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Numerical construction of “optimal” nonoscillating amplitude and phase functions
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A numerical recipe for the construction of nonoscillating amplitude and phase functions for potentials with
a single minimum is given. We give different examples illustrating the recipe, showing the usefulness of the
procedure for the construction of basis functions in bound-state scattering processes, such as those described by
guantum defect theory. The resulting amplitude and accumulated phase functions are coined as “optimal”
nonoscillating(as a function of the space and energy varigblescause they are the counterpart for the
guantum problem of the classical action for the analog semiclassical problem.
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INTRODUCTION potential interest to other areas of physics where the Milne
equation appearse.g., in the analysis of supersymmetric
The interest in amplitude-phase methods for solvingfamilies of damping modeEL2], or in studies of the gravi-
bound-state scattering problems is well knofdr-4]. The tational equilibrium of stellar structurd43]).
advantage of using the amplitude-phase formulation is that The present work introduces a numerical method very
the oscillatory character of the wave functions is obtainedsimple to implement, which leads to the construction of op-
from amplitude and phase functiofsespectively, denoted timal amplitude and phase functions. By “optimal” we mean
a(x,E) and ¢(x,E)] which are better behaveddeally, here that the amplitude function is nonoscillating in the space
nonoscillating in terms of the space and energy variables.variable and that the accumulated phase is a monotonic func-

Let (x,E) be a solution of the Schdinger equation tion of the energy. These nonoscillating properties stem from
a remarkable feature, recently shown by one ofi4g: there
IZp(x) +K3(X) h(x) =0, (1) is only a single functionp,(x,E) which in the limitz—0

_ _ ) tends to the reduced classical acti§(x,E) [and concur-
with k%(x)=2[E—V(x)], where V(x) is a potential well rently ao(x,E)—k Y4(x,E)]. a, is then a nonoscillating
with a single minimum defined on an intervad;}s;[. The  fynction ofx, andz, is a monotonic function oF. For other
same wave function may be written as choices ofé or «, highly oscillatory semiclassical phase and

W) = a(X)sin $(x)] (20 amplitude functions@ anda are obtained when the limit
—0 is taken. We give below a recipe for the practical con-
in terms ofany set of functionsa and ¢ solutions of the struction of @, and ¢,, after recalling the mathematical

so-called Milne equatiof5] framework. We then work out this recipe in three different
cases, for which the implementation of the method slightly
A2a(x)+ k3 (x)a(x)=a3(x), (3) differs.
with a~?(x) = d¢(X). Although the direct integration of Eq. BACK GROUND

(3) has been used as an efficient manner of solving the

Schralinger equation, amplitude-phase methods have mainly We briefly review for reference the amplitude-phase for-
been employed when a particle is subjected to distinct shortmulation within the context of Ermakov systerfisgs. (1)
range and long-range interactions, as is the case for a@nd(3) form together a system known as an uncoupled Er-
atomic or molecular Rydberg electron. Thenand ¢ are  makov system,; for details we refer the reader to R4
often obtained from known solutions of E) in the long-  and references therdirLabelingu; andu, two independent
range potential; the total wave function including the short-solutions of Eq. (1) with Wronskian W= (dsu;)u,
range potential is at last determined fram ¢, and the —u;(dyUy), the general solution of Eq3) takes the form
relevant energy-dependent phase shifts, provided these func- 2
tions are smooth. The problem is that for arbitrary boundary = | [ 1 5| o 21, 4lc

conditions, « is highly oscillatory, and the quantity3 a(X)= §+2|C )ul(x)+ WU2(X)_WU1(X)U2(X)
= ¢(sy) — ¢(s;) known as the accumulated phase and which (4)
defines the normalization af oscillates as a function di.

This is why there has been renewed interest in devising nuand the equation fo® is integrated as

merical methods aiming at minimizing these oscillations

[6—10Q. This is also important in other problems employing _ i 2] r,U1(X) B
the amplitude-phase formalism, such as the parametric time- $(x)=arcta 21 r2le Wuz(x) 2lc|+arctanc,
dependent oscillator in classical mechanit4], and is of (5)
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with ¢(s;)=0. | andc are two integration constants that set = — cotwn(E)/2 the different amplitude functions depend
the boundary conditions of E@3). For quantized energies on b through
E=E,, the accumulated phase is

BE=Eg)=nm, (6) T [0
a(x;b)= 2 Sitan(E) | b2 +b7u3(x)
where n in an integer counting the number of half- T
wavelengths betweesy ands,. The eigenfunctions are then 7 cosmn(E) 172

properly normalized, uq(X)uy(x) (10

sirfn(E)

S2
2
X,Eq)dX=10gB(Ey) =1 mden, 7 o . :
Jsl VX Eo) eA(Eo) =1 mde @) Of course, varyind is tantamount to constructing different

amplitude functions from solutions; andu, having differ-
wheren(E,) gives the functional relation between the num-ent boundary conditions at the turning points, but this does
ber of half-wavelengths and the energy. ForEq, S de-  not concern us herer, andu, are the numerically integrated
pends on the boundary conditions, (and to a certain extent arbitrarfunctions.
The crucial observation is that there is one valuebpf

(2n+1) denotedb,, for which «(x;b,) is the “optimal” amplitude

B(E#Ey)=arctari2lc) +

T, (8)

2 function. b, is obtained by imposing
and a solution of Eq(1) is improperly normalized as ” o
s — - =0. (11
2 2 _ _ 202~ 1. bl . bl _
(X, E)dx=19gB(E)=1[dg(2lc)](1+41°c?) x=tp x=ty
r

©) From Eq. (5), this condition—the extremalization of the
r is a cutoff radius7 Sincej diverges asl, and thus improper quantum phase between the classical turning pOintS—takeS
normalization is arbitrary, depending drandc. It follows  the form
from Eg. (7) that | can take two meaningful values:
=m"1 if the eigenfunctions are energy normalized, lor 5
=(mden) "1 if the functions are unity normalized. We shall o~
assume energy normalization since it is the case most com-
monly encountered in practice. The constans set by re- , , . )
quiring improper normalization to be defined, for agyby ~ Henceb, is obtained by simply calculating the value of the
the same functional dependence asEor E,. This givesc numerlcql functlon:yl andu, at the glaSS|caI Furmng pomts.
= — 7 cotm(E)/2 and B(E) = 7n(E), wheren(E) is a real a(x;b,) is the “optimal” nonoscillating amplitude function

(noninteger number and the right hand side of E§) sim- and i.ts integralp(x;by) th.e corresponding “optimal” phase _
ply becomed 7dgn. function. By construction the accumulated phase is

B(E)=mn(E), and the basis function§(x) and g(x) of
great use in scattering problems, given bf,g}
={V2la(x)sin ¢(x),\2l a(x)cosp(x)} are normalized to
I wden (in both expressiond,= 7 1).

The starting point of the present method relies on the
numerical integration of the independent solutiopsandus,
of the Schrdinger equation{1). We choosai; andu, to be
regular, respectively, as; and s,, so that uq(s;)=0, We first illustrate our method on the harmonic oscillator.
u,(s,) =0. Numerical integration proceeds through any stanHerek?(x,E) =2(E—x?/2), s;= —, s,= +%. The relation
dard methode.g., by Numerov-Cooley integration or by the Eo=v+1/2, wherev is the principal quantum number, is
method of chasingand we choose as the second boundarynverted to gety(E)=E—1/2, and the number of half-
conditionu,(t;)>0 andu,(t,)>0, wheret, andt, are, re- wavelengths is\(E)=v»(E)+ 1. As a working example, for
spectively, the inner and outer turning pointis(x) is then  an energy corresponding t(E) =7.24, we have integrated
rescaled so that the Wronskian is setW=2 sinmn(E)/ Uy andu, with numerical values of, ands, set as three
[indeed, ifu, andu, are, respectively, regular af ands, times the turning points, and taking as second boundary con-
then we must havéW|=|2I sinzn(E)| [14]; we then set  ditions u;(t;) =1 anduy(t;)=1. We then divideuy(x) by
=71 and our sign convention accordinglyAt this point, ~—7.879, so that the rescaled, gives a WronskianW
we have potentially constructed not one but a family of am-=2 sin 8.247/7; the optimal amplitude-phase functions are
plitude functions given by Eq(4): the reason is that any then obtained fob?=7.88. We have plotted in Fig. 1 the
changeu;—u, /b, u,—bu,, with b real, gives the same phase incremenp(t,;b)— ¢(t,;b) for different values ob:
Wronskian, but leads to different amplitude functions.the phase accumulation between the turning points is seen to
Hence, since =71 and c have a minimum fob=Db, .

Uy (ty)u(tp)] M2

Up(ty)uy(ty) 12

NUMERICAL CONSTRUCTION OF NONOSCILLATING
AMPLITUDE FUNCTIONS

Example 1: Harmonic oscillator
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FIG. 1. The phase increment between the turning points 0 (rad)

¢(t,;b) — ¢(t1;b) for a harmonic oscillator withv="7.24 is plotted . 1 ) s
for different values ob (note the logarithmic scaleThe increment FIG. 3. A=(msin6/2) = [ o(6;b,) — (1 +1/2) ?] is shown
has a minimum for the optimal phase function, whkeb, (see  for three values of: I=6 (dotted ling, | =12 (dashed ling and|
text), and reaches the value of:for b—0 or (whereas the total =22 (solid line). The difference between the optimal amplitude

accumulated phase betwesnands, is 8.247). The increment for function_ and the classical ampl_itude decrease$ i_asreases. The

the optimal phase function is not always a minimum, but can be &&lculations were made by adding a small quantity10° to the

maximum as well, depending on the position of the zerosiof Intéger value of for convergence purposes.

relative to the turning points. However, the increment

&(t5(E),E;bo(E))— &(t1(E),E;bo(E)) varies monotonically with irregular functions, corresponding t&,,(¢) when | is

the energyand linearly withn(E)]. an integer, is then retrieved by the standard formulas. The

regular function, given by fim(6)

=227 sin 6) " Y2a; () sin (6) is also shown on Fig. 2.
Phase amplitude methods for spherical harmonics have Note that wherm<2~*2 which involves only a single

seldom been developeavith the noteworthy exception of but important quantized casm=0, the effective potential

Ref. [4]). The usual equation for the associated Legendreloes not have a minimuitbut a metastable maximynand

function  d,[sin 69,P,(6)1/sin 8-+[I1(1-+1)— P sin 2 )P, 6) our method cannot be applied since there are no turning

Example 2: Spherical harmonics

=0 is put under the form points. However, we may take advantage of the symmetry of
5 5 the potential and its derivative abo@t 7/2; any 6<m/2 is
Igxim(0) +Kin(6) xim(6) =0, (13)  mapped tor— 6> m/2, and, in particulars, is mapped into

. . s,. Hence any couple of point®(m7— 6) can play the role of
W'tlh Xim(8) =Pim(0)sin’?¢ and klzm(a):(“r%)z_(”?z t, andt, in Eq. (12), and b, is accordingly obtained by
—$)/sir®6. We haves;=0 ands,=m, and the relation solving
Eo(N=L2=1(1+1) is inverted to givel(E)=3(\J1+4E

—1). Following our recipgand keeping to the more stan-

dard notationl for the total angular momentum effective b=
guantum number, rather thar), the accumulated phase is

now given byB(E)=mn(E), with n(E)=I—m+1. Figure

2 displays rather than the amplitude the quantity’(¢;b,)  for any 6. An example is shown in Fig. 3: we have plotted
for | =13.7 andm=6, which ascribes a total angular velocity there the difference between the optimal amplitude
(whereas for an arbitrary value bf «(6) would display the =~ 2-2(m sin6)"?a|o(6;b,) and the semiclassical amplitude
nodal structure of the wave functipiThe pair of regular and  2*%(w sin6) Y41 +3) 2 It can be seen that even for low
values ofl, the agreement is quite good.

1/2

Uy (6)uy(m—0) (14

Up(0)up(7—6)

05 Example 3: Coulomb potential

The centrifugal Coulomb potential problem has been ar-
guably the main case study for amplitude-phase methods, in
connection with short-range scattering in a long-range Cou-
lomb field. Different method$2—4,7—-1Q have been pro-

. _05 posed to minimize the oscillations of the amplitude and
05 1 15 2 25 3 phase functions, yielding satisfactory numerical results in
6 (rad) practical comput{;\tions. Howeyer,_none of thes_e metho_ds led
to atotal suppression of the oscillations. Our recipe provides

FIG. 2. The energy-normalized optimal function2(6;b,) ~ ©OPtimal amplitude and phase functions also in this case, pro-
(smooth solid line, left scaleis plotted forl=13.7, m=6. The  Vided Eq. (12) is implemented not with the momentum
corresponding function regular =0 (see textis represented by ~ K(X,E,1)=v2[E—I(1+1)/(2x?) + 1/x]"? appearing in the
the dashed curvéight scal@. The turning points are indicated on radial Schrdinger equation but with the modified wave
the 6 axis. Atomic units(a.u) are used. number

(‘n'e) ()4
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where § is a transformation parameter arising from the sin-
gularity atx=0 which breaks the simple correspondence be-
tween the quantum wave number and the classical potential
[15]. Employing the well-known Langer modifications (
=1/2) leads to nonoscillating functions for sufficiently large
guantum numbers but a correction must be implemented at 260 280 300 320 340 360 380
low energies. The ansatz X (a.u.)

dxa (a.u.)

I+ 1)/[2(1+3) ]+ 94
5(E,I):§+ il ! :E L T+D)20+3)
(—2E)‘1/2—I—§+ I(1+1)

FIG. 4. Thefirst derivative of the amplitude function for a cen-
trifugal Coulomb potential ¥=18.76,1=16) is plotted in a region
around the bottom of the potential. The solid line results from fol-

(16) lowing our prescription, whereas the dashed line almost superposed
on the solid line has been calculated by employing the improved
was seen to efficiently correk(x,E,I) when using Eq(11)  classical boundary conditions as given in R&f. For only slightly
even at low energies anidand tends to the Langer modified larger values ofi(E)=»—1, both methods give the same nonoscil-
momentum in the limitE— 0 and/orl — . lating amplitude function. On the other hand, pl&MKB) classical

To be preciseil; andu, are generated from the numerical boundary conditions as used[ih,2] lead to oscillations, which are
integration of Eq(1), i.e., with the momenturk(x,E,l), and  small relative to the oscillations displayed by an arbitrary amplitude
with numerical approximations ts;=0 ands,=+%. The fun(_:tiop but are nt_avertheless clearly visible when plotting the first
eigenvalue relationEy=—1/(212) is inverted to yield derivative(dotted ling.
n(E)=(—2E) *?—1. The corrected momentum only enters
in the calculation of the turning points, so thatandt, in ~ phase functions, usually by using a classivalue as a
Eq. (12) correspond to the solutions &f=0, with § given  boundary condition on Eq3). An improved and more effi-
by Eq.(16). Note that the modified potentiaf has a mini-  cient method due to Sidk9] used a combination of classi-
mum for any positive value df so our method can also be cal boundary conditions so as to minimizék(x,E) 2,

applied tol =0. An illustration is given in Fig. 4. which appears as a driving force in a linearized equation for
the difference between an “ideal” amplitude function and the
DISCUSSION classical amplitudé(x,E) Y. For the harmonic oscillator

and the Coulomb potential cases, the Sidky method and the

Relative to an arbitrary phase function, the optimal phasgyresent recipe yield quasi-identical nonoscillating amplitude-
function ¢,(x,E) plays the role that the classical action phase functions; small differences were found only for small
S(x,E) hasvis-a-vis any other semiclassical phase function vajues ofn(E), as illustrated in Fig. 4. Another difference is
$o(x,E): Sis indeed theonly nonoscillating semiclassical that none of the other methods control the value of the accu-
phase functiof14]. Our method generates optimal functions mulated phas@(E) [which usually oscillates around the op-
by extremalizings,(x,E) between two points related by a timal value 7n(E)] whereas we impose through E(B)
classicalmap; in this respect, we remark that quantum defectB(E)= wn(E) from the beginning. However, our method re-
theory was recently reinterpreted as the realization of an exies on integrating first the linear E¢l) rather than directly
act quantum Poincareap [16]. However, in most of the integrating the nonlinear Eq3), as in Ref.[9]; this may
methods given in Refd.1-4,6—8,10,1k—which were not prove to be a drawback when working with potentials that
able to totally eliminate the oscillations—classical mechan-extend to a very long range, as is the case for intramolecular
ics intruded in the choice of the quantum amplitude andpotentials in cold atom collisions.
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