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Abstract

The multichannel quantum defect theory (MQDT) can be reinterpreted as a quan-
tum Poincaré map in representation of angular momentum. This has two important
implications: we have a paradigm of a true quantum Poincaré map without semi-
classical input and we get an entirely new insight into the significance of MQDT.

PACS: 05.45.Mt; 33.80.Rv; 03.65.Sq

In recent years there has been a rapidly growing interest in the quantum
Poincaré map (QPM) [1,2,3,4,5,6,7,8,9,10], i.e. the quantization of a classi-
cal Poincaré map, for a time independent Hamiltonian system. Bogomolny[1]
started out with a semi-classical formulation. Among other things he shows
that unitarity of the representation is reached in the limit ~ → 0, while this is
only approximate for finite ~ [8]. Prosen [4] gives an elegant general solution
to the unitarity problem at the expense of obtaining an infinite matrix for
the QPM. The semi-classical approach common to most discussions causes a
number of problems that make the use of this new and powerful tool a little
obscure. With other words, the quantum Poincaré section implicitly defined
by Bogomolny, lacks a paradigmatic example where a quantum treatment can
be performed properly throughout and leads to a finite unitary matrix.

Multichannel quantum defect theory (MQDT) [11,12,13,14,15] and its classical
limit [16,17,18] will be shown to provide the framework for such a paradigm.
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Indeed we shall see that a simplified model of the Rydberg molecule allows
to construct a classical Poincaré map on the unit sphere, whose exact quanti-
zation is provided by MQDT. Thus the result is necessarily entirely quantal,
exactly unitary and for finite ~ given in terms of a finite matrix. We shall show
that the results commonly derived for MQDT are directly properties of the
unitary representation of this classical map as obtained by MQDT.

After a short description of the model for a Rydberg molecule and the simpli-
fication introduced in Ref. [16], we proceed to give the quantum map for this
case explicitly. We illustrate the two important aspects of our result by two
applications. First the new interpretation allows modifications of the MQDT
method, that prove particularly effective in near integrable systems. Second
we proceed to show by way of examples that the properties of this map are
relevant to the study of chaos and order in this system.

Simplifying to the most basic case, these molecules can be viewed as a rotating
system with positive charge and cylindrical symmetry that binds one electron
in an orbit that is at large distances hydrogenic. The classical limit of the
MQDT is the following classical model [16]: The motion is composed of two
consecutive steps. (i) when the electron is far from the molecular core (i.e. most
of the time for a Rydberg electron) it feels only the Coulomb part (−1/r) of

the potential. Its orbit is hydrogenic and its angular momentum ~L is fixed
in the laboratory reference frame. Meanwhile the core rotates freely with an
angular momentum ~N which is also fixed in the laboratory frame. The total
angular momentum ~J = ~L+ ~N is always conserved. In the molecular reference
frame, the OZ axis is the cylindrical symmetry axis of the core. The core
angular momentum ~N points in a perpendicular direction, taken as the OX
axis. The angles θ and ϕ are the polar and azimuthal angles respectively
of the electronic angular momentum ~L in this frame. During this step, ~L
rotates freely in the molecular frame clockwise around the OX axis, at a
speed ωN = N/I (I is the moment of inertia of the core), during the time

of a Coulomb revolution: Te = 2π (−2Ee)
−3/2 (Ee is the electron energy, all

is in atomic units e = ~ = m = 1). (ii) during the so called ”collision” step,
the electron senses also the cylindrically symmetric short range part of the
potential of the core. Aside from the energy and ~J , the projection of ~L onto
the core axis Λ = L cos θ is conserved due to the cylindrical symmetry of the
core. We will add an extra, simplifying, hypothesis, namely that the magnitude
L of ~L remains constant[16]. This is justified for Rydberg molecules at least
for small L’s, but the classical and quantum map with this approximation
exist for all L. Thus the collision can be described by a θ–dependent rotation
of ~L around the core axis. The simplest form of this rotation compatible with
the symmetry is [16]: δϕ = K cos θ, where K is a coupling constant. This
simplification is not essential. Notice further that the conservation of the total
angular momentum ~J implies that the molecular core feels a simultaneous
recoil which changes both the direction and magnitude of ~N . ~N precesses
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around the core axis OZ by an angle δϕ′. These changes of ~N are computed
by writing the conservation of ~J in the initial (before collision) reference frame:

L sin(θ1) cos(ϕ1) +N1=L sin(θ2) cos(ϕ1 + δϕ) +N2 cos(δϕ
′)

L sin(θ1) sin(ϕ1)=L sin(θ2) sin(ϕ1 + δϕ) +N2 sin(δϕ
′)

L cos(θ1)=L cos(θ2), (1)

where subscript 1 (2) labels parameters before (after) the collision. These three
equations are solved for three unknowns θ2, δϕ

′ and N2. The change of the
magnitude of N in turn entails a change of the rotational energy EN = N2/2I
of the core and because of conservation of total energy a change of the energy
Ee of the electron. This exchange of energy makes this model much richer than
the kicked spin model [19] (which is its limit when L ≪ J , where this recoil can
be neglected). In particular the energy of the electron may become positive
after the collision, allowing to treat on equal footing bound and unbound
(ionized) states. Possibility of chaotic motion comes from the conflict of these
two steps, which consist of two rotations around distinct axes with different
laws. The classically chaotic case can be obtained by increasing the coupling
K. Near-integrable cases can be obtained for small coupling or at resonance,
i.e. when the period of the electron is a multiple of half the period of rotation
of the core.

The quantum problem is solved by using the MQDT. The configuration space
is divided by a sphere of radius r0 in a collision (r < r0) and an asymptotic
region (r > r0) for the motion of the electron. r0 is of the order of the core
size and is chosen such that in the asymptotic region the potential acting
on the electron is only Coulombic, whereas in the collision region it feels
both Coulomb and cylindrical potential. The wave functions for both regions
are joined appropriately at r = r0. The conflict between the two motions is
expressed in quantum mechanics by the existence for the wave function of two
bases with different good quantum numbers (in addition to J, Jz, L and total
energy E). At short distance the Born Oppenheimer basis is appropriate.
The Rydberg electron is strongly bound to the core, thus quantized in the
molecular reference frame and the additional good quantum number is Λ. At
long distances the collision basis is appropriate. Here the electron is uncoupled
from the core and the angular momentum N of the core remains a good
quantum number. The collision is described by phase shifts πµΛ, which are
identical to usual collision phase shifts (relative to pure Coulomb phase shifts)
if the total energy is positive enough for all channels to be open, and which
are related to the classical K parameter by the relation δϕ = −2π∂µΛ/∂Λ
(see the derivation of the classical limit of MQDT in Ref. [16], Appendix A),
i.e. in our simple case µΛ = µ0 − (K/4πL)Λ2.

We focus on the completely bound situation, when total energy is low enough
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for the electron energy to be always negative whatever the value of N within
the allowed range [J − L, J + L]. Demanding that the electron wave function
goes to zero when r → ∞ leads to demanding that the following determinant
vanishes [15], i.e.

det S = det {UNΛ sin(π(µΛ + νN))} = 0, (2)

where the unitary U matrix given by

UN,Λ =< L,−Λ, J,Λ|N, 0 > (−1)J−N+Λ(2− δΛ, 0)
1/2. (3)

relates the two conflicting bases through a Clebsh Gordan coefficient. The
principal (non integer) action νN(E) of the Coulomb electron, is related to the
electron energy through E = EN +Ee = N(N +1)/(2I)− 1/(2ν2

N), where I is
the moment of inertia of the core, and we use atomic units (e = m = ~ = 1).
Corresponding wave functions are the eigenkets of S for the eigenvalue zero,
labeled by Λ in the Born Oppenheimer basis:

S|AΛ〉 = 0. (4)

Similarly the eigenbras 〈BN | of S (eigenkets of St), labeled by N describe the
corresponding wave function in the collision basis.

To proceed notice first that S is the imaginary part of a complex unitary

matrix

E = C+ iS = {UNΛ exp(iπ(µΛ + νN))} . (5)

This non symmetrical matrix maps the N basis on the Λ basis: it is half

the QPM we look for, and describes the motion between apogee and perigee.
From it we can construct two QPM, which, by construction, turn out to be
symmetrical unitary complex matrices.

EtE operates in Born Oppenheimer Λ space, and is the exact quantization
of a classical Poincaré map. The latter is nearly the classical map used in
refs. [16,17]. That map on the unit sphere described the position of ~L in
the molecular frame immediately after the collision, whereas the present map
describes the position of ~L in the middle of the collision (perigee). That this
matrix is the T matrix defined by Bogomolny[1] to quantize a Poincaré map
will be shown by proving that the eigenvalues and eigenfunctions of the entire
system result from

det(1− T (En)) = 0, (6)
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i.e. Bogomolny’s equation for the quantized energy En. Indeed at quantized
energies given by Eq. (2)

E
t
E|AΛ〉 = 1|AΛ〉, (7)

which implies (6). To prove this key point first notice that unitarity of E,
namely E†E = (Ct − iSt)(C + iS) = I, leads to CtC + StS = I and CtS = StC.
Then EtE = (Ct + iSt)(C + iS) = I − 2StS + 2iCtS, so that if S|AΛ〉 = 0 then
EtE|AΛ〉 = I|AΛ〉.

Conversely EEt operates in collisionN space and corresponds to a classical map
between apogee and apogee in the laboratory frame. The rationale is that the
matrix E is the product of three unitary matrices, namely Diag{exp(iπµΛ)},
{UNΛ} and Diag{exp(iπνN)}, which describe respectively half a collision in
molecular frame, change between molecular and laboratory frame, and half a
free Coulomb orbit in laboratory frame. We have thoroughly checked this point
by comparing the time evolution of a given swarm of classical trajectories and
the corresponding quantum Husimi distribution [20].

We will now compare the traditional way of solving MQDT to the one implied
by our QPM. The traditional way is to look for zeros of the determinant of the
non-symmetric matrix S of Eq. (2), all of whose elements depend in a complex
way on energy through νN(E). It is computed by a LU or a SVD method
followed by a root searching algorithm [21,16]. The present method is to look
for eigenphases of EtE or EEt. They are computed by the diagonalization of
a symmetrical unitary matrix. This is efficient and unproblematic because
it diagonalizes in an orthonormal basis. Finally we search the zeros of the
resulting eigenphases.

The situation is sketched in Fig. 1. The search for zeros of eigenphases which
vary nearly linearly with energy is obviously much simpler than the search of
zeros of a determinant which is sometimes nearly tangent to the horizontal
axis. Moreover, in this case of near tangency we had problems to converge
the wave functions because the eigenfunction switches between two nearly
orthogonal values in a very narrow energy range [17], requiring the use of the
more efficient but slower SVD algorithm. Such a situation occurs frequently in
nearly integrable cases, due to the lack of level repulsion. The diagonalization,
on the contrary, gives always correctly the orthogonal eigenfunctions even if
eigenvalues are very close.

The implications of this procedure for the study of quantum chaos is of great
interest. Figure 2 displays a chaotic situation. Comparing eigenphases in the
near integrable (Fig. 1) and chaotic (Fig. 2) situations, we see that in the first
case the phases as a function of energy display avoided crossings of straight
lines running at different angles while for the second case these lines are prac-
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Fig. 1. Comparison of Determinant and Eigenphases methods to solve the MQDT
problem. Abscissa axis is energy on a scale νN (E) for the middle N = J value.
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Fig. 2. Eigenphases in a chaotic case.

tically parallel. This shows that the drift of eigenphases as a function of energy
displays presence or absence of level repulsion or spectral rigidity more obvi-
ously than the energy levels themselves. This consideration is important in
relation with the theory put forward by two of us [22], which relates Random
Matrix Properties of eigenvalues of a quantum system to properties of invari-
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ance under canonical transformations of the structure of the corresponding
classical system (structural invariance). This theory was developed for maps
such as the scattering map, the stroboscopic map or the Poincaré map lead-
ing to results about their unitary representations, i.e. about eigenphases. To
transfer statistical properties of eigenphases of the QPM to energy eigenval-
ues, it is necessary that the drift of eigenphases as a function of energy be
nearly parallel for all phases. Analytic evidence that this must be true for
chaotic systems is given in [22,23], in agreement with the numerical results
shown in Fig. 2. To put this on a more quantitative basis we display on Fig. 3
histograms of the distributions of the velocities of the eigenphases curves. The
chaotic case has a narrow distribution (approximately gaussian when viewed
in an horizontally expanded scale), while the integrable one shows long tails.
The present study is much more convincing in that respect than another one
for billiards using directly Bogomolny theory[23], which is garbled by the non
unitarity of the T matrix for finite ~.
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Fig. 3. Histograms of the velocities of the eigenphases curves for a given energy.
Top: chaotic case, bottom: integrable case. These histograms correspond to the
same classical parameters as in Figs. 1 and 2, but ~ has been divided by 200 to
increase statistics.

The difference seen in Fig. 3 for the near integrable and the chaotic case is
remarkable and it is thus tempting to consider the eigenphase velocity distri-
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bution as another signature of classical chaos in quantum mechanics. While
the narrow distribution for chaotic systems is typical, the tails for the inte-
grable systems are not generic: they depend on the details of the partition of
phase space by separatrices. In other examples [23] tails have different shapes.

Summarizing: in this paper we proposed to interpret the multichannel quan-
tum defect theory as a quantum Poincaré map. This was implemented in detail
in the approximation that the absolute value of the electron angular momen-
tum is conserved, but it is quite clear that it is true in general. The new
interpretation allows for a more stable and efficient way to find solutions to
MQDT, particularly for near-degenerate levels. Beyond that, the approximate
system has been used to exemplify quantum features of classically chaotic
systems. This can be now extended to use MQDT as a paradigm for QPM.
Indeed a study of the velocity distribution of eigenphases confirms properties
expected from other studies.

This work was partially supported by DGAPA (UNAM) project IN112998 and
the CONACYT grant 25192-E

References

[1] E. B. Bogomolny, Nonlinearity 5 (1992) 805; Chaos 2 (1992) 5; Comments At.
Mol. Phys. 25 (1990) 67. 1, 4

[2] E. Doron and U. Smilansky, Nonlinearity 5 (1992) 1055. 1

[3] B. Dietz and U. Smilansky, Chaos 3 (1993) 581. 1

[4] T. Prosen, Physica D 91 (1996) 244. 1

[5] T. Szeredi, J. H. Lefebvre, and D. A. Goodings, Phys. Rev. Lett. 71 (1993)
2891; Nonlinearity 7 (1994) 1463. 1

[6] M. C. Gutzwiller, Chaos 3 (1993) 591. 1

[7] D. A. Goodings and N. D. Whelan, J. Phys. A 31 (1998) 7521. 1

[8] M. R. Haggerty, Phys. Rev. E 52 (1995) 389. 1

[9] B. Georgeot and R. E. Prange, Phys. Rev. Lett. 74 (1995) 2851. 1

[10] R. E. Prange, Phys. Rev. Lett. 77 (1996) 2447. 1

[11] M. Seaton, Rep. Progr. Phys. 46 (1983) 167. 1

[12] U. Fano, Phys. Rev. A 2 (1970) 353. 1

[13] U. Fano and A. R. P. Rau, Atomic Collisions and Spectra, Academic Press,
Orlando, 1986. 1

8



[14] C. Greene, U. Fano, and G. Srinati, Phys. Rev. A 19 (1979) 1485. 1

[15] M. C. Bordas, M. Broyer, J. Chevaleyre, P. Labastie, and S. Martin, J. Phys.
(Paris) 46 (1985) 27. 1, 4

[16] M. Lombardi, P. Labastie, M. Bordas, and M. Broyer, J. Chem. Phys. 89 (1988)
3479. 1, 2, 3, 4, 5

[17] M. Lombardi and T. Seligman, Phys. Rev. A 47 (1993) 3571. 1, 4, 5

[18] B. Dietz, M. Lombardi, and T. H. Seligman, Phys. Lett. A 215 (1996) 181. 1

[19] K. Nakamura, Y. Okasaki, and A. R. Bishop, Phys. Rev. Lett. 57 (1986) 5. 3

[20] K. Husimi, Proc. Phys. Soc. Japan 22 (1940) 264. 5

[21] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical
Recipes, Cambridge University Press, New York, 1988. 5

[22] F. Leyvraz and T. H. Seligman, Phys. Lett. A 168 (1992) 348; F. Leyvraz and
T. H. Seligman, in: Proc. IV Wigner Symposium, Guadalajara Mexico, N. M.
Atakishiyev, T. H. Seligman and K. B. Wolf (Eds.), World Scientific, Singapore,
1995; T. H. Seligman, in: G. Casati and B. Chirikov (Ed.), Quantum Chaos,
Cambridge University Press, New York, 1995. 6, 7

[23] F. Leyvraz, R. A. Mendez, and T. H. Seligman, Chao-Dyn/9902009; R. A.
Méndez-Sánchez, Ph.D. thesis, UNAM, Mexico, 1999. 7, 8

9


	References

