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Abstract—Accurately localizing users in indoor environments  acquired from very large numbers of GSM channels [10-13]
remains an important and challenging task. The article presents ~ Those studies, however, did not represent a genuinelygalact
new results on room-level indoor localization, using cellular solution since the RSS scanning devices operated withaut use
Received Signal Strength fingerprints collected with a standard  intervention only at a small number of representativiatgo
cellular handset programmed to perform fast scans of the 900  within each room. In this work, we present a more ralis
and 1800 Megahertz GSM bands as a user explores an indoor  sp|ution, in which a user can be localized at room level
environment at anormal walking pace. Support Vector Machines  regardlesoof his exact position in a room. This is achieved
are used to deal with the high dimensionality of the fingerprints.qing a4 handheld acquisition devieeactually a standard
;gﬁ d:rbédy Cd?ﬁ:“;“ﬁ;fditgln a&ﬁﬂogrﬁmep?ﬁg@;gﬁ cellphone with a software modification that can obtain an
solution for accurate room-level indoor localization. RSS fingerprint of the entire 900 and 1800 MHz GSM bands in
only about 300 milliseconds. This enables the collectibn
Keywords-localization: indoor; fingerprint; machine learning; large amounts of data on a reasonable timescale, ais point
support vector machine throughout the interiors of the rooms, rather than at orféyva
representative points, while movingsatormal walking pace.

o . lNTR(?DUCTION ) ) Our results show that GSM fingerprints acquired in this

The inability of GPS receivers to function adequately i way can be used to differentiate rooms of about 10 squar
‘urban canyon’ and indoor environments has prompted a searchneters size in some 94% of cases, indicating that thleoghe

for new techniques of indoor localization that can providemay indeed be used as part of a simple, practical, inexpensi

seamless and ubiquitous service for mobile users. Acburateindoor localization system. The data collection procedur
and reliably locating persons and objects in indoolemployed is described in section II, and the room classificat

environments is a challenging, but attractive, goal fiidds  aigorithms in section Ill. Results are presented in section IV

promise for a variety of location-based services an@vhile conclusions and future perspectives appear in the fina
applicationd1]. For many such services, room-level precision,section.

in which the localization system discriminates betwesms
rather than estimating coordinajgs e, is an adequate goal; II.  DATA COLLECTION AND DATASETS

this is the approach that will be adopted here. The data used in the experimentswbtained by scanning

A variety of indoor localization techniques have beerthe entre GSM band in 7 rooms of & #loor laboratory

proposed. Methods based on Received Signal Strength (RS8Yilding (steel frame, concrete and plaster walls) inraent
in Wi-Fi and Bluetooth networks, for example, or usingParis, France. The data acquisition device used was the GS

infrared or acoustic signals, appear promisifgz7]. A  trace mobile “TEMS Pocket”, which is in fact a standard Sony

drawback of these approaches, however, is that thegsitate ~ Ericsson W995 mobile phone to which network investigation

the deployment and maintenance of an infrastructure, whicpeftware has been added by the manufacturer [14]. In April of
can be time consuming and costly. 2012, on a Saturday afternoon from 2pm to 6pm, 5500 scans

N . ) ~_ (representing about one half hour of recording per roomg we
In addition to such short-range signals, indoor localizatiofecorded in each of the 7 unoccupied rooms and manually
based on fingerprints from wide-area radiotelephone networkgpeled with the corresponding room numbers, as illustiate
such as GSM and CDMA, have also been prop{&d@]. The  Figure 1. Each scan contains the RSS of all 548 caimi¢he
full coverage, near-ubiquity and relative stability of MBS GSM900 and GSM1800 bandsith values ranging from -117
networks may provide an attractive alternative for indookg -38dBm All scans were made via “random walks” in the 7
localization. rooms with the TEMS Pocket handheld by the user. The exact

Recent results have suggested that accurate and efficid?Sitions of the iindividual scans within a room were not
indoor localization can be achieved using RSS informatiofecorded; indeed all points in a given room are treated as



belonging to that room, consistent with the room-lemdbor  dimensionalvector x. Further assume that the examples are

localization approach adopted here. linearly separable, i.e. that there are, in descriptorespiaear
surfaces of equatioifx) = 0 that separate all examples without

- i o - error:f(x) > O for all examples belonging to class A arfk;)

< 0 otherwise. It can be proved ttiét) can be written under

the form

M
Office Office Office f(x)= iZ:llai Y (% - X) + (1)

1 2 3 where theg, (i = 0.M) are parameters whose values are

estimated from the exampleg,= +1 if example belongs to

classA andy, = -1 otherwise.
jﬂ\u \(HCD}H\]: A linear SVM is a linear classifier such that the minimum

distance between the separation surf§e®@ = 0 and the
examples that are closest to it (callegpport vectors) is
maximum, thereby guaranteeing the best generalizatiom give
the available data. The values of the parameateid such a
classifier are obtained by solving a quadratic optinogati
problem under linear inequality constraints. The support
vectors are the only examples whaeg@&re nonzero.

Data
Center

If the examples are not linearly separable, one resorts to

Office nonlinear SVMs, whereby the separation surface is dbthe
7 M
f(x)zzaiyiK(Xi -X)+060 (2)
i=1
S — terior Wl whereK(x, y) is akerne function that must be §qch that 'the
— (M, M) matrix of general termK(x;, x) is positive semi-
definite. As for linear SVMs, the; are obtained by solving a
(”G Door P——0  Window quadratic optimization problem under constraints. If the

constraints can be satisfied only if a large proportion of
examples are support vectors, i.e. if the classifier hasge
number of nonzero parameters, the constraint that athpbes
Figure 1. Layout of the laboratory where the data set was redorde are classified without error and lie outside the marginh=an
relaxed; that “soft-margin” approach reduces the complexity
IIl. CLASSIFICATION ALGORITHMS of the classifier by performing a tradeoff between accuracy of
The room-level indoor localization problem is consider classification of the training examples and ability to
as a multi-class classification problem, where eadmris a  generalize; the price to pay is the introduction of a
class. As is usual in data-driven classification proislethe “regularization” constant whose value must be chosen
algorithm works ina two-stage process. The first stage is off-appropriately.
line training, in which the equations of the discriminant There exists a repertoire of valid kernel functions, amon
functions are determined using training data with knowrldabe hich the RBE kerne? ’ 9
The second stage is on-line testing, in which, given &
fingerprint that is not present in the training dataset, the
classifier must provide the label of the room whdravas
measured, using the previously definseparating surfaces.
Only the first off-line stage may require heavy corafiahs,
the second stage merely needs to compute the valuibe of with appropriate widtho, is used in the present study. The
discriminant functions. As a starting point for multi-classya|yes ofe-and the regularization constant are chosen by cross-
classification, a pairwise (also termésko-class o ‘binary)  jjidation
classifier is introduced first. To summarize, a GSM environment described by the
A Pairwise Classifier fi_ngerprintx is assigned to room A or room B accordi.ng to the
sign of f(x), defined by (1) or (2) depending for linear or

Sinpe the ”“F“bef O.f variablgs is very large and theqsﬁize nonlinear SVM classification respectively.is the fingerprint
the training set is relatively limiteSupport Vector Machine -t entryi, i.e. rowi of RSS, GSM9I00 or GSM1800

(SVM) classifiers were deemed appropriate because af the&lepending on the fingerprint used by the classifier.

built-in regularization mechanism [15].
The SVMs used in our study, both with linear éRBF
nels, were implemented using the Spider toolbox [16].

2
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S

K(x,y) = exp (3
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Consider a set dfl examples of items belonging to either .
of two classes A and B, each example being describedpby



In order to obtaira “baseling result, nearest neighbor (1- [17]. The onevs-all technique is advantageous from a
NN) and k-nearest neighbork{NN) classifiers using the computational standpoint, in that it only requires a number of
Euclidean distance in RSS-space were also implemented. classifiers equal to the number of classes, in our Zase,
hyper parametdtwas determined by the same cross-validation
procedure as for the hyper parameters of SVMs. Predicted Class

B. Decison Rulesfor Multiclass Discrimination

When the discrimination problem involves more than two .
classes, it is necessary, for pairwise classifiech s1is SVM, to Decision
define a method that allows combining multiple paiewis Rule
classifiers into a single multiclass classifier. Tras be done
in two ways: oness-one and ones-all.

1) One-vs-one
This approach decomposes the multiclass problem into t
set of all possible ones-one problems. Thus, for amclass Cyvsall ‘ ’ Cyvs all ‘ ’ Gvsall ‘ oo | Gusal

problem, n(n —1)/2 classifiers must be designed. Figure 2 ‘ ‘ ‘ ‘ ‘

illustrates the architecture associated with this method.

The decision rule in this case is based on a vote. Hiest,
outputs of all classifiers are calculated. Now @t be the
output of the classifier specializing in separating clafsem RSS of the example to be localized
classj. If G; is 1, the tally for clasbis increased by 1; if it is
-1, the class tally of clagds increased by 1. Finally, the class
assigned to the example is that having the highestalbte

Figure 3. Onevs-all classification

IV. RESULTS

The performance of each classifier is presented as the
{pifrcentage of correctly classified test examples. In ataset,

each room, he first 3000 examples are usedf-line for
training the classifiers (quadratic optimization under
constraints) and finding the appropriate values of the hyper
parameters by cross-validation. The final 2500 of the 5500
scans make up the test set. Testing involves the cotigoutd
the sign off(x) from relations (1) or (2), which is very fast.

A disadvantage of the ons-one technique is of course the
increase in the number of classifiers required as cadpar
onevs-all discussed below. In our case of seven classes,
classifiers are required, which still remains manageable

Predicted Class

Decision Experimental results are shown in Table I. The soft narg
Rule parametelC and RBF kernel parameterare selected through
cross-validation, givingC = 10" in linear onevs-one and linear
onevs-all classifiersC = 10* ando= 100 in RBF oness-one
and onevsall classifiers. Results for 1-NN an&-NN
classifiers are also given for comparison, where #narpetek

’ C,vs C; ‘ ’ Cyvs C3 ‘ ’ Cyvs Cy ‘ e oo was optimized by cross validation.
ﬁ ﬁ TABLE I. PERCENTAGE OFCORRECTCLASSIFICATION ON TESTSET
- Fingerprint Type
Classifier
‘ ‘ GSM900 GSM1800 Both Bands
. 1NN 56.2% 54.4% 62.7%
RSS of the example to be localized ° ° °
k-NN 62.4%(k=77) | 61.2%(k=21) | 67.9%k=14)
Figure 2. Onevs-one classification
Linear 1vs-1 86.3% 83.2% 93.9%
2) Onevsall _ o Linear 1vsrest 87.1% 85.0% 94.2%
The onevsall approach consists of dividing theclass
. . . . . 0, 0, 0,
problem into an ensemble ofpairwise classification problems RBF 1vsl 85.5% 84.6% 93.0%
each of which is specialized in separating one class &lbm RBE 1vsrest 87.2% 85.7% 94.1%

others. Figure 3 illustrates the procedure. In the first stegeh
of then classifiers is trained separately, and in the secaug st
the following decision rule is appliedthe outputs of alin As can be seen in the tajptbe SVM room classifiers give
classifiers are first calculated and, following tt@neentional  correct results about 94% of the time with no significant
procedure, the predicted class is taken to be thathef t difference between linear and nonlinear kernels. As expected,
classifier with the largest magnitudeftf) (relation (1) or (2)) results from nearest-neighbor classifiers are sicpnifily



poorer. We also note that the GSM900 (174 carriers) aneikamples are distributed. It can be seen that most condusion
GSM1800 (374 carriers) bands are complementary in thaiccur between adjacent rooms, as could be expeRtmms

better localization accuracy is obtained when both banes
present in the fingerprint. In Figure 4 we also show hioav t
accuracy improves with fingerprint size, for the linear-ege
all algorithm, by increasing the number of carriers in stéps
50, according to the ordered sequence numbers of the G
carriers.
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Figure 4. Classification results as a function of fingerprizesi

located on opposite sides of the corridor are easily
discriminated.

TABLE II. CONFUSIONMATRIX FOR 7 ROOMS CLASSIFICATION
Mredicted TrueClass
Class 1 2 3 4 5 6 7

1 91.1% | 47% | 4.2% | 0% | 0% 0% | 0%
2 3.9% | 94.9% | 1.2% | 0% | 0% 0% | 0%
3 26% | 1.7% | 95.7% | 0% | 0% 0% | 0%
4 0% 0% 0% | 96% | 1.1% | 0% | 2.9%
5 0% 0% 0% | 0.8% | 97.1% | 0.5% | 1.6%
6 0% 0% 0% | 0% | 0% | 99.9% | 0.1%
7 0% | 06% | 0% | 41% | 43% | 3% | 88%

V. CONCLUSIONS ANDPERSPECTIVES

We have presented an approafdt indoor localization
based on the use of RSS with very large numbers of GSM
carriers, which has been tested ardataset acquired in a
laboratory building under realistic conditions. Data was
collected in such a way as to explore the entire sudeaze of a
room, using a standard cellular handset as the acquisitio

In figure 5 we examinthe effect of increasing the number device. Experimental results demonstrate that out ofah dbt
of training examples for each of the 7 rooms, again using the7500 (2500*7) test fingerprints, the correct room label was
linear onevs-one algorithm. The figure plots the percentage ofobtained 8% of the time thus indicating that the method can

correct room classifications as a function of theningj set size.

indeed serve as the basis for a simple, inexpensive indoor

We see that a rather substantial reduction in training set sifocalization system
gives only a very moderate degradation in performance. For

example, 93% of the test examples were correctly ifiabs
using only 1000 training examplebhis is a very interesting
result as far as acquisition time is concerned, asTHEMS

Future tests will involve studying how performance eesl
over longer periods of time, as well as experimenting with
different methods for combining the scans from the two GSM

Pocket requires less than 10 minutes to record 1000 trainifgnds used, and investigating whether W-CDMA network data

examples.
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Figure 5. Classification results as a function of training Seé

or other types of variables can also be incorporateddato
scans. Also, the experiments reported here were performed
during a weekend, so that the presence of people in the
environment will need to be investigated. We note trdy

one TEMS pocket device was used in these tests; in tire fut
will want to perform tests with several terminals, toifyer
device independence of our resulnally we intend to try
integrating a priori information and notions of physical
trajectories into our location estimation algorithms, vidigla

or other types of filters. Such an approach will allow
considering the entire indoor environment, not only reom
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