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This work is aimed at extending recent studies dealing with the highly excited vibrational dynamics
of HOCI[J. Chem. Physl11, 6807(1999; J. Chem. Physl12, 77 (2000], by taking advantage of

the fact that the OH-stretch remains largely decoupled from the two other degrees of freedom up to
and above the dissociation threshold. The molecule is thus reduced to a two-dimer(@@nal
system by freezing the OH bond length to its equilibrium value. All of the calculated bound states
of the 2D system, as well as the first 40 resonances, can be assigned with a Fermi polyad quantum
number. The bifurcation diagram of the principal families of periodic ori#®9 is extended to

higher energies compared to 3D studies. In particular, the birth of “inversion” siatases
exploring two equivalent wells connected through the linear HOCI configupaisorelated to a
period-doubling bifurcation of the families of bending POs, while “dissociation” stéeates for

which the energy flows back and forth along the dissociation pathasyshown to lie on top of

three successive families of POs born at saddle-node bifurcations. Based on the derivation of a
classical analogue of the quantum Fermi polyad number, the energies of particular quantum states
and classical POs are plotted on the same diagram for thab2itio surface and are shown to
agree perfectly. In contrast, comparison of classical Poinsaréaces of section and quantum
Husimi distributions suggests that the classical dynamics of 2D HOCI is much more chaotic than the
quantum dynamics. This observation is discussed in terms of the quantum/classical correspondence,
and particularly of the vague tori introduced by Reinhardt. It is nevertheless shown that quantum
and classical mechanics agree in predicting a slow intramolecular vibrational energy redistribution
(IVR) between the OCI stretch and the bend degrees of freedon200® American Institute of

Physics. [S0021-960800)00945-4

I. INTRODUCTION ies, have been develop&d'?%2"The wave functions of all
bound states up to the HOGHO+CI dissociation threshold
Recent theoretical and computational studies of the dyat D,=19290 cm* above the ground stat¢here are more
namics of LICNI? HCP3~® HOCI,"® C,H,, > DCP™ and  than 800 of themwere visually inspected, in order to assign
SO, have clearly shown the benefit of classical analyseshe states and to elucidate how the spectrum develops with
for revealing and understanding the information relative toenergy’® It was shown that the dominant feature is a 2:1
highly excited vibrational dynamics contained in fittedatr ~ anharmonic resonance between the bending mode and the
initio quantum mechanical spectra. In particular, classical biOCI stretching motion. This resonance is responsible for a
furcations(that is, in general, the sudden birth of new fami- saddle-node bifurcation, which occurs at about 13 000cm
lies of fundamental periodic orbjtsvere shown to be re- above the ground state for states with no excitation in the OH
sponsible for the appearance of new families of quantunstretch. The family of stable periodic orbitPO9 born at
states, which are precursors of fundamental processes, sutiis bifurcation closely follows the dissociation pathway up
as isomerizatioh ®®and dissociatiod? to very high energies, while the family of POs, which fol-
In particular, HOCI has recently been the subject oflows this pathway at lower energies, progressively curves
much interest, both from the experimedfaf® and and avoids dissociatioh® Consequently, the “new” quan-
theoretical®?1~29points of view. Potential energy surfaces tum states which appear above 13 000 ¢rand which lie on
(PES$ with near spectroscopic accuracy, suitable for accutop of the new family of POs, were called “dissociation”
rate calculation of high-energy vibrations and dynamics studstates in Ref. 8. It was furthermore shown that all of the
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features observed in thab initio spectrum up to 98% of the dynamics is essentially regular. This is a question which
dissociation energy, including the bifurcation and the birth ofclearly deserves further investigation, since it appears rather
the dissociation states, could be reproduced with excelleninlikely that chaos develops in the small energy raftbe
accuracy by a fitted Fermi resonance Hamiltonian, that is, st 2% of the dissociation enenggot encompassed by the
Hamiltonian which takes into account only the 2:1 resonanceesonance Hamiltonian. It must be realized that, while clas-
between the bending and the OCI degrees of freeidhis  sical chaos is difficult to investigate in detail in 3D, the study
Fermi resonance Hamiltonian was used to rationalize thef the 2D problem is made simple by the existence of global
shape of the quantum wave functions in terms of the positiofPoincaresurfaces of section.
of the state in the quantum Fermi polydds. The last point deals with the intramolecular vibrational

The goal of the present work is to take advantage of theenergy redistributiorilVR) between the dissociating degree
facts (i) that the OH stretch remains fairly decoupled from of freedom(the OCI stretch and the other onéthe bend.
the two other degrees of freedom up to the dissociation limitConclusions regarding possible bottlenecks, that is, dynami-
as shown by the very long dissociation time constanthe  cal barriers hindering the energy from flowing between the
range 10—100 nsmeasured upon excitation of HOCI in the various modes, were not expected at the beginning of this
OH stretch degree of freedot®;?%and(ii) that the OH bond  study. However, such conclusions arose naturally while plot-
length fluctuates only very littlébetween 0.9637 and 0.9725 ting Poincaresurfaces of section to check the extent of vi-
A) along the minimum energy patMEP) all the way from  brational chaos. It will be shown that the study of 2D HOCI
equilibrium to dissociation. As a consequence, the OHprovides a clear illustration of how broken tori might act as
stretch degree of freedom is easily decoupled from the bengfficient barriers preventing the spreading of energy, al-
and the OCI stretch by freezing the OH bond length to itsthough the overall dynamics looks completely chaotic.
value in the free OH radicalr&0.9702 A), thereby reduc- The remainder of this article is organized as follows. The
ing the problem to a two-dimension@D) one. In turn, this ~ Principal features of the 2@b initio potential energy sur-
allows for a deep insight into the vibrational dynamics offaces and the main results of the quantum calculations are
HOCI up to the dissociation threshold. Compared to the presummarized in Sec. Il. Periodic orbits, bifurcations, and dis-
vious 3D studie€2 it will be shown that valuable additional Sociation states are the focus of Sec. I, while the last sec-
information is gained with respect to the following three tion (Sec. IV is devoted to a discussion of quantum regular-
points. ity vs classical chaos and of IVR.

The first point deals with POs and the bifurcations
thereof. Plotting the energies of POs as a function of thdl- PES AND QUANTUM STATES

Fermi polyad numbe(the polyad number is the total number Petersoret al.,?® have fitted a global PES agairatt ini-
of quanta in the coupled degrees of freed@roved to be an  tjo points calculated at the multireference configuration in-
essential tool for understanding the shape of the quantungraction(Cl) level using large correlation-consistent basis
wave functions of HCP HOCI,” and DCP*! For a triatomic  sets. This PES was subsequently adjusted using a perturba-
molecule, however, a classical analogue of the polyad quanive inversion procedure to reproduce the 22 experimentally
tum number can be defined rigorously for the POs of theknown vibrational energies, as well as the rotational con-
Fermi resonance Hamiltonian, but not for those of #ie  stants for nine low energy stat®sThis latest version of the
initio surface. Therefore, these figures were plotted for thePES was used throughout the present work. Since the “old”
Fermi resonance Hamiltonian fitted against the levels of th@urface used in the previous 3D stliayas fitted to the same
ab initio PES—not for theab initio surface itself. In contrast ap initio data(but a smaller number of pointboth PESs are
to the 3D case, it will be shown that it is possible to rigor- of course very similar and expected to give results in good
ously define a polyad number for the POs of theddnitio  agreement. A contour plot of the 2D surface, where the OH
surface. Moreover, since the dynamics is not obscured by thigond length(the Jacobi coordinate) is kept fixed atr
residual small couplings with the OH strettthe search for =0.9702A, is displayed in Fig. 1. Horizontal and vertical
the fundamental families of POs can be pursued to highesxes are the Jacobi coordin®dR is the distance between
energies, so that we shall be able to address the questighe Cl atom and the center of ma@s) of the OH moiety
whether the PO born at the saddle-node bifurcation at 13008nd the cosine of the Jacobi angle (y is the OGCI
cm ! scars all of the dissociation states up to the thresholdangle, which is zero at the linear HOCI configuradiore-
or whether there exists a cascade of such bifurcations. spectively. The surface is symmetric with respect to the
The second point deals with vibrational chaos. It is gen-=0 andy= 7 axes. The minimum of the 2D surfafeken
erally believed that the closer to the dissociation thresholdas the zero energy poifZEP)] is found atR=1.7043 A and
the larger the portion of phase space invaded by chaotic tray=1.3184rad, that is, only 8.1 cm above the absolute
jectories. Very close to the threshold one expects an essef8D) minimum at R=1.7038A, y=1.3174 rad, andr
tially fully chaotic dynamics. Such an expectation seems to=0.9638 A. Dissociation takes place Bt=20296.3cm?
be reasonable for 2D HOCI, where the dissociating degree adbove the ZEP. Also indicated in the figure are the three
freedom(the OCI stretchis coupled to the other degree of saddle points observed below the dissociation threshold,
freedom(the bendl by a strong Fermi resonance. However, which are due to conical intersections with excited electronic
the fact that theab initio spectrum can be reproduced up to surface$' and are located, respectively, Rt 1.6517 A and
98% of the dissociation energy with an integrable Fermiy=0 (E=16105.2cm® above the ZEP R=3.4972 A and
resonance Hamiltonidrsuggests the opposite, i.e., that the y=7 (E=19840.5cm?), andR=3.3134 A andy=0 (E
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2-dimensional surface of HOCI p=2v,tuvs, (2.1
101 ' wherev, andv; denote the number of quanta in the bend
0.87 and OCI stretch degrees of freedom, respectively. Ude, of
061 instead of the more usual, and v; quantum numbers, is

made necessary by the Fermi resonance, which couples the
OCI stretch and the bend degrees of freedam~2w3).
Let us also mention that the bound state with highest number
of quanta in the OCI stretch is no. 354, which is located only
11.9 cm ! below the threshold and is the lowest member of
polyad P=46.
An example of how well the states of the 2D surface
compare with those of the full 3D calculation is provided in
‘ ‘ . o Fig. 2. This figure shows the wave functions in the
1.5 2.0 25 3.0 35 [R,cos(y)] plane for the 16 states belonging to polyRd
coordinate R (A) =30 and compares readily with Fig. 4 of Ref. 7 and Fig. 9 of
Ref. 8. It is seen that these three figures are rather similar, the
FIG. 1. Contour plot of the 2D PES of HOCI. The OH bond lengte  principal difference being that the states with clear bending
Jacobir coordinate is kept fixed at the dissociation value=0.9702 A. The character are the 3rd and 5th lowest ones according to the 3D
horizontal axis is the Jacobi coording®ein Angstroms(R is the distance . 9
between the Cl atom and the center of m@ef the OH moiety. The ~ Surface, but the 7th and 9th lowest ones according to the 2D
vertical axis is the cosine of the Jacobi angléy is the OGCl angle, which ~ surface. This difference merely reflects the fact that the en-
is zero at the linear HOCI configurati))nThe figure is symmetric with ergy Of the fam”'es Of bendlng_type POS Varles Somewhat

respect to they=0 andy= = axes. Equipotential lines are regularly spaced : . _: : : e
between 1000 and 20 000 c¢habove the minimum, with increments of inside a given polyad when going from 3D to 2D. This is,

1000 cnTt. The black dots indicate the positions of the minimum and the howeV_er, of little consequence Sir?(_:e the majority O_f ql_«'antu_m
three saddle points. Also plotted are i, [D], and[DD] POs at 6500,  states is scarred by the other families of stable periodic orbits
14000, and 19 000 ciit above the ground state, respectively. These are the(cf. next section

Et;;euf:;rtmlles of stable POs, which successively scar the dissociation states As for the 3D stud)7, the ab injtio speptrum could be
reproduced up to 98% of the dissociation energy with a
Fermi resonance Hamiltonian: the first 320 bound states
(with up to 40 quanta in the OCI strefctvere fitted with an
=20011.9cm?). Finally, let us mention for completeness effective Hamiltonian containing 32 parameters, leading to
that HOCI has an isomer, HCIO, below the dissociation enrms and maximum errors of 4.8 and 19.9 chrespectively.
ergy to OH+Cl and that quantum calculations have beenin addition to these 320 bound states, most higher levels are
performed for this isomet® The barrier separating both iso- ajso well predicted by the Fermi resonance Hamiltonian, the
mers is however above the dissociation threshold of HClQaxceptions being the states extending along the dissociation
and it is too high and broad for HCIO to play any role in the pathway. It was furthermore checked that the wave functions
dissociation of HOCI. of the 2D Fermi resonance Hamiltonian compare well with
Vibrational variational calculations were performed us-the 2Dab initio ones, just as in Figs. 4 and 5 of Ref. 7. The
ing a truncation/recoupling method described in detail indiscussion concerning chaos in Sec. IV A relies on the exis-
Ref. 22. The basis used for constructing the 2D Hamiltonianence of this integrable resonance Hamiltonian. In contrast
matrix consists of the direct product of 220 1D radial func-with the 3D calculations, however, the detailed study of the
tions extending from 2 to 15 bohr and 60 1D angular func-2p resonance Hamiltonian does not yield new information
tions. The 1D functions were obtained by diagonalization ofcompared to the 2D study employing thb initio 2D sur-
suitable 1D Hamiltonians in discrete variable representationtace. Therefore, the 32 fitted parameters are not given here.
Resonance widths/dissociation rates for 2D states above dis-
sociation thresholdend of Sec. Ill B were computed using
the complex L2 method with optical potentfd.The 2D
quantum ground state is found Bt=987.2 cm* above the
ZEP. Except when explicitly noted, all the energies in the  |n this section, we first recall what a “fundamental fam-
remainder of this article are given relative to the quantumjly” of POs is and we show how a classical version of the
ground state, in order to facilitate the Comparison with thequantum po|yad number can be defined for such POs. We
3D results. The wave functions of all the 355 bound states, aghen study the bifurcation diagram for these POs in connec-
well as the first 40 resonances up to 175 ¢rabove the tion with the shape of the quantum wave functions, particu-
threshold, were examined visually and assigned a quantumarly emphasising the so-called dissociation states, which
polyad numbeP. The energy range, in which the wave func- closely follow the dissociation pathway.
tions can be uniquely assigned, is thus considerably larger
than in the 3D studies, where the assignment procedure h
to be stopped about 400 cthbelow the threshold. Let us
recall thatP is an approximate quantum number &lrinitio The POs of the 2[ab initio surface were located using
states, which is defined according to two-point boundary value solvers, as described in Sec. Il of

04l
02}
0.0t
0.2}
04
06}
_08 L
1,05

coordinate cosy

DD]

lll. PERIODIC ORBITS, BIFURCATIONS, AND
DISSOCIATION STATES

Fundamental families of POs: Definition of a
classical polyad number
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wave functions in the (R,cos(y)) plane for the levels of polyad P=30
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FIG. 2. Wave functions in the
[R,cos(y)] plane for the 16 states be-
longing to polyadP =30, according to
2D calculations. This figure compares
readily with Fig. 4 of Ref. 7 and Fig. 9
of Ref. 8, which display the same
wave functions obtained, however,
from 3D calculations. The energy rela-
tive to the quantum ground state is in-
dicated for each wave function. Also
shown on top of the corresponding
wave functions are theD] stable PO,
which scars the lowest quantum state,
the [4B] stable PO, which scars the
7th lowest state, thg B*] unstable
PO, which scars the 9th lowest state,
and the[R] stable PO, which scars the
highest state.

coordinate cosy

&=
0.8 17034.03 17392.03 ! 18197.23
15 19 23 27 15 19 23 27 15 18 23 27 15 18 23 27

coordinate R (A)

Ref. 30. It is to be noted that onfyrincipal families of POs  originate from the destruction of rational tori. A first ex-
were sought for, that is, those families of POs which reallyample is the PO labeldd/] shown in Fig. 11a) and 11b) of
correspond to distinct molecular motions. Excluded from theref. 8. According to this figurd,y] is clearly the linear com-
search were the POs arising from the destruction of rationaination of one timg5] (the fundamental PO along the bend
tori due to nonintegrable couplingthat is, all the couplings degree of freedojplus three time§r ] (the fundamental PO
besides Fermi resonancand g\eir replacement by fami!ies along the OH stretch degree of freedorherefore,[y]
of stable and unstab_le POs™ The reason for discarding robably originates from the destruction of the degenerate
g;isse(itéelr:iggsé \;\gh'fg gfo sg?r:}j?;n?hgtuin;;rzavdzgetrfgmg_D rational toru&® with no motion along the OCI stretch and

: ' a 3:1 rational ratio between the classical frequencies associ-

bifurcation diagram to become very complex, without pro- .
viding much additional insight into the molecular dynamics.at_ed_ with the OH stretch ar_1d the bend degrees of freedom.
Similarly, the[ R]PO shown in Figs. 1) and 11d) of Ref.

Indeed, POs born from the destruction of rational tori ) _
are merely linear combinations of the fundamental families Probably originates from the destruction of the degenerate

of POs (see, for example, Figs. 1 and 2 of Ref.)34nd 2D torus with no motion along the bend and a 5:1 rational
quantum wave functions scarred by such POs can often b@tio between the classical frequencies associated with the
described in terms of the principal families of POs. For ex-OH and OCI stretches. Although the cascade of POs labeled
ample, the second highest state of poly&=30 (E [D;]in Fig. 5 of Ref. 8 are not plotted in configuration space,
=18019.93 cm?), shown in Fig. 2, can be thought of either it is plausible that they also originate from the destruction of
as a state scarred by a PO born from the destruction of a 1@egenerate 2D rational tori with no motion along the bending
rational torus, or as a state displaying one node perpendiculabordinate. If one withdraws these POs from the bifurcation
to the[R]PO. o o diagram of the 3Dab initio surface(Fig. 5 of Ref. 8, then it

At this point, it is worth mentioning that it is not always gigpjays just the same POs as the bifurcation diagram of the
easy to distinguish, from the numerical point of view, be-3D Fermi resonance Hamiltonia#ig. 7 of Ref. 3, which

tween POs arising from the destruction of rational tori andIooks simpler although it contains all the necessary informa-
fundamental families of POs born at a saddle-node bifurca.. P g y

tion. Nonetheless, the examination of the shape of the P(Ijon for understanding the shape of quantum wave functions.

might give a sound indication regarding its origin. For ex- /S stated in the introduction, a classical version of the
ample, some POs which are reported in the bifurcation diadt@ntum polyad numbe? is easily derived for each PO of
gram of the 3Dab initio surface of HOCKFig. 5 of Ref. §  the 2Dab initio surface. Indeed, as shown by a comparison
have little influence on quantum wave functions. Since thes#ith the Fermi resonance Hamiltonian, for which the quan-
POs do not appear in the bifurcation diagram for the corretum polyad numbeP and its classical counterpart can be
sponding 3D Fermi resonance Hamiltonid@ng. 7 of Ref. 7, defined exactly,P is simply proportional, in 2D systems, to
the suspicion naturally arises that these additional POs migtihe total action integral along the PO:
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P= 2‘N% fﬁpodeR-F p,dy— g (3. | Energy of the fundamental families of POs ‘
N depends on whether the PO is born as an essentially bend 1500 - 20 E/1000 (o)~ P [2R]
(N=-1) or OCI stretch N=0) motion and increases by _15: i .
one each time the PO undergoes a period-doubling bifurca- . ¢ [P
tion. More preciselyN is equal to—1 for the POs labeled 1000 - 10+ . . . .
[B] and[B*] in the remainder of this article, to O for the f; 5: reference A :
POs labeledR], [2B], [D], [D*], and[DD], and to 1 for =3 - . 4
the POs labelefi2R], [4B], and[2D]. The 3/2 term is the Q 500- ot ,1.0.2.0.3,0‘4.0'?- 3 1
sum of Maslov indexes and must be substracted according to Qo [2B] f
the Einstein—Brillouin—KellefEBK) semiclassical quantiza- % [4B]
tion rules®*-3¢ 5z 0

g

B. Bifurcation diagram, “‘inversion” and o
“dissociation’ states _% -500 .

Using Eq.(3.1), one is able to plot the energies of the 2 r |
POs as a function of théclassical polyad numberP. Be- 1000} [2D]. [D*T% |
cause of the Fermi resonance, however, the energies of all f&®
the POs are almost degenerate and the resulting plot is un- [DD]
clear. A better solution therefore consists in plotting the en- 1500 oo
ergies of the POs relative to the energy of one of the POsor 7 L

to some other reference, which stays close to the bottom of 0 5 10 1|5 ﬁo 25b30P35 40 45
the polyad. In the 3D stud{the reference was taken as the polyad numboer

energy of the pure bend PO of the Fermi resonance HamllﬁIG. 3. (Small inse} plot of the reference energi,, in Eq. (3.2 as a

tonian. This choice is no Ionger convenient here, because tI’fﬁnction of P. (Overall figure plot of the energy of the POs relative i,

studied polyad range extends up Bo=46, instead ofP as a function of the classical polyad numBedefined in Eq(3.1). Solid and

=38 for the 3D study, and the separation between the pur@otted lines stanq fc_)r stable and qnstabl_e POs, respectively. Large black dots

bend PO and the bottom of the polyad increagesause of Iabe!ed(a) to (f) indicate Whertiblfurcatlons take place. The 16 levels be-
L . L. longing to the quantum polyad= 30 are shown as a column of small black

the very strong anharmonicity of the dissociation Stabys dots and the 47 dissociation states fréw 0 to P=46 as a line of small

several thousands of cm betweenP=38 andP=46. A open circles.

better reference for the present study is found to be

E,,(P)=114.59% 728.03% — 5.612 45?2 . o
state of polyadP=30. This PO follows the dissociation

—0.032430P° pathway up to approximatelf?=15 (about 10000 cm'

4 5 above the ground stateFor higher polyads, howevefR]
+0.00255039°-0.0000447972%, (3.9 progressively acquires a pronounced ‘“horseshoe” shape,
when expressed in cm above the ground state. The plot of thereby avoiding the dissociation pathway. This evolution is
E.v as a function ofP is given in the small insert of Fig. 3. very clear upon comparison of Figs. 1 and 2, whidra is
The main part of Fig. 3 shows the energies of the POs relgplotted at 6500 cm® and 18200 cri, respectively. This
tive to E,, as a function oP. Solid lines denote stable POs behavior is in good agreement with the 3D res(iftsThe
and doted lines unstable ones. The large black dots labelgatesent 2D study further points out a period-doubling bifur-
(@) to (f) indicate the bifurcations and will be discussed be-cation[the black dot labeledd) in Fig. 3], which takes place
low. It is worth emphasizing again that, for each valuePpf aroundP=30.6 andE=18 600 cm’. The stable PO born at
the classically accessible region, as well as the quanturthis bifurcation, which is callefi2R] to remind that it essen-
states belonging to polyde are always bordered by the two tially consists of thg R]PO covered twice, becomes itself
outermost stable POs. For the sake of illustration, the l@instable only about 200 ¢m above the bifurcation. In con-
levels belonging to polya®=30 are shown as a column of trast, the unstabl¢R]PO, which is not shown in Fig. 3,
small black dots. The quantum state nearest to a PO is gewreuld be followed up td®=43 andE=25000cm?, that is,
erally “scarred” by this particular PO, that is, the PO acts aslargely above the dissociation threshold. Although chaos will
a “necklace” on which the “pearls” of the quantum wave be studied more specifically in the next section, let us men-
function are threaded. tion that this period-doubling bifurcation and the early desta-

Let us now discuss in detail the principal families of POsbilization of [ 2R] reveal that the remaining small island of
and their bifurcations. The PO, which coincides with the OClregular motion centered aroufiRR] is completely and defi-
stretch normal mode close to the ZEP, is ca[l&]. Thisis  nitely destroyed by chaos. Perhaps, there exists a whole cas-
the PO with highest energy throughout the investigatedcade of such period-doubling bifurcations, the regular islands
polyad range. Therefore, it is expected to scar the highediecoming, however, smaller and smaller and escaping care-
state in each polyad, as can be verified in Fig. 2, where th&l numerical research.

[R]PO is plotted on top of the wave function of the highest ~ The PO, which coincides with the bend normal mode
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close to the ZEP, is callddB]. As in the 3D case, it under- |Towest levels of polyads P=36 to P=39|
goes a period-doubling bifurcation arour®=21 and E ——— —
=12500cm®. This is the black dot labeleth) in Fig. 3. 081

The bend PO is unstable above the period-doubling bifurca-
tion and is called B* ] to emphasize this pointB* ] is up to

17 000 or 18000 cmt, however, only slightly unstable, so
that some quantum states are scarred By ] up to this
energy regime. This is clearly seen in Fig. 2, where the

[B*]PO is plotted on top of the wave function of the 9th '0-8:2i3(138286 00 e (#267)
lowest quantum state of polya@= 30, which is located at RISt .
about 17 450 cm'. The stable PO born at the bifurcation is
called[2B] and displays, lik¢ R], a horseshoe shape in the
[R,cosfy)] plane. While[ B] remains the PO with the lowest
energy inside a given polyad up to this bifurcatip2B] and
[B*] penetrate the core of the polyad shortly above the bi-
furcation and are subsequently replaced by D¢PO (to be
discussed in the following paragraphs the bottom of the [ p=37

polyad. This is the reason, why states scarred by bending- -08/E = 18487.20 cm™' (#296)
type POs are the bottom ones in each polyad bdkw24 T
and then move higher in the polyad, i.e., {ig] states fall
below the bending states, because of their large anharmonic-
ity. This is again in good agreement with the 3D
calculations® The examination of the 2D dynamics shows
that[ 2B] further undergoes a second period-doubling bifur-
cation at abouP=27 andE=15500cm?, corresponding

to the black dot labeledc) in Fig. 3. At this energy[2B]
crosses they=0 axis close to the saddle-point with lowest
energy and penetrates the equivalent well with negative val-
ues ofy. The motion along the stable PO born at this bifur-
cation (which is called[4B]) consists of § 2B]PO in the

well with v>0 followed by a second2B]PO in the well

with y<<0. If one realizes that the4B]PO connects two
equivalent equilibrium positions through the linear HOCI un- _
stable configuration, then it is 'clear .that guantum states '0-8'213?8770.96 om! (#312)
scarred by 4B] should be called “inversion” states. The 7th Y TR Y]
lowest state of polyad® =30 shown in Fig. 2 is an example coordinate R (A)

of such an inversion state. However, the number of inversion

states in the spectrum of HOCI is limited to a fédvor 5), FIG. 4. Wave functions in théR,cos@)] plane for the lowest state of
since the[4B]PO becomes unstable very soon above thepolyads P=36 to P=39. Plotted on top of the wave functions are the
bifurcation, around®=30 andE=17 400 cm %, Here again, ~UnstaplD*] PO and the stablgDD] PO.

the destabilization of the4B]PO indicates that the last is-

land of regular motion aroung4B] is being definitely de-

o
>

0.0r

coordinate cosy

coordinate cosy

coordinate cosy

[ P=38

coordinate cosy

stroyed by chaos. reasons is called2D], becomes in turn unstable shortly
As in the 3D calculations, a first saddle-node bifurcationabove the bifurcation, slightly belowP=37 and E
is found to take place around=21 andE=12800cm™. =18500cm™. The reason for this period-doubling bifurca-

This is the black point labeletb) in Fig. 3. The stable PO tion and the early destabilization §2D] is once more the
born at this bifurcation is callepD], because it follows the chaotic invasion of the last island of regular motion around
dissociation pathway in a broad energy range. Very rapidlyfD]. The unstablg D]PO (called [D*]) remains slightly
aroundP=23, [D] becomes the lowest limit of the acces- unstable up to about 18400 ¢t while the Lyapunov ex-
sible energy range and is therefore expected to scar the wap®nent increases dramatically for higher energies.

function of the state with lowest energy in each polyad. This  The investigation of the quantum/classical correspon-
can be verified in Fig. 2, where ti® PO is plotted on top dence through the study of fundamental families of POs is
of the wave function of the lowest state of poly®d=30. however still not finished. Indeed, looking at the wave func-
Quantum states scarred Y] were called dissociation tions of the lowest state of polyad®= 36 to P=39, which
states in the 3D worRjn order to emphasize their role in the are reproduced in Fig. 4, it appears that something new nec-
dissociation dynamics. In the 2D systef, | further under-  essarily happens between polydts 37 andP=38: In con-
goes a period-doubling bifurcation close B=34 andE  trast with the lowest levels of polyad3=36 andP =37,
=17500cm™. This is the black point labele@) in Fig. 3.  which are clearly scarred byD*], the nodal lines of the
The stable PO born at this bifurcation, which for obviouswave functions of the lowest levels of polya&s=38 and
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P=239, as well as higher polyadsee, for example, Fig.)7 Eq.(3.1) (solid lineg is seen to be perfect, except at very low
clearly do not resemble the* JPO, although they stretch energies, where the notion of dissociation states is not well
along the dissociation pathway. This figure suggests that ounded.

second saddle-node bifurcation occurs in this polyad range

for the 2D system. This additional saddle-node bifurcation idV. VIBRATIONAL CHAOS AND IVR

actually found around®=36.5 andE=18300cm?. It is
indicated with the black dot labeldd)) in Fig. 3. The stable
PO born at this bifurcation, which is call¢@®D], remains
stable (or only very slightly unstableup to P~43 andE
=19100cm?, that is, less than 200 c¢m below the disso-

In this section we first show, through the comparison of
classical Poincarsurfaces of sectioiSOS$ and quantum
Husimi distributions, that the classical dynamics of 2D HOCI
looks much more chaotic than the quantum dynamics. This
L observation is discussed in terms of the quantum/classical
ciation threshold, and replacgB], [D*], and[2D] at the correspondence. We then show that quantum and classical
low energy end of the polyads. mechanics nevertheless agree in predicting a slow intramo-

If_one defines dlssouathn states in a more general WaYacular vibrational energy redistributiaiiVR) between dis-
as being those states for which all the energy flows along thgociation and nondissociation motions

dissociation pathway, then their behavior can be summarized

as follows. A. Quantum regularity vs. classical chaos
_ (1) Up to P=15, dissociation states are the highest level  pgincafesurfaces of sectionSOS3 are a powerful tool
in each polyad and are scarred by {iiR]PO. for studying chaos in 2D classical mechanics. The SOSs

(2) Between polyadsP=16 and P=23, dissociation grawn in the left column of Fig. 5 consist of the points
states move from the top to the bottom of the polyads. The)(py,),) taken along several trajectories at those times for
often mix strongly with other states and are not scarred byyhich Ris equal to 1.70 A angy, is positive. The energf
any particular PO, except for the states belonging to polyadgs|ative to the quantum mechanical ground state is equal to
P=22 andP= 23, which are scarred HyD ]. 14000, 17000, and 18500 chfor the top, middle, and

(3) BetweenP =24 andP=37, dissociation states are pottom plots, respectively. The SOSs obtained from the same
the lowest level in each polyad and are scarreddy (Up t0  trajectories, but computed at=1.32 rad andp,>0 and

P=34) and[D*] (P=35t0P=37. plotted in the pr,R) plane, are displayed in the right col-
(4) BetweenP=38 andP=43, dissociation states are ymn of the same figure. Regulémonchaoti¢ dynamics is
the lowest level in each polyad and are scarred D ]. signified when the SOS cuts the motion in one or several

(5 the remaining three bound dissociation stafles-  closed curves, since this implies that the motion is located on
longing to polyadsP =44 to P=46) are the lowest level in 3 torus. In contrast, areas filled with random-looking arrays
each polyad. Superposition of their wave functions with theof points indicate that tori no longer exist in these regions
[DD]PO at 19100 cm' shows that these states are notand that the corresponding dynamics is therefore chaotic.
scarred by DD], but more likely by another familyor sev- Examination of the SOSs &= 14 000 cm'* shows that
eral families of POs, which are born at saddle-node bifurca-the two lowest bifurcationgpoints (a) and (b) in Fig. 3],
tions(s) around or abové®=43 (in the last 200 c' below  which take place at about 12500 and 12 800 &mespec-
the dissociation thresholdand which stretch along the dis- tively, play a fundamental role in the appearance of vibra-
sociation pathway up to larger and larger valueRoHow- tional chaos, since the first macroscopic region filled with
ever, we were unable to find these additional bifurcations. chaotic trajectories clearly develops around the unstable POs

(6) Dissociation states can even be followed above thereated at these bifurcations. Large islands of reg(dar
dissociation threshold. Not surprisingly, they correspond taalmost regular motion however still exist around each
the resonances with shortest lifetime, as can be expecteshe of the stable POs, namdlR], [2B] and[D]. At E
from the fact that all the energy flows along the dissociation=17 000 cm?, the bend PQwhich is called 4B] above the
pathway. For example, the third and fourth resonances conte) bifurcation at 15500 cmt] can still be found, but the
puted above the threshold, which can be assigned as the lowgland of regular motion around it has almost totally van-
est “levels” of polyads P=47 and P=48, respectively, ished; it is reminded thaf4B] itself becomes unstable
have computed lifetimes about one million times shorter thararound 17 400 cmt. The size of the regular island around
the fifth resonance, which is assigned as the 10th lowest stathe [ R]PO has also strongly decreased, while the size of the
of polyad P=34 (see also the discussion in Refs. 8, 25).28 island around D] remains mostly unchanged compared to

The evolution of dissociation states is illustrated in Figs.E=14000cm®. At E=18500cm?, that is, about 800
1 and 3: The three families of POs which scar dissociatiorem ! below the dissociation threshold, all of the regular re-
states, nameljR], [D], and[DD], are plotted in Fig. 1 on gions have disappeared, except for a very thin crescent
top of the contour plot of the PES at energies of 6500around[R]. This last crescent vanishes about 300 ¢m
14000, and 19000 cil, respectively. This figure shows higher in energy and Poinca80Ss looks henceforth totally
how each PO follows the dissociation pathway in a givenchaotic.
energy range before curving and escaping it. All the disso- The finding that chaos spreads over all the phase space at
ciation states from the ground state=0) up to the highest these energies contrasts with the obvious regularity of many
bound dissociation statePE46) are further indicated with  of the ab initio quantum wave function&f. Fig. 2) and the
small open circles in Fig. 3. The agreement between quarebility to reproduce theab initio spectrum with a fully inte-
tum results(open circles and classical ones obtained from grable(i.e., nonchaotic Fermi resonance Hamiltonian up to
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Poincaré SOS at R=1.70 A and pr>0 Poincaré SOS at y=1.32 and p,>0
3| 14000 cm” R ] 12 14000 cm!
i 8
4 .
0 -
4t
-8t
@ 12t
. .
m‘g NQ 12F - .[D] a3 FIG. 5. The left column displays Poin-
¥ Y f ~ 17000 cm™ 4 caresurfaces of section in they(p,)
o o 8 plane atR=1.70 A and the right col-
g E 4 umn the corresponding SOSs in the
= -g (R,pr) plane aty=1.32rad. The en-
g o O ergy increases from 14000 crh
o) CE, at above the quantum mechanical ground
S £ ; state (top) to 17000 cm® (middle)
2 2 i and 18500 cm!® (bottom. The large
) % [ black dots indicate where the stable
% g. 12¢ POs cross the surfaces of section.
8 Q 12 L
o tet 18500 cm™ ]
8 L
4 L
0 .
4f
-8t
‘ 12 ‘
0.0 0.4 0.8 1.2 1.6 20 1.4 1.8 2.2 26 3.0
coordinate y coordinate R (A)

19900 cm?, that is, 400 cm'® below the dissociation For HOCI, one finds\R=0.044 A andA y=0.050 rad. Fig-
threshold. In order to make this discrepancy between quanire 6 shows contour plots in the/(p,) plane of the Husimi
tum and classical mechanics more obvious, we plotted irlistributions for the 16 states of polyd®= 30, whereR is
Fig. 6 the Husimi distribution§~**for the 16 states belong- fixed at 1.70 A andbg is chosen such that the total enefgy
ing to polyad P=30, whose quantum wave functions are s equal to the energy of the corresponding quantum state.
displayed if‘ Fig.. 2. The I_—|usimi distributiqp for a given  Each plot of Fig. 6 is therefore just the quantum equivalent
wave functionV" is a funct7|c_)£10 of the coordinates=(R,7)  of 4 classical Poincar8OS drawn for a given quantum state,
andp=(pr.p,), such that which is the reason, why such plots are also known as
1 “quantum Poincaremaps.”3° Not surprisingly, Husimi dis-
p(V:p.q)= WKq)p,q*q'Hz- (4.1 gributions agree with wave functions in that they display a
very regular behavior: the six lowest states of the polyad are
dissociation states and their Husimi distributions are accord-
ingly localized inside the “pit” of the “avocado,” which
surrounds th¢ D ]PO; the next three states have a primarily

In this equation,®,, is the minimum uncertainty wave
packet centered ag(p), that is, it is the product of two 1D
functions of the form

0 (g = 1 bending nature ang is rightly localized on the circumfer-
pald')= (2m(Aq)>)T* ence of the “avocado,” along which trajectories close to
1 ) [2B] and[4B] do loop; at last, the seven states with highest
XeXP{ - W(Q'*q)2+ ;ifp(q’—q) _ energy are scarred fiR] andp is seen to be maximum in
(Aq) the crescent surroundirigR]. For the states scarred pip |

(4.2 and[R] one can even count the number of nodes in the
Husimi distributions in order to find the rank of the state in
the polyad. It is worth noting how different the distributions

in Fig. 6 look compared to the chaotic ones shown in Fig. 2
of Ref. 39. Indeed, the latter ones spread over the whole
accessible phase space and display very irregular nodal lines.

The Ags are the half-widths of the 1D minimum uncertainty
wave packets, which are estimated according to

so= ol Lt

— 4.3
e 4.3
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Husimi in the (y,p,) plane at R=1.70 A and pg>0 for the levels of polyad P=30 J
16620.68 . 744405

FIG. 6. Plot of Husimi distributions in
the (y,p,) plane for the 16 levels be-
longing to polyadP =16, whose wave
functions are shown in Fig. R is
kept fixed to the equilibrium value
(R=1.70A) andpg is chosen such
that the total energy be equal to the
energy of each quantum state. Husimi
distributions plotted this way are just
the quantum analogues of Poincare
SOSs plotted in the left column of
Fig. 5.

conjugate momentum p.*103°

00 05 1.0 1.5 20 05 1.0 15 20 05 10 15 20
angle y

Although striking, the fact that classical dynamics looksscale of onegor less than onevibrational period. In these
much more chaotic than quantum dynamics is not new anthtter regions of complexity, nearby trajectories would sepa-
has been discussed in some detail by DAVf¢,Reinhardt rate exponentially and transitions between remnants of tori
and co-workeré3~*8and Eckardet al.*® According to Rein-  would take place. This point is illustrated in Fig. 6 of Ref. 45
hardt and co-workers, who studied the Henon—Heiles surand Fig. 9 of Refs. 46 and 48. Stated in other words, classical
face, this is due to the fact that quantizing tori would not bemechanics agrees with quantum mechanics in finding a pre-
completely destroyed by nonlinear couplings, but considerdominantly regular dynamics, provided that the classical sys-
able “structure” (local constants of motignwould instead tem is investigated for time intervals not longer than,
survive. This structure would be able to confine trajectoriesoughly, the density of states. This observation is sufficient
on a torus for many vibrational periods, except at someo reconcile classical and quantum mechanics, since the cor-
places, where the motion would be highly complex on therespondence between the two of them is anyway not ex-

ab initio wave functions ‘ ‘ Husimi in the (y,p,) plane

0

FIG. 7. Plot of quantum wave func-
tions (left) and Husimi distributions
(right) for states no. 346top) and no.
350 (bottom). State no. 346 is located
67.6 cm! below the dissociation
threshold and assigned as the state
with highest energy in polyaé®=32.
State no. 350 is located 45.1 cinbe-
low the dissociation threshold and as-
signed as the state with lowest energy
in polyad P=45. Remember that the
last bound state is no. 355. Husimi dis-
tributions are plotted as in Fig. 6.

NS

State #346 B
E=19241.51 cm™ 0.0 B
(Dy-67.6 cm't) .

RS

CINESS

coordinate y

State #350
E=19264.02 cm™
(Do-45.1 cm')

conjugate momentum p,*1033
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coordinate R (A) angle y
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pected to extend beyond the time corresponding to the der
sity of states.

Things are however very different forl2 HOCI at
18500 cm. In this energy region, the density of states is
about 0.052 states/chh, which corresponds to a time of
1700 fs, that is, about 50 periods of the unstable bending
PO(T=34fs), 30 periods of the stab]J&]|PO(T=61fs), or
10 periods of the stablegDD] dissociation PO[=195fs).
The point is, that examination of sequential SOSs shows the
trajectories remaining confined on “vague” tori during this
large amount of time are clearly not the rule. In order to get
a deeper insight into the remaining structure of the classica
phase space, we additionally performed linear stability
analyses along randomly chosen trajectotes? The result
is that regular and chaotic dynamics usually alternate a
roughly equivalent time intervals of about one vibrational
period (50—100 f$. This is probably due to the fact that the
dynamics of HOCI is investigated in a comparatively higher
energy region compared to the work dealing with the
Henon-Heiles surface, so that larger portions of vague tor
have been destroyed by chaos. .

Conclusions regarding these comparisons between th 3
classical and quantum vibrational dynamics of 2D HOCI just 2
below the dissociation threshold can therefore be expresse ;

1
2
3

[ Sequential Poincaré SOS at R=1.70 A and pg>0 (E=18500 cm-') ]

4 9.4 ps <t < 90.5 ps (509 hits) 668.7 ps <t < 791.7 ps (790 hits)

90.5 ps <t < 157.8 ps (832 hits) 791.7 ps <t < 820.9 ps (300 hits}

conjugate momentum p,*1033

4
3
2
1
0
1
2
3
41 157.8 ps <t < 357.4 ps (1189 hits) 820.9 ps < t < 872.3 ps (321 hits)
3
2
1
9]
1
2
3

357.4 ps <t <668.7 ps (3362 hits) {[. 872.3 ps <t < 1404.3 ps (6769 hits)

in three ways.(i) First, it can be considered that classical
mechanics is a valid approximation of quantum mechanic:
only over the time interval where classical mechanics looks
regular (about one vibrational perigdthat is, one to two
orders-of-magnitude shorter than tt@ommonly assumed
density of.sta}tes(.u) On the other hand, it can be remarked FIG. 8. Sequential Poincarsurfaces of section in they(p,) plane at
that the principal features of the quantum states are governa 500 cni® above the quantum mechanical ground state. The eight dia-
by the very small islands of regularity surrounding stablegrams show the intersections with the pldte 1.70 A of a single trajectory
POs and not by the much larger chaotic regions Surroundin'ﬁtegrated for more than 1.4 ns. The total integration time is however split
h islands. Pointi dii full . ith Eck to eight intervals, in order for the slow IVR process discussed in Sect. IV
these Is a,m s. Pointg) ar“‘_ (i) a_re ufty cons_lstent W_lt_ ; CK- Bto appear clearly. For the sake of clarity, the two equivalent wells con-
ardtet al.’s remark that “it suffices to stay in the vicinity of nected through the linear HOCI configuratiop=£0) have been shown.

a PO one period for quantum effects to become

important.”° (jii ) At last, it should be noticed that the case

of 2D HOCI is exactly parallel to the case of HCN, for which to “dissociation” and “nondissociation” motions, respec-

some controversy arose as it appeared that the classical d%(\'/ely where dissociation motion again means a motion for

namics is _much more chaotic than the quantum, pich all the energy flows back and forth along the dissocia-

dynamllcsil hMo:tcmltCerl\(lajtlngly, I has kaeeaggtlawn VeTY tion pathway. The separation of the quantum phase space
recently that the system, just like » F8MAINS; 46 two domains persists up to the dissociation threshold, as

very close(an average 10 cnt de\_/iatior) _to an integrable can be checked in Fig. 7. This figure shows the wave func-
(i.e., nonchaoticsystem up to the isomerization threshoid. tions (left column and the Husimi distributiongright col-

In both cases, chaos therefore appears as a small fluctuatiﬂ%n) for states no. 346 and 350, which are assigned as the

iﬁ few cm h) arour?d a.be}shcaltljy mtlegradble Zystem,_ever;l 'tnhighest state of polyaB=32 and the lowest state of polyad
€ case where chaos Is Tully developed and occupies a =45, respectively. These states are located at 68 and 45

available phase space. The studie; d(_ealing with HCN 8N8m1 pelow the dissociation thresholdemember that the
HOCI suggest that quantum dynamics is largely unsensitivgyst hound state is no. 3B5This figure shows that, even just

to the small chaotic fluctuation. a few tens of cm* below the threshold, energy does not flow
) ] o easily from the dissociation pathway to perpendicular direc-
ﬁvgl)tramolecular vibrational energy redistribution tions gnd conv_ersely. | | o
This slow intramolecular vibrational energy redistribu-
In addition to displaying overall regularity, the Husimi tion (IVR) also appears very clearly when plotting sequential
distributions in Fig. 6 also show a very clear separation ofSOSs as in Fig. 8. This figure shows the intersections with
the phase space into two domains, which are just the “pit’the planeR=1.70A of a single trajectory integrated for
and the “pulp” of the avocado. By comparison with the more than 1.4 ns at an energy of 18500 ¢nabove the
guantum wave functions in Fig. 2 and the classical surfacequantum ground state. Instead of plotting all of the 14 000
of section in Fig. 5, these two domains are clearly assignegoints on the same diagram, as in the left column of Fig. 5,

2 -1 0 1 2 2 -1 0 1 2
coordinate y
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