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Abstract—The article presents a simple, practical approach for 
indoor localization using Received Signal Strength fingerprints 
from the GSM network, including an analysis of the relationship 
between signal strength and location, and the evolution of 
localization performance over time. Support Vector Machine 
regression applied to very high dimensional fingerprints does not 
reveal any smooth functional relationship between fingerprints 
and position. Classification using Support Vector Machines 
however provides very good results on discriminating different 
rooms in an indoor environment, albeit with performance that 
degrades over time. Transductive inference, introduced as a 
means of updating models to overcome degradation over time, 
provides hints that accurate indoor localization can be achieved 
by applying classification methods to cellular Received Signal 
Strength fingerprints, performance robustness being maintained 
via model updating and refining. 
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I.  INTRODUCTION 

Indoor localization systems are an important extension to 
Location Based Services (LBSs), for assisted living scenarios, 
tracking of Alzheimer’s patients, and in more general situations 
[1]. As GPS receivers are unable to function in indoor 
environments, a variety of indoor localization strategies have 
been proposed to try to tackle this challenging task [2-11]. 
Methods based on the measurement of Received Signal 
Strength (RSS) in RF networks such as Wi-Fi and Bluetooth 
networks, for example, have proven to be effective [2-6]. 
However, time and labor intensive deployment and 
maintenance of these networks is a drawback that reduces the 
impact of these techniques. 

Aside from these specially deployed networks, indoor 
localization based on ambient radiotelephone networks, such as 
GSM and CDMA, has also been studied [8-10]. In the past few 
years, methods based on the use of RSS fingerprints acquired 
from large numbers of GSM channels have appeared promising 
[10, and references therein]. Recent results also suggest that an 
appropriately programmed standard cellular mobile phone can 
provide a simple, inexpensive solution for accurate room-level 
indoor localization [11]. 

The studies proposed in [10-11], however, were 
preliminary for two reasons. First, they did not attempt to 
explore the distribution of measured RSS values, or to discover 

a functional relationship between RSS and position in indoor 
environments. Secondly, no prescription was made for 
correcting for RSS drifts over time, which is a well-known 
challenge in RSS based systems, particularly for long-range 
signals [12]. Indeed, due to shadowing, multipath and 
environmental effects such as building geometry, network 
traffic, presence of people, and atmospheric conditions, RSS is 
expected to be nonlinear with distance, non-Gaussian, and time 
varying [2], which can lead to performance degradation over 
time. 

In this article, after an initial description of the data 
collection procedures used (section II), we turn our attention to 
seeking a functional relationship between GSM RSS and 
position, using Support Vector Machine (SVM) regression. 
The results, in fact, presented in section III, show that no such 
relationship exists for the indoor environments tested, 
indicating that interpolation/extrapolation schemes based on 
RSS measurements at a small number of points as in [10] will 
not be viable for localization. .  

On the other hand, because of the local nature of shadowing 
and multipath effects, RSS fingerprints acquired over entire 
rooms can potentially be useful for room-level classification, as 
proposed in [11]. The scheme is presented in section IV, using 
data collected during “random walks” that explore an entire 
area. This section also presents long term tests showing that the 
performance of our RSS based indoor localization method 
degrades over time. We introduce transductive inference, 
which uses new, incoming unlabeled data to update SVM 
classifiers as a means of reducing performance degradation 
caused by RSS drift. The use of small amounts of new labeled 
data as a model update scheme is also explored here. Overall 
conclusions and some perspectives appear in section V. 

II. MEASUREMENT SITES AND DATASETS 

Two types of datasets were collected, for regression and 
classification experiments, respectively, both recorded in a 4th 
floor laboratory building (steel frame, concrete and plaster 
walls) in central Paris, France (Fig. 1). The first set, which we 
shall call the regression set, was collected in a single room 
(office 7) using so-called machine-to-machine, or M2M, 
GSM/GPRS modules [13], which can be driven using standard 
and manufacturer-specific AT modem commands. We used 8 
identical modules, with nominally identical specifications and 
technical parameters. During data collection, the M2M  



 
Figure 1. Layout of the laboratory where the datasets were recorded 

modules were placed at fixed positions, in a line, spaced at an 
interval of 0.6m, as illustrated in Fig. 1. A total of 600 GSM 
scans for each module were recorded over 5 working days. 
Each scan contains the RSS of all 548 carriers in the GSM900 
and GSM1800 bands, and consists of RSS values ranging in 
value from -108dBm to -40dBm. All the scans were labeled 
manually with location from 0m to 4.2m indicating where the 
scan was made. 

The second dataset, which will be used for SVM 
classification, was collected in 7 rooms of the laboratory as 
described in [11]. The data acquisition device in this case is a 
Sony-Ericsson mobile phone with embedded scanning software, 
which is able to obtain a scan of the entire GSM900 and GSM 
1800 bands in about 300 milliseconds. Scans were recorded in 
each of the 7 rooms and manually labeled with the 
corresponding room numbers during “random walks”. Four 
datasets were recorded during weekends over a period of six 
months in the same setting, hereafter called S1 (5000 scans in 
each room), S2 (2000 scans), S3 (1000 scans) and S4 (1000 
scans). 

III.  POSITION FROM RSS 

It was shown in [10] that the classification of RSS vectors 
recorded at fixed points works quite well. The objective here 
is to see if a regression method allows to measure locations at 
intermediate positions between the fixed points by finding a 
functional relationship between location and RSS in this 
indoor environment. 

A. SVM Regression Algorithms 

Since the number of variables is very large (548 carriers) 
and the size of the training set is relatively limited, SVM 

regression was deemed appropriate because of its built-in 
regularization mechanism [16]. 

Consider a given dataset 1 1 2 2{( , ),( , ), ,( , )}n ny y yx x x , 
where xi is the fingerprint vector at location i and yi is the 
coordinate of the location (assuming that 1-D localization is 
performed as described above). There exists a variety of 
Support Vector Regression (SVR) techniques, serving different 
purposes. SVR  , which was used in our experiments, aims 
to find a parameterized function ( , )f x θ  such that prediction 

errors  ,i iy f x θ  do not exceed a given value for all 

elements of the training set, and, at the same time, is as regular 
as possible, i.e. does not wiggle unnecessarily [14]. Assume 
that we are looking for a linear relationship between the RSS 
fingerprint and the location. The function has the form: 
 ( , )f b  x w xθ  (1) 

where    
T

bwθ= . The parameters are sought as solutions to 

the constrained optimization problem:  
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The optimal solution, if it exists, can be shown to be of the 
form 
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where 0 and all the i are solutions of a constrained quadratic 
optimization problem. 

If such a solution does not exist, slack variables i  and *
i  

can be introduced to relax the constraints, allowing some 
examples of the training set to be predicted with an error larger 
than . The problem becomes: 
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where C is  a hyperparameter called “regularization constant”. 

If we want to look for a non-linear relationship between the 
RSS fingerprint and the location, non-linear regression can be 
realized by first performing a nonlinear transformation of the 
variables that defines a more suitable feature space, in which 
linear regression is performed. The final solution is in the form 
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where K(., .) is called the kernel function. In our experiments, 
linear and nonlinear regression (using Gaussian and 
Polynomial kernels) were performed, using the Spider toolbox 
[15]. 

B. Results 

The results of SVRs are estimated through the mean 

squared localization error   



TABLE I.  REGRESSION RESULTS  

Regression Method Mean Squared Localization Error 

Linear LS-Regression 2.3m 

Linear SVM Regression 1.8m 

Polynomial SVM Regression (d = 5) 1.3m 

Gaussian SVM Regression 2.4m 

 

where yk is the position of measuring device k, xik is the RSS 
vector measured during scan i taken at location k, and -k is the 
parameter vector found by training from the data pertaining to 
all locations except location k. 

The results for linear and non-linear regressions are shown 
in Table I. The soft margin parameter C, polynomial degree d 
and Gaussian kernel parameter  were selected through cross-
validation. Results from linear least squares regression (LS-
Regression) are also given for comparison. 

As shown in the table, the mean positioning error of all the 
regression methods is so large as to be unexploitable. The 
regression error is approximately equal to the average distance 
between the 8 locations, meaning that no linear or non-linear 
relationship between RSS and the position in a small indoor 
environment is evident. This appears to rule out using full-band 
RSS GSM vectors obtained in this way to interpolate between 
fixed positions in an indoor localization method. 

IV.  ROOM LEVEL CLASSIFICATION AND RSS DRIFT 

An alternative scheme, first introduced in [11], is to 
perform room-level classification based on RSS measurements 
made during “random walks”. In this case, we use classifiers to 
perform room-level indoor localization, where each room is a 
class. Data-driven classification problems are often solved in 
two stages: off-line training; and on-line testing. In the off-line 
training stage, discriminant functions are determined using 
training data and known labels, while in the on-line testing 
stage, a new test fingerprint is presented to the classifier and 
given a label based on the discriminant functions.  

The RSS-based room level SVM classifiers in [10] gave 
good results when training and test data were obtained over the 
same one-month period. Here, we explore the time dependence 
of the “random walk” approach, proposing transductive 
inference to continuously adjust a discriminant function with 
newly collected unlabeled data, in order obtain an updated 
classifier. 

A. SVM Classifier 

SVM classifiers were used in our experiments, since they 
are deemed appropriate to deal with the high dimensional RSS 
fingerprints for the same reasons as described above for SVRs. 

Consider a set of n examples of items belonging either to 
class A or class B, each example being described by a p-
dimensional vector xi. Further assume that the examples are 
linearly separable, i.e. that there exists a hyperplane of equation 
f(x) = 0 that separate all examples without error: f(xi) > 0 for all 
examples i belonging to class A and f(xi) < 0 otherwise. It can 
be proved that f(x) can be written under the form 
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where the i (i = 0 n) are parameters whose values are 
estimated from the examples; yi = +1 if example i belongs to 
class A and yi = 1 otherwise. 

If the examples are not linearly separable, a “soft-margin” 
approach can be used to reduce the complexity of the classifier 
by introducing slack variablesi and performing a tradeoff 
between accuracy of classification of the training examples 
and ability to generalize; the price to pay is the introduction of 
a “regularization” constant C whose value must be chosen 
appropriately. 

B. Transductive SVM Classifier 

Transductive SVMs take unlabeled test examples into 
account and adjust the separating surface to separate both 
training examples and test examples with maximum margin. 
For a linearly separable data case, this leads to the following 
optimization problem [17]: 
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where *
jx is the unlabeled data and *jy is the label 

corresponding to *
jx  given by TSVMs. Therefore, 

minimization must be performed with respect to w, b, xj
* and 

yj
*, j = 1…N, by contrast to standard SVMs where 

minimization must be performed with respect to w and b only. 
To be able to handle non-separable data, slack variables i are 
introduced as in standard SVM classifiers. Algorithms for 
solving this optimization problem are described in [17, 18]. 

The transductive SVMs used in our study, were 
implemented using SVMlight [19]. 

C. Results, and Comparison to “Re-Training” 

Experimental results are shown in Table II. The 
performance is presented as the percentage of correctly 
classified test examples. The results shown on the first row 
were published in [11] and reproduced here for comparison. 
The first 100 unlabeled test examples of each room in S1, S2 
and S3 sets were used for TSVM training to adjust the model, 
the remaining examples were used for testing. In SVM 
classifiers, we use the model trained on set S1 to test the test 
data in sets S2, S3 and S4. Only linear one-vs-all multi-class 
scheme was used because this method gave the best 
performance when testing on set S1. 

As can be seen in Table II , when building the classifier with 
set S1 and testing it on sets S2, S3 and S4 taken in different 
time periods, the performance varies dramatically, from about 
94% for “fresh” data (S1 set), down to as low as 32% (S4 set). 
However, by using only 100 new unlabeled test examples of 
each room with the TSVM, a substantial amount of the lost 
performance can be recovered, with accuracies up to 78.4%.  

 



TABLE II.  COMPARISON OF SVM AND TSVM  

Test Set Training Set SVM TSVM 

S1 S1 94.2% — 

S2 S1 60.4% 78.4% 

S3 S1 39.7% 58.8% 

S4 S1 32.3% 49.6% 

TABLE III.  RESULTS OF RE-TRAINING THE MODEL  

Training Data Test Data Algorithm Result 

The first 100 
scans of S3  

The last 900 
scans of S3  

Linear one-vs-all 83.3% 

The first 100 
scans of S4  

The last 900 
scans of S4  

Linear one-vs-all 77.4% 

 

The TSVM approach is interesting because it presents a 
way of recovering some of the performance loss due to RSS 
drift, at the cost only of obtaining some recent unlabeled RSS 
measurements. In practice, such data might be obtained from 
scans performed on the handsets of users of the localization 
system, but without the need to manually label the data. 
Though the improvement obtained with the TSVM is still not 
sufficient, the results nevertheless suggest that any scheme that 
keeps the classifier model “current”, by tracking the evolution 
of the RSS values, should be of interest to us. 

This hypothesis is supported by Table II I, which presents 
the results of training a new classifier “from scratch” based on 
a small number of new labeled scans of each room. In this 
scenario, “hand” labeling of the update data is necessary, but 
could perhaps be performed by specially designated employees, 
or by volunteers in exchange for some “reward” (i.e., 
crowdsourcing). The table shows that even if the current model 
is too outdated to give good performance, the S3 and S4 sets 
for example, it can be trained using only a small amount of 
labeled data and give substantially improved performance. 

V. CONCLUSIONS AND PERSPECTIVES 

In a study of ambient RSS distribution in an indoor 
environment using SVM regression, no smooth functional 
relationship could be discovered between GSM RSS and 
position for the indoor environment tested, implying that 
interpolation-based techniques are not likely to be successful. 
The use of ambient GSM RSS-based classifiers trained with 
data collected throughout the areas of rooms, however, presents 
a viable alternative, and experimental results show that the 
percentage of correct room labeling can be up to 94% if the 
model is used before significant RSS drift sets in. In order to 
cope with performance degradation caused by RSS drift over 
time, transductive inference was introduced to update the SVM 
classifiers with new unlabeled data. When tested on data sets 
collected over 6 months, this approach proved capable of 
restoring a significant part of the lost performance. The use of 
small amounts of current labeled data to create “current” room 
classifiers also appears to be a promising approach, even if 
performance still needs to be improved. 

In future work, we will continue to strive for a continuously 
updatable, high-performance indoor room classifier. We also 
intend to investigate the use of W-CDMA network data in our 
measurements.  
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