ∞

0

|f | 2 d
d−2 rd−1 dr

)1− 2
d

, (8)

with optimal constant

sd =
4

d (d− 2)

(

Γ
(

d+1
2

)

√
π Γ
(

d
2

)

)
2
d

.

We may pass to the limit in (8) with the choice

f(r) = f⋆(r)
(

1 + d−2
2 d u

)

,

where f⋆(r) = (1 + r2)−
d−2

2 gives the equality case in (8), to get the radial

version of Onofri’s inequality for u. By expanding the expression of |f ′|2
we get

f ′2 = f ′2
⋆ +

d− 2

d
f ′
⋆ (f⋆ u)

′
+

(

d− 2

2 d

)2

(f ′
⋆ u+ f⋆ u

′)
2
.

We have

lim
d→2+

∫ ∞

0

|f⋆ (1 + d−2
2 d u)| 2 d

d−2 rd−1 dr =

∫ ∞

0

eu
r dr

(1 + r2)2
,

so that, as d → 2+,
(∫ ∞

0

|f⋆ (1 + d−2
2 d u)| 2 d

d−2 rd−1 dr

)
d−2

d

−1 ∼ d− 2

2
log

(∫ ∞

0

eu
r dr

(1 + r2)2

)

.

Also, using the fact that

sd =
1

d− 2
+

1

2
− 1

2
log 2 + o(1) as d → 2+ ,

we have

sd

∫ ∞

0

|f ′|2 rd−1 dr ∼ 1 + (d− 2)

[

1

8

∫ ∞

0

|u′|2 r dr +
∫ ∞

0

u
2 r dr

(1 + r2)2

]

.

By keeping only the highest order terms, which are of the order of (d− 2),

and passing to the limit as d → 2+ in (8), we obtain that

1

8

∫ ∞

0

|u′|2 r dr +
∫ ∞

0

u
2 r dr

(1 + r2)2
≥ log

(∫ ∞

0

eu
2 r dr

(1 + r2)2

)

,

which is Onofri’s inequality written for radial functions.
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3.1.5 Onofri’s inequality as a limit of Caffarelli-Kohn-Nirenberg

inequalities

Onofri’s inequality can be obtained as the limit in a familly of Caffarelli-

Kohn-Nirenberg inequalities, as was first done in [Dolbeault et al. (2008)].

Let 2∗ := ∞ if d = 1 or 2, 2∗ := 2 d/(d − 2) if d ≥ 3 and ac := (d −
2)/2. Consider the space D1,2

a (Rd) obtained by completion of D(Rd \ {0})
with respect to the norm u 7→ ‖ |x|−a ∇u ‖2L2(Rd). In this section, we shall

consider the Caffarelli-Kohn-Nirenberg inequalities
( ∫

Rd

|u|p
|x|bp dx

)
2
p

≤ Ca,b

∫

Rd

|∇u|2
|x|2a dx . (9)

These inequalities generalize to D1,2
a (Rd) the Sobolev inequality and in

particular the exponent p is given in terms of a and b by

p =
2 d

d− 2 + 2 (b− a)
,

as can be checked by a simple scaling argument. A precise statement on

the range of validity of (9) goes as follows.

Lemma 2. [Caffarelli et al. (1984)] Let d ≥ 1. For any p ∈ [2, 2∗] if d ≥ 3

or p ∈ [2, 2∗) if d = 1 or 2, there exists a positive constant Ca,b such that

(9) holds if a, b and p are related by b = a− ac + d/p, with the restrictions

a < ac, a ≤ b ≤ a+1 if d ≥ 3, a < b ≤ a+1 if d = 2 and a+1/2 < b ≤ a+1

if d = 1.

We shall restrict our purpose to the case of dimension d = 2. For any

α ∈ (−1, 0), let us denote by dµα the probability measure on R
2 defined by

dµα := µα dx where

µα :=
1 + α

π

|x|2α

(1 + |x|2 (1+α))2
.

It has been established in [Dolbeault et al. (2008)] that

log

(∫

R2

eu dµα

)

−
∫

R2

u dµα ≤ 1

16 π (1 + α)

∫

R2

|∇u|2 dx ∀ u ∈ D(R2) ,

(10)

where D(R2) is the space of smooth functions with compact support. By

density with respect to the natural norm defined by each of the inequalities,

the result also holds on the corresponding Orlicz space.

We adopt the strategy of [Dolbeault et al. (2008), Section 2.3] to pass

to the limit in (9) as (a, b) → (0, 0) with b = α
α+1 a. Let

aε = − ε

1− ε
(α+ 1) , bε = aε + ε, pε =

2

ε
,

12



and

uε(x) =
(

1 + |x|2 (α+1)
)− ε

1−ε

.

Assuming that uε is an optimal function for (9), define

κε =

∫

R2

[

uε

|x|aε+ε

]2/ε

dx =

∫

R2

|x|2α

(

1 + |x|2 (1+α)
)2

u2
ε

|x|2aε
dx =

π

α+ 1

Γ
(

1
1−ε

)2

Γ
(

2
1−ε

) ,

λε =

∫

R2

[ |∇uε|
|x|a

]2

dx = 4 a2ε

∫

R2

|x|2 (2α+1−aε)

(

1 + |x|2 (1+α)
)

2
1−ε

dx = 4 π
|aε|
1− ε

Γ
(

1
1−ε

)2

Γ
(

2
1−ε

) .

Then wε = (1 + 1
2 ε u)uε is such that

lim
ε→0+

1

κε

∫

R2

|wε|pε

|x|bεpε
dx =

∫

R2

eu dµα ,

lim
ε→0+

1

ε

[

1

λε

∫

R2

|∇wε|2
|x|2aε

dx− 1

]

=

∫

R2

u dµα +
1

16 (1 + α)π
‖∇u‖2L2(R2) .

3.1.6 Limits of some Gagliardo-Nirenberg inequalities on the line

Onofri’s inequality on the cylinder, (3) can also be recovered by a limiting

process, in the symmetric case. As far as we know, this method for proving

the inequality is new, but a clever use of the Emden-Fowler transforma-

tion and of the results based on the Caffarelli-Kohn-Nirenberg inequalities

shows that this was to be expected. See [Dolbeault et al. (2008)] for more

considerations in this direction.

Consider the Gagliardo-Nirenberg inequalities on the line

‖f‖Lp(R) ≤ C
p
GN ‖f ′‖θL2(R) ‖f‖1−θ

L2(R) ∀ f ∈ H1(R) ,

with θ = p−2
2 p , p > 2. Equality is achieved by the function

f⋆(x) := (cosh s)
− 2

p−1 ∀ s ∈ R .

See [Dolbeault et al. (2013c)] for details. By taking the logarithm of both

sides of the inequality, we find that

2

p
log

(

∫

R
fp ds

∫

R
fp
⋆ ds

)

≤ θ log

(

∫

R
|f ′|2 ds

∫

R
|f ′

⋆|2 ds

)

+ (1 − θ) log

(

∫

R
f2 ds

∫

R
f2
⋆ ds

)

and elementary computations show that as p → +∞, fp
⋆ → 2 ξ and

−f⋆ f
′′
⋆ ∼ 4

p ξ with ξ(s) := 1
2 (cosh s)

−2
. If we take f = f⋆ (1 + w/p),

we have

lim
p→∞

∫

R

fp ds = 2

∫

R

ew ξ ds ,
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lim
p→∞

log

(

∫

R
fp ds

∫

R
fp
⋆ ds

)

= log

(∫

R

ew ξ ds

)

.

We can also compute

∫

R

|f⋆|2 ds =
p− 1

2
+ 2 log 2 +O

(

1
p

)

and
∫

R

|f |2 ds =

∫

R

|f⋆|2 (1 + 2
p w + 1

p2 w
2) ds =

p− 1

2
+ 2 log 2 +O

(

1
p

)

as p → +∞, so that

∫

R
f2 ds

∫

R
f2
⋆ ds

− 1 = O
(

1
p2

)

and lim
p→∞

p log

(

∫

R
f2 ds

∫

R
f2
⋆ ds

)

= 0 .

For the last term, we observe that, pointwise,

−f⋆ f
′′
⋆ ∼ 2

p

1

(cosh s)2

and
∫

R

|f ′
⋆|2 ds = −

∫

R

f⋆ f
′′
⋆ ds =

2

p
+O

(

1
p2

)

as p → +∞ .

Passing to the limit as p → +∞, we get that

∫

R

|f ′|2 ds =
1

p2

∫

R

f2
⋆ |w′|2 ds−

∫

R

f⋆ f
′′
⋆

(

1 +
w

p

)2

ds

=
1

p2

∫

R

|w′|2 ds+
2

p

(

1 +
4

p

∫

R

w ξ ds

)

+ o
(

1
p2

)

,

and finally

log

(

∫

R
|f ′|2 ds

∫

R
|f ′

⋆|2 ds

)

∼ 1

p

(

4

∫

R

w ξ ds+
1

2

∫

R

|w′|2 ds

)

+ o
(

1
p

)

.

Collecting terms, we find that

1

8

∫

R

|w′|2 ds ≥ log

(
∫

R

ew ξ ds

)

−
∫

R

w ξ ds .
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3.2 Linearization and optimal constant

Consider (2) and define

Iλ := inf
v ∈ H1(S2)
∫

S2
v dσ > 0

Qλ[v] with Qλ[v] :=
1
4

∫

S2
|∇v|2 dσ + λ

∫

S2
v dσ

log
(∫

S2
ev dσ

) .

By Jensen’s inequality, log
(∫

S2
ev dσ

)

≥
∫

S2
v dσ > 0, so that Iλ is well

defined and nonnegative for any λ > 0. Since constant functions are ad-

missible, we also know that

Iλ ≤ λ ,

for any λ > 0. Moreover, since λ 7→ Qλ[v] is affine, we know that λ 7→ Iλ is

concave and continuous. Assume now that
∫

S2
v dσ = 0 and for any c > 0,

let us consider

Qλ[v + c] =
1
4

∫

S2
|∇v|2 dσ + λ c

c+ log
(∫

S2
ev dσ

) ≥ log
(∫

S2
ev dσ

)

+ λ c

c+ log
(∫

S2
ev dσ

) , (11)

where the inequality follows from (2). It is clear that for such functions v,

lim
c→+∞

Qλ[v + c] = λ ,

lim
c→0+

Qλ[v + c] =

∫

S2
|∇v|2 dσ

log
(∫

S2
ev dσ

) = Qλ[v] .

If λ < 1, using (11), we can write that for all c > 0,

Qλ[v + c] ≥ λ+ (1 − λ)
log
(∫

S2
ev dσ

)

c+ log
(∫

S2
ev dσ

) ≥ λ ,

thus proving that Iλ = λ is optimal when λ < 1.

When λ ≥ 1, we may take v = ε φ, where φ is an eigenfunction of the

Laplace-Beltrami operator −∆S2 on the sphere S2, such that −∆S2φ = 2φ

and take the limit as ε → 0+, so that
∫

S2
|∇v|2 dσ = ε2

∫

S2
|∇φ|2 dσ =

2 ε2
∫

S2
|φ|2 dσ and log

(∫

S2
ev dσ

)

= log
(

1 + 1
2 ε

2
∫

S2
φ2 dσ + o(ε2)

)

. Col-

lecting terms, we get that

lim
ε→0+

Qλ[ε φ] = 1 .

Altogether, we have found that

Iλ = min{λ, 1} ∀λ > 0 .
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3.3 Symmetrization results

For the sake of completeness, let us state a result of symmetry. Consider

the functional

Gλ[v] :=
1

4

∫

S2

|∇v|2 dσ + λ

∫

S2

v dσ − log

(∫

S2

ev dσ

)

,

and denote by H1
∗(S

2) the function in H1(S2) which depend only on the

azimuthal angle (latitude), that we shall denote by θ ∈ [0, π].

Proposition 3. For any λ > 0,

inf
v∈H1(S2)

Gλ[v] = inf
v∈H1

∗
(S2)

Gλ[v] .

We refer to [Ghoussoub and Moradifam (2013), Lemma 17.1.2] for a proof

of the symmetry result and to Section 2 for further historical references.

Hence, for any function v ∈ H1(S2), the inequality G1[v] ≥ 0 reads

1

8

∫ π

0

|v′(θ)|2 sin θ dθ +
1

2

∫ π

0

v(θ) sin θ dθ ≥ log

(

1

2

∫ π

0

ev sin θ dθ

)

.

The change of variables z = cos θ, v(θ) = f(z) allows to rewrite this in-

equality as

1

8

∫ 1

−1

|f ′|2 ν dz + 1

2

∫ 1

−1

f dz ≥ log

(

1

2

∫ 1

−1

ef dz

)

, (12)

where ν(x) := 1 − z2. Let us define the ultraspherical operator L by

〈f1,L f2〉 = −
∫ 1

−1 f
′
1 f

′
2 ν dz where 〈·, ·〉 denotes the standard scalar product

on L2(−1, 1; dz). Explicitly we have:

L f := (1− z2) f ′′ − 2 z f ′ = ν f ′′ + ν′ f ′

and (12) simply means

−1

8
〈f,L f〉+ 1

2

∫ 1

−1

f ν dz ≥ log

(

1

2

∫ 1

−1

ef ν dz

)

.

4 Mass Transportation

Since Onofri’s inequality appears as a limit case of Sobolev’s in-

equalities which can be proved by mass transportation according to

[Cordero-Erausquin et al. (2004)], it makes a lot of sense to look for a proof

based on such techniques. Let us start by recalling some known results.
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Assume that F and G are two probability distributions on R
2 and con-

sider the convex function φ such thatG is the push-forward of F through∇φ

∇φ∗F = G ,

where ∇φ is the Brenier map and φ solves the Monge-Ampère equation

F = G(∇φ) det (Hess(φ)) on R
d . (13)

See [McCann (1995)] for details. Here d = 2 but to emphasize the role

of the dimension, we will keep it as a parameter for a while. The Monge-

Ampère equation (13) holds in the F dx sense almost everywhere according

to [McCann (1997), Remark 4.5], as discussed in [Cordero-Erausquin et al.

(2004)]. By now this strategy is standard and we shall refer to [Villani

(2009)] for background material and technical issues that will be omitted

here. We can for instance assume that F and G are smooth functions and

argue by density afterwards.

4.1 Formal approach

Let us start by a formal computation. Using (13), since

G(∇φ)−
1
d = F− 1

d det (Hess(φ))
1
d ≤ 1

d
F− 1

d ∆φ

by the arithmetic-geometric inequality, we get the estimate
∫

Rd

G(y)1−
1
d dy =

∫

Rd

G(∇φ)1−
1
d det (Hess(φ)) dx ≤ 1

d

∫

Rd

F 1− 1
d (x)∆φdx

(14)

using the change of variables y = ∇φ(x) and (13). Assume that

G(y) = µ(y) =
1

π (1 + |y|2)2 ∀ y ∈ R
d

and

F = µ eu .

With d = 2, we obtain

4

∫

R2

√
µ dx = 2 d

∫

Rd

G(y)1−
1
d dy

= 2

∫

Rd

F 1− 1
d (x)∆φdx = −

∫

R2

∇ logF ·
√
F ∇φdx

= −
∫

R2

(∇ log µ+∇u) ·
√
F ∇φdx ,
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which can be estimated using the Cauchy-Schwarz inequality by

16

(∫

R2

√
µ dx

)2

=

(∫

R2

(∇ logµ+∇u) ·
√
F ∇φ dx

)2

≤
∫

R2

|∇u +∇ logµ|2 dx
∫

R2

F |∇φ|2 dx .

If we expand the square, that is, if we write

∫

R2

|∇u +∇ logµ|2 dx

=

∫

R2

|∇u|2 dx− 2

∫

R2

u∆ logµdx +

∫

R2

|∇ logµ|2 dx ,

after recalling that

−∆ logµ = 8 π µ ,

and after undoing the change of variables y = ∇φ(x), so that we get

∫

R2

F |∇φ|2 dx =

∫

R2

G(y) |y|2 dx =

∫

R2

µ |y|2 dx ,

we end up, after collecting the terms, with

16
(∫

R2

√
µ dx

)2

∫

R2 µ |y|2 dx −
∫

R2

|∇ log µ|2 dx ≤
∫

R2

|∇u|2 dx+ 16 π

∫

R2

u dµ .

Still at a formal level, we may observe that

16

(∫

R2

√
µ dx

)2

=

(

− 2

∫

R2

y · ∇√
µ dx

)2

=

(∫

R2

y
√
µ · ∇ logµ dx

)2

≤
∫

R2

µ |y|2 dx
∫

R2

|∇ logµ|2 dx

by the Cauchy-Schwarz inequality. This would prove Onofri’s inequality

since log
(∫

R2 e
u dµ

)

= log
(∫

R2 F dx
)

= 0, if y 7→ √
µ, y 7→ µ |y|2 and

y 7→ |∇ logµ|2 were integrable, but this is not the case. As we shall see in

the next section, this issue can be solved by working on balls.
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4.2 The radially symmetric case

When F and G are assumed to depend only on r = |x|, so that we may

write that |y| = s = ϕ(r), then (13) becomes

(G ◦ ϕ′)

(

ϕ′

r

)d−1

ϕ′′ = F

what allows to compute ϕ′ using

∫ ϕ′(R)

0

G(s) sd−1 ds =

∫ R

0

(G◦ϕ′)

(

ϕ′

r

)d−1

ϕ′′ rd−1 dr =

∫ R

0

F (r) rd−1 dr .

With a straightforward abuse of notation we shall indifferently write that

F is a function of x or of r and G a function of y or s.

The proof is similar to the one in Section 4.1 except that all integrals

can be restricted to a ball BR of radius R > 0 with center at the origin.

Assume that G = µ/ZR, F = eu µ/ZR where ZR =
∫

BR
µ dx and u has

compact support inside the ball BR. An easy computation shows that

ZR =
R2

1 +R2
∀R > 0 .

We shall also assume that u is normalized so that
∫

BR
F dx = 1.

All computations are now done on BR. The only differences with Sec-

tion 4.1 arise from the integrations by parts, so we have to handle two

additional terms:
∫

BR

F 1− 1
d (x)∆φdx +

1

2

∫

BR

∇ logF ·
√
F ∇φdx

= π R
√

F (R)ϕ′(R) = π R
√

µ(R)/ZR ϕ′(R)

and

2

∫

BR

∇u · ∇ log µ dx+ 2

∫

BR

u∆ logµ dx = 4 πR (logµ)′(R)u(R) = 0 .

If we fix u (smooth, with compact support) and let R → ∞, then it is

clear that none of these two terms plays a role. Notice that there exists a

constant κ such that

(ϕ′(R))2

1 + (ϕ′(R))2
=

R2

1 +R2
+ κ

for large values of R, and hence ϕ′(R) ∼ R. Hence,

lim
R→∞

π R
√

µ(R)/ZR ϕ′(R) =
√
π .
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After collecting the terms, we obtain

16
(

∫

BR

√
µ dy −√

π
)2

∫

BR
µ |y|2 dy −

∫

BR

|∇ logµ|2 dy + o(1)

≤
∫

R2

|∇u|2 dx− 16 π

∫

R2

u dµ

as R → ∞. Now the Cauchy-Schwarz inequality has to be written as

16

(∫

BR

√
µ dy −

√
π

)2

=

(

− 2

∫

BR

y · ∇√
µ dy

)2

≤
∫

BR

µ |y|2 dy
∫

BR

|∇ logµ|2 dy .

This establishes the result in the radial case.

4.3 Mass transportation for approximating critical Sobolev

inequalities

Inspired by the limit of Section 3.1.3, we can indeed obtain Onofri’s inequal-

ity as a limiting process of critical Sobolev inequalities involving mass trans-

portation. Let us recall the method of [Cordero-Erausquin et al. (2004)].

Let us consider the case where p < d = 2,

F = f
d p
d−p

and G are two probability measures, p′ = p/(p− 1) is the Hölder conjugate

exponent of p and consider the critical Sobolev inequality

‖f‖p
L

2 p
2−p (Rd)

≤ Cp,d ‖∇f‖p
Lp(Rd)

∀ f ∈ D(Rd) .

This inequality generalizes the one in Section 3.1.3 which corresponds to

d = 2 and in particular we have Cp,2 = Cp. Starting from (14), the proof

by mass transportation goes as follows. An integration by parts shows that

∫

Rd

G1− 1
d dy ≤ −p (d− 1)

d (d− p)

∫

Rd

∇(F
1
p
− 1

d ) · F
1

p′ ∇φdx

≤ p (d− 1)

d (d− p)
‖∇f‖Lp(Rd)

(∫

Rd

F |∇φ|p′

dx

)1/p′

,

where the last line relies on Hölder’s inequality and the fact that F
1
p
− 1

d = f .

The conclusion of the proof arises from the fact that
∫

Rd F |∇φ|p′

dx =
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∫

Rd G |y|p′

dy. It allows to characterize Cp,d by

Cp,d =
p (d− 1)

d (d− p)
inf

(

∫

Rd G |y|p′

dy
)1/p′

∫

Rd G1− 1
d dy

,

where the infimum is taken on all positive probability measures and is

achieved by G = f
d p

d−p

⋆ . Here f⋆(x) = (1 + |x|p′

)−(d−p)/p is the optimal

Aubin-Talenti function.

If we specialize in the case d = 2 and consider f = f⋆

(

1 + 2−p
2 p (u − ū)

)

,

where ū is adjusted so that ‖f‖
L

2 p
2−p (R2)

= 1, then we recover Onofri’s

inequality by passing to the limit as p → 2−. Moreover, we may notice

that ∇(F
1
p
− 1

d ) · F
1

p′ ∇φ formally approaches ∇ logF ·
√
F ∇φ, so that the

mass transportation method for critical Sobolev inequalities is consistent

with the formal computation of Section 4.1.

5 An improved inequality based on Legendre’s duality and

the logarithmic diffusion or super-fast diffusion equation

In [Dolbeault and Jankowiak (2014), Theorem 2], it has been shown that

∫

R2

f log

(

f

M

)

dx− 4 π

M

∫

R2

f (−∆)−1 f dx +M (1 + log π)

≤ M

[

1

16 π
‖∇u‖2L2(R2) +

∫

R2

u dµ− logM

]

(15)

holds for any function u ∈ D(R2) such that M =
∫

R2 e
u dµ and f = euµ.

The l.h.s. in (15) is nonnegative by the logarithmic Hardy-Littlewood-

Sobolev type inequality according to [Carlen and Loss (1992), Theorem 1]

(also see [Beckner (1993), Theorem 2]). The inequality (15) is proven by

simply expanding the square

0 ≤
∫

R2

∣

∣

∣

∣

1

8 π
∇u+ κ∇ (−∆)−1(v − µ)

∣

∣

∣

∣

2

dx ,

for some constant κ to be appropriately chosen. Alternatively, we may work

on the sphere. Let us expand the square

0 ≤
∫

S2

∣

∣

∣

∣

1

2
∇(u − ū) +

1

v̄
∇ (−∆)−1(v − v̄)

∣

∣

∣

∣

2

dσ .

21



It is then straightforward to see that

1

4

∫

S2

|∇u|2 dσ +

∫

S2

u dσ − log

(∫

S2

eu dσ

)

+
1

v̄2

∫

S2

(v − v̄) (−∆)−1(v − v̄) dσ − 1

v̄

∫

S2

v log
(v

v̄

)

dσ

≥ 2

v̄

∫

S2

(u − ū) (v − v̄) dσ

+

∫

S2

u dσ − log

(∫

S2

eu dσ

)

− 1

v̄

∫

S2

v log
(v

v̄

)

dσ

=: R[u, v] .

Here we assume that

ū := log

(∫

S2

eu dσ

)

and v̄ :=

∫

S2

v dσ .

With the choice

v = eu , v̄ = eū ,

the reader is invited to check that R[u, v] = 0. Altogether, we have shown

that

1

4

∫

S2

|∇u|2 dσ +

∫

S2

u dσ − log

(∫

S2

eu dσ

)

≥
∫

S2

f log f dσ −
∫

S2

(f − 1) (−∆)−1(f − 1)dσ ,

with f := eu/
∫

S2
eu dσ. This inequality is exactly equivalent to (15). Notice

that the r.h.s. is nonnegative by the logarithmic Hardy-Littlewood-Sobolev

inequality, which is the dual inequality of Onofri’s. See [Carlen and Loss

(1992); Dolbeault (2011); Dolbeault and Jankowiak (2014)] for details.

Keeping track of the square, we arrive at the following identity.

Proposition 4. For any u ∈ H1(S2), we have

1

4

∫

S2

|∇u|2 dσ +

∫

S2

u dσ − log

(
∫

S2

eu dσ

)

=

∫

S2

f log f dσ −
∫

S2

(f − 1) (−∆)−1(f − 1)dσ

+

∫

S2

∣

∣

∣

∣

1

2
∇u+∇ (−∆)−1(f − 1)

∣

∣

∣

∣

2

dσ ,

with f := eu/
∫

S2
eu dσ.
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It is an open question to get an improved inequality compared to (15)

using a flow, as was done in [Dolbeault and Jankowiak (2014)] for Sobolev

and Hardy-Littlewood-Sobolev inequalities. We may for instance consider

the logarithmic diffusion equation, which is also called the super-fast diffu-

sion equation, on the two-dimensional sphere S
2

∂f

∂t
= ∆S2 log f , (16)

where ∆S2 denotes the Laplace-Beltrami operator on S
2. In dimension

d = 2 Eq. (16) plays a role which is the analogue of the Yamabe flow in

dimensions d ≥ 3 or, to be precise, to the equation ∂f
∂t = ∆S2f

d−2

d+2 . See

[Dolbeault (2011); Dolbeault and Jankowiak (2014)] for details. The flow

defined by (16) does not give straightforward estimates although we may

notice that

H :=

∫

S2

f log f dσ −
∫

S2

(f − 1) (−∆)−1(f − 1)dσ

is such that, if f = eu/2 is a solution to (16) such that
∫

S2
f dσ = 1, then

dH

dt
= −

[∫

S2

|∇u|2 dσ +

∫

S2

u dσ −
∫

S2

u eu/2 dσ

]

≤ −
[∫

S2

|∇u|2 dσ +

∫

S2

u dσ − log

(∫

S2

eu dσ

)]

because
∫

S2
u eu/2 dσ ≤ log

(∫

S2
eu dσ

)

according to [Dolbeault (2011),

Proposition 3.1].

6 An improved inequality based on the entropy–entropy

production method and the fast diffusion equation

In R
2 we consider the fast diffusion equation written in self-similar variables

∂v

∂t
+∇ ·

[

v
(

∇vm−1 − 2 x
)]

= 0 , (17)

where the parameter m is taken in the interval [1/2, 1). According to

[del Pino and Dolbeault (2002)], the mass M =
∫

R2 v dx is independent

of t. Stationary solutions are the so-called Barenblatt profiles

v∞(x) :=
(

D + |x|2
)

1
m−1 ,

where D is a positive parameter which is uniquely determined by the mass

condition M =
∫

R2 v∞ dx. The relative entropy is defined by

E [v] := 1

m− 1

∫

R2

[

vm − vm∞ −mvm−1
∞ (v − v∞)

]

dx .
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According to [del Pino and Dolbeault (2002)], it is a Lyapunov functional,

since

d

dt
E [v] = −I[v] ,

where I is the relative Fisher information defined by

I[v] :=
∫

R2

v |vm−1 − vm−1
∞ |2 dx ,

and for m > 1
2 the inequality

E [v] ≤ 1

4
I[v] (18)

is equivalent to a Gagliardo-Nirenberg inequality written with an optimal

constant according to [del Pino and Dolbeault (2002)]. Note that for m =

1/2, v∞(x) :=
(

D + |x|2
)−2

and so vm∞ /∈ L1(R2) and |x|2 v∞ /∈ L1(R2).

However, we may consider w = v/v∞ at least for a function v such

that v − v∞ is compactly supported, take the limit m → 1/2 and argue by

density to prove that

E [w v∞] =: E[w] =

∫

R2

|√w − 1|2
D + |x|2 dx ≤ 1

4
I[w] ,

where

I[w] := I[w v∞] =

∫

R2

v∞ w
∣

∣∇
(

vm−1
∞ (wm−1 − 1)

)∣

∣

2
dx

can be rewritten as

I[w] =

∫

R2

w

(D + |x|2)2
∣

∣∇
(

vm−1
∞ (wm−1 − 1)

)∣

∣

2
dx

=

∫

R2

w

(D + |x|2)2
∣

∣

∣∇
(

(D + |x|2) (w−1/2 − 1)
)∣

∣

∣

2

dx

=

∫

R2

1

(D + |x|2)2
∣

∣

∣

∣

2 x (1−
√
w )− 1

2
(D + |x|2)∇ logw

∣

∣

∣

∣

2

dx

=

∫

R2

4 |x|2 (1−√
w )2

(D + |x|2)2 dx+
1

4

∫

R2

|∇ logw|2 dx

− 2

∫

R2

x · ∇ logw + 2∇(1−√
w )

D + |x|2 dx

=

∫

R2

4 |x|2 (1−√
w )2

(D + |x|2)2 dx+
1

4

∫

R2

|∇ logw|2 dx

+ 4D

∫

R2

logw + 2 (1−√
w )

(D + |x|2)2 dx ,
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where we performed an integration by parts in the last line. Collecting

terms and letting u = logw, we arrive at

1

4
I[w]− E[w] = − D

∫

R2

(1 −√
w )2

(D + |x|2)2 dx+
1

16

∫

R2

|∇ logw|2 dx

+D

∫

R2

logw − 2 (
√
w − 1)

(D + |x|2)2 dx

= −D

∫

R2

(1 − eu/2)2

(D + |x|2)2 dx+
1

16

∫

R2

|∇u|2 dx

+D

∫

R2

u− 2 (eu/2 − 1)

(D + |x|2)2 dx

=
1

16

∫

R2

|∇u|2 dx−D

∫

R2

eu − 1− u

(D + |x|2)2 dx ,

and thus prove that (18) written for m = 1/2 shows that the r.h.s. in the

above identity is nonnegative. As a special case consider D = 1 and define

dµ = µ(x) dx where µ(x) = 1
π (1+ |x|2)−2. Inequality (18) can therefore be

written as
1

16 π

∫

R2

|∇u|2 dx ≥
∫

R2

eu dµ− 1−
∫

R2

u dµ .

Since z−1 ≥ log z for any z > 0, this inequality implies the Onofri inequal-

ity (1), namely,

1

16 π

∫

R2

|∇u|2 dx ≥ log

(∫

R2

eu dµ

)

−
∫

R2

u dµ .

The two inequalities are actually equivalent since the first one is not invari-

ant under a shift by a given constant: if we replace u by u+ c with c such

that
∫

R2

eu dµ− 1−
∫

R2

u dµ ≥ ec
∫

R2

eu dµ− 1−
∫

R2

u dµ− c ,

and minimize the r.h.s. with respect to c, we get that c = − log
(∫

R2 e
u dµ

)

and recover the standard form (1) of Onofri’s inequality.

Various methods are available for proving (18). The Bakry-

Emery method, or carré du champ method, has been developed in

[Bakry and Émery (1984); Arnold et al. (2001)] in the linear case and

later extended to nonlinear diffusions in [del Pino and Dolbeault (2002);

Carrillo and Toscani (2000); Carrillo et al. (2001)] using a relative en-

tropy which appears first in [Newman (1984); Ralston (1984)]. This

entropy–entropy production method has the advantage of providing an in-

tegral remainder term. Here we adopt a setting that can be found in

[Dolbeault and Toscani (2013)].
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Let us consider a solution v to (17) and define

z(x, t) := ∇vm−1 − 2 x ,

so that (17) can be rewritten for any m ∈ [ 12 , 1) as
∂v

∂t
+∇ · (v z) = 0 .

A tedious computation shows that
d

dt

∫

R2

v |z|2 dx+ 4

∫

R2

v |z|2 dx = −2
1−m

m
R[v, z] ,

with

R[v, z] :=

∫

R2

vm
[

|∇z|2 − (1 −m) (∇ · z)2
]

dx , (19)

where |∇z|2 =
∑

i,j=1,2(
∂zi
∂xj

)2 and ∇ · z =
∑

i=1,2
∂zi
∂xi

. Summarizing, when

m = 1
2 , we have shown that

1

4
I[w(t = 0, ·)]− E[w(t = 0, ·)] = 2

∫ ∞

0

R[v(t, ·), z(t, ·)] dt .

Proposition 5. If we denote by v the solution to (17) with initial datum

v|t=0 =
eu

(1 + |x|2)2 ,

then we have the identity
1

16 π

∫

R2

|∇u|2 dx+

∫

R2

u dµ− log

(∫

R2

eu dµ

)

= 2

∫ ∞

0

R[v, z] dt ,

with R defined by (19) and z(t, x) = ∇v−1/2(t, x)− 2 x.

Notice that the kernel of R is spanned by all Barenblatt profiles, which are

the stationary solutions of (17) (one has to take into account the invari-

ances: multiplication by a constant, translation and dilation). This has to

do with the conformal transformation on the sphere: see Theorem 7 and

[Ghoussoub and Moradifam (2013), Section 17.3] for more details.

As a straightforward consequence of Propostion 5, we have the

Corollary 6. With the notations of Section 3.2 we have

I1 = 1 .

Moreover any minimizing sequence converges to a function in the kernel

of R.

The fact that Onofri’s inequality is intimately related with the fast diffusion

equation (17) with m = 1/2 sheds a new light on the role played by this

equation for the dual inequality, the logarithmic Hardy-Littlewood-Sobolev

inequality, which has been studied in [Carlen et al. (2010)] and applied to

the critical parabolic-elliptic Keller-Segel model in [Blanchet et al. (2012);

Carlen and Figalli (2013)].
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7 Rigidity (or carré du champ) methods and adapted non-

linear diffusion equations

By rigidity method we refer to a method which has been popularized in

[Gidas and Spruck (1981)] and optimized later in [Bidaut-Véron and Véron

(1991)]. We will first consider the symmetric case in which computations

can be done along the lines of [Dolbeault et al. (2014)] and are easy. Then

we will introduce flows as in [Dolbeault et al. (2014)] (for Sobolev’s in-

equality and interpolation inequalities in the subcritical range), still in the

symmetric case. The main advantage is that the flow produces an integral

remainder term which is, as far as we know, a new result in the case of

Onofri’s inequality.

The integrations by parts of the rigidity method can be encoded in the

Γ2 or carré du champ methods, thus providing the same results. In the case

of Onofri’s inequality, this has been observed by É. Fontenas in [Fontenas

(1998), Theorem 2] (actually, without symmetry).

A striking observation is indeed that no symmetry is required: the rigid-

ity computations and the flow can be used in the general case, as was done in

[Dolbeault et al. (2013e)], and produce an integral remainder term, which

is our last new result.

7.1 Rigidity method in the symmetric case

As shown for instance in [Osgood et al. (1988)] the functional

Gλ[v] :=
1

4

∫

S2

|∇v|2 dσ + λ

[∫

S2

v dσ − log

(∫

S2

ev dσ

)]

is nonnegative for all λ > 0 and it can be minimized in H1(S2) and, up

to the addition of a constant, any minimizer satisfies the Euler-Lagrange

equation

− 1

2
∆v + λ = λ ev on S2 . (20)

According to Proposition 3, minimizing Gλ amounts to minimizing

Gλ[f ] :=
1

8

∫ 1

−1

|f ′|2 ν dz + λ

2

∫ 1

−1

f dz ≥ λ log

(

1

2

∫ 1

−1

ef dz

)

,

and (12) can be reduced to the fact that the minimum of G1 is achieved

by constant functions. For the same reasons as above, Gλ has a minimum

which solves the Euler-Lagrange equation

−1

2
L f + λ = 2λ

ef
∫ 1

−1
ef dz

,
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where L f := ν f ′′ + ν′ f ′ and ν(z) = 1 − z2. Up to the addition of a

constant, we may choose f such that
∫ 1

−1 e
f dz = 2 and hence solves

− 1

2
L f + λ = λ ef . (21)

Theorem 7. For any λ ∈ (0, 1), (21) has a unique smooth solution f ,

which is the constant function

f = 0 .

As a consequence, if f is a critical point of the functional Gλ, then f is a

constant function for any λ ∈ (0, 1), while for λ = 1, f has to satisfy the

differential equation f ′′ = 1
2 |f ′|2 and is either a constant, or such that

f(z) = C1 − 2 log(C2 − z) , (22)

for some constants C1 ∈ R and C2 > 1.

Let us define

Rλ[f ] :=
1

8

∫ 1

−1

ν2
∣

∣f ′′ − 1
2 |f

′|2
∣

∣

2
e−f/2 dz +

1− λ

4

∫ 1

−1

ν |f ′|2 e−f/2 dz .

(23)

The proof is a straightforward consequence of the following lemma.

Lemma 8. If f solves (21), then

Rλ[f ] = 0 .

Proof. The ultraspherical operator does not commute with the derivation

with respect to z:

(L f)′ = L f ′ − 2 z f ′′ − 2 f ′ ,

where f ′ = df
dz . After multiplying (21) by L

(

e−f/2
)

and integrating by

parts, we get

0 =

∫ 1

−1

(

− 1
2 L f + λ− ef

)

L
(

e−f/2
)

dz

=
1

4

∫ 1

−1

ν2 |f ′′|2 e−f/2 dz − 1

8

∫ 1

−1

ν2 |f ′|2 f ′′ e−f/2 dz

+
1

2

∫ 1

−1

ν |f ′|2 e−f/2 dz − 1

2

∫ 1

−1

ν |f ′|2 ef/2 dz .
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Similarly, after multiplying (21) by ν
2 |f ′|2 e−f/2 and integrating by parts,

we get

0 =

∫ 1

−1

(

− 1
2 L f + λ− ef

)

(

ν
2 |f

′|2 e−f/2
)

dz

=
1

8

∫ 1

−1

ν2 |f ′|2 f ′′ e−f/2 dz − 1

16

∫ 1

−1

ν2 |f ′|4 e−f/2 dz

+
λ

2

∫ 1

−1

ν |f ′|2 e−f/2 dz − 1

2

∫ 1

−1

ν |f ′|2 ef/2 dz .

Subtracting the second identity from the first one establishes the first part

of the theorem. If λ ∈ (0, 1), then f has to be a constant. If λ = 1,

there are other solutions, because of the conformal transformations: see for

instance [Ghoussoub and Moradifam (2013), Section 17.3] for more details.

In our case, all solutions of the differential equation f ′′ = 1
2 |f ′|2 that are

not constant are given by (22).

7.2 A nonlinear flow method in the symmetric case

Consider the nonlinear evolution equation

∂g

∂t
= L (e−g/2)− ν

2 |g
′|2 e−g/2 . (24)

Proposition 9. Assume that g is a solution to (24) with initial datum

f ∈ L1(−1, 1; dz) such that
∫ 1

−1 |f ′|2 ν dz is finite and
∫ 1

−1 e
f dz = 1. Then

for any λ ∈ (0, 1] we have

Gλ[f ] ≥
∫ ∞

0

Rλ[g(t, ·)] dt ,

where Rλ is defined in (23).

Proof. A standard regularization method allows to reduce the evolution

problem to the case of smooth bounded functions, at least in a finite time

interval. Then a simple computation shows that

d

dt
Gλ[g(t, ·)] = −1

2

∫ 1

−1

(

− 1
2 L g + λ− λ eg

) ∂g

∂t
dz = −Rλ[g(t, ·)] .

We may then argue by continuation. Because Gλ[g(t, ·)] is bounded from

below, Rλ[g(t, ·)] is integrable with respect to t ∈ [0,∞). Hence, as t →
∞, g converges to a constant if λ < 1, or the conformal transformation
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of a constant if λ = 1 and therefore limt→∞ Gλ[g(t, ·)] = 0. The result

holds with equality after integrating on [0,∞) ∋ t. For a general initial

datum without smoothness assumption we conclude by density and get an

inequality instead of an equality by lower semi-continuity.

For a general function v ∈ H1(S2), if we denote by v∗ the symmetrized

function which depends only on θ (see [Ghoussoub and Moradifam (2013),

Section 17.1] for more details) and denote by f the function such that

f(cos θ) = v∗(θ), then it follows from Propositions 3 and 9 that

Gλ[v] ≥
∫ ∞

0

Rλ[g(t, ·)] dt ,

where g is the solution to (24) with initial datum f . However, we do not

need any symmetrization step, as we shall see in the next section.

7.3 A nonlinear flow method in the general case

On S
2 let us consider the nonlinear evolution equation

∂f

∂t
= ∆S2 (e

−f/2)− 1
2 |∇f |2 e−f/2 , (25)

where ∆S2 denotes the Laplace-Beltrami operator. Let us define

Rλ[f ] :=
1

2

∫

S2

‖LS2f − 1

2
MS2f‖2 e−f/2 dσ +

1

2
(1− λ)

∫

S2

|∇f |2 e−f/2 dσ ,

where

LS2f := HessS2 f − 1

2
∆S2f Id and MS2f := ∇f ⊗∇f − 1

2
|∇f |2 Id .

This definition of Rλ generalizes the definition of Rλ given in Section 7.1

in the symmetric case. We refer to [Dolbeault et al. (2013e)] for more de-

tailed considerations, and to [Dolbeault et al. (2014)] for considerations and

improvements of the method that are specific to the sphere S
2.

Theorem 10. Assume that f is a solution to (25) with initial datum v −
log
(∫

S2
ev dσ

)

, where v ∈ L1(S2) is such that ∇v ∈ L2(S2). Then for any

λ ∈ (0, 1] we have

Gλ[v] ≥
∫ ∞

0

Rλ[f(t, ·)] dt .
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Proof. With no restriction, we may assume that
∫

S2
ev dσ = 1 and it is

then straightforward to see that
∫

S2
ef(t,·) dσ = 1 for any t > 0. Next we

compute

d

dt
Gλ[f ] =

∫

S2

(

− 1
2 ∆S2f + λ

)

(

∆S2 (e
−f/2)− 1

2 |∇f |2 e−f/2
)

dσ = −Rλ[f ]

in the same spirit as in [Dolbeault et al. (2013e)].

As a concluding remark, let us notice that the carré du champ method is

not limited to the case of S2 but also applies to two-dimensional Riemannian

manifolds: see for instance [Fontenas (1997)]. The use of the flow defined by

(25) gives an additional integral remainder term, in the spirit of what has

been done in [Dolbeault et al. (2013e)]. This is however out of the scope of

the present paper.
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