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Abstract. The ability to automatically answer a request that requires the composition of a set of web services has received much
interest in the last decade, as it supports B2B applications. It aims at selecting and inter-connecting services provided by different
panners in response to client requests. Planning techniques are used widely in the literature to describe web services composition
problem. However, since web services proliferate day after day, classical planners are no longer well suited to compose web
services in a reasonable time. This weakness is due to the explosion of the search space caused by (he large number of services
and the broad range of data exchanged among services. Therefore it is more interesting to use a decentralized planner to disicibuie
the search space and the computing load taking into account the distributed nature of the problem. In this paper, we propose a
distributed multi-agent approach to solving the web services composition problem at runtime. Our approach consists of a set of
web services agents where each agent has a set of services organised in a graph. To respond (0 a request, agents propose their best
local partial plans which are partial paths in the graph. They then coordinate their partial plans to provide the best global plan for
the submined request. The analysis of the complexity and the results of the implementation show the ability of our approach 10

scaling up when compared to the state-of-the-art techniques for automated web services composition.

Keywords: Web services, multi-agent, distributed planning

1. Introduction

Web services are distributed software components
that can be exposed and invoked over the Internet us-
ing standard protocols. They communicate with their
clients and with other web services by sending XML
based messages over the Intemet (13]. They are self-
contained, self described, active and modular software
applications that can be advertised, discovered and in-
voked over the Internet [14]. For example, an airline
travel service or a book-buying service (amazon.com).

Many languages have been developed in industria)
and academic communities to specify web services,
such as BPELAWS (Business Process Execution Lan-
guage for Web Services) [3], WSDL (Web Services
Description Language) (12].

*Corresponding author.

Research in the area of web services is increasingly
focusing on the problem of the automated composi-
tion of web services: given a set of services that are
published on the web, and given a goal, the aim is to
generate a composition from the available services that
satisfies the goal.

Artificial Intelligence planning techniques can be
used to model the composition problem. In fact, ser-
vices can be modeled as actions and the business pro-
cess as a plan to connect the web services. The sys-
tem builds the plan by sensing the world to explore the
available services. [t develops from the initial state the
different intermediate states, by applying services, un-
til reaching the goal state. It returns a plan which is a
set of services allowing to reach the goal, or it remurns
failure.

Since the number of services available over the web
increases dramatically, centralized approaches are not



efficient for this kind of problem because both the
number of services available over the web, and the
number of possible combinations of services, increase
dramatically, leading to a state explosion in the plan-
ning search space.

A few studies have been dedicated to develop de-
centralised techniques. In this paper we propose a dis-
tributed planning algorithm for web services composi-
tion where each agent is defined by a set of services.
It builds, from the set of services, a graph describing
their relationships. When an agent receives a request
for composing web services, it first computes the best
partial plan. Then it coordinates with other agents by
merging partial plans in order to find a global plan that
responds to the submitted request. Each agent com-
putes its best partial plan, using a heuristic function.

First, the heuristic is defined by a local function
which computes the distance between the local state
and the goal state. The empirical results and the study
of the complexity show the effectiveness of the decen-
tralised approach to composing web services at run-
time. On the contrary, this approach has a limitation. It
is not complete when the agents are Dependant.

Second, the heuristic is extended by a global distri-
bution which ensures the completeness of the approach
by avoiding the wells and considering the intermediate
local plans offered by other agents when computing
the best local plan.

The remainder of this paper is organised as follow:
Section 2 presents the centralised and decentralised ap-
proaches to compose web services. In Section 3, we
give a motivated example. The formal framework is
developed in Section 4. In Section 5, we explain our
multi-agent approach based on local heuristic which is
extended in Section 6 finally, this paper is concluded
in Section §.

2. Related work

In this section we present some recent works on the
composition of web services in the centralised and de-
centralised planning frameworks.

2.1. Centralised approaches

The work on web service composition presented
in [1] describes web services as 3 abstract processes.
Given n 3 abstract processes, the system will auto-
matically translates each of them into a state transi-
tion system (STS) D = (S, A,I,T) where S is the

set of state, A is the set of actions, I C S is the set
of initial states, and 7" : S x A — 25 is the transi-
tion function. After translating web services, the sys-
tem constructs a parallel product Z” which combines
the n STS; this parallel product allows the n services to
evolve concurrently. From Z”, they generate a plan-
ning domain that is passed as an input to the plan-
ner. The planning problem consists in finding a plan
7 defined by a set of actions allowing to reach a de-
fined goal and satisfying some constraints on the ex-
ecution of the plan. They use the Model Based Plan-
ner MBP [5] based on model checking techniques [4].
The drawback of this approach is the recalculation of
Z” whenever a service is added or removed from the
domain.

In his dissertation [7], Alexander Lazovik defines
the problem of service composition in the same man-
ner used above. However, he adds properties allowing
interaction with the client during the execution phase
based on the principle of interleaving the planning and
the execution phases. His planner is based on con-
straint satisfaction techniques; he motivates his work
by the fact that in a web service scenario, users may
wish to know why certain solutions are preferred over
others.

Because users’ needs and interests are in a con-
stant evolution, a conversation-driven composition of
web services is developed in [31]. It ensures that
the composition of web services efficiently handles
these changes by dynamically allowing to choose
with whom they would like to interact. Web services
would be able to engage conversations, make deci-
sions and adjust their behavior according to the sit-
uations in which they participate. Even though that
work addresses dynamic composition of web services,
it does not consider goal-driven planning capabilities,
but rather focuses on adjusting the composition of
evolving web services through conversations, while
we are more interested here in the way a composi-
tion is built from scratch, starting from the user’s re-
quest.

In [10] a system called GOLOG and based on the
situation calculus is presented. It composes web ser-
vices by applying logical inference techniques on pre-
defined plan template. Given a goal description, the
logic programming language GOLOG is used to in-
stantiate the appropriate plan for composing the ser-
vices described in Prolog. GOLOG is implemented in
Prolog and based on the situation calculus. It supports
the specification and the execution of complex actions
in dynamic systems.



In [18], the authors define a translation from DAML-
S process models to the SHOP2 domains, and from
the DAML-S composition tasks to a SHOP2 planning
problem. SHOP2 is a well-suited planner for working
with the process model in a Hierarchical Task Network
(HTN). HTN planning builds plans through task de-
composition.

Grid techniques are used in [22] to automatically
generate workflows by: reducing the search space, se-
lecting appropriate services to apply and improving
the planner performance and the quality of plans in
a centralised architecture. Two planners were used in
this approach: PRODIGY [23] based on learning tech-
niques and FF [24] which uses heuristics that estimate
the distance to the goal.

In [25] and [19], Freddy Lécué composes the web
services by focusing on the functional level of web
services. Web services composition is then viewed as
a composition of semantic links controlled by causal
laws. The semantic links refer to semantic matchmak-
ing between web services parameters (output and in-
put) in order to model their connection and interac-
tion whereas causal laws are the relationships between
actions, action preconditions and side-effects. Then,
two different approaches are developed. The first is
based on the semantic links matrix which is required
as a starting point to apply problem-solving techniques
such as regression-based search. In the second ap-
proach, in addition to semantic links, causal laws are
also considered to achieve composition. To this end an
augmented and adapted version of the logic program-
ming language Golog is used.

This work has been extended in [32] for automat-
ically composing non-deterministic services. In this
context, extended Golog operates as an offline in-
terpreter that supports n-ary sensing services (i.e.
services conditioned on their possible output pa-
rameters) to achieve conditional composition of ser-
vices.

Finally, in [21], two centralised algorithms based on
tree-search and graphplan are developed to compose
web services. In this approach, a new type of request
defined by an initial and a goal state, is described. It
allows to claim the creation and elimination of objects
in any state.

According to the specification language used to de-
fine the web services, a planning technique is more
preferred to compose web services. The main limita-
tion of all centralised approaches cited above is their
ineffectiveness to scale up well due to the state explo-
sion in the planning search space.

2.2. Decentralised approaches

CASCOM [26] stands for Context-Aware business
application Service Coordination in Mobile comput-
ing environments. Its main objective is to implement,
test and validate an infrastructure for the business ap-
plications based on the semantic web through fixed
and mobile networks. A multi-agent system is used
for the selection, ordering and execution of the ser-
vices.

In [28], Fiorino et al. define a planner agent for
each service. The agent role is to simulate the perfor-
mance of the service. This agent is an autonomous en-
tity which contains a planner and is able to communi-
cate with other agents in order to co-construct a plan
for composing web services. A planner agent is based
on the dialectical theory for plan synthesis. This ap-
proach devises a system based on planning agents in
which the production of a global shared plan is ob-
tained by conjecture/refutation cycles. The dialogue
between agents is a joint investigation process allow-
ing agents to progressively prune objections, solve
conjectures and elaborate solutions step by step until
that goal is reached or no further refinement is possi-
ble.

Yasmine Charif [27] proposes in her PhD thesis a
multi-agent coordination model for dynamic service
choreography. In this coordination model, the services
collaboration capabilities are modeled through intro-
spective agents capable of reasoning on their own ser-
vices, to dynamically take part into a task achieve-
ment and to coordinate with other agents in a way
that overcomes their limitations and covers the user
needs.

To the best of our knowledge, there is no other
multi-agent approach to compose web services. The
main difference between those methods is: in the for-
mer CASCOM architecture, there is only one plan-
ning agent and the other agents are involved in other
tasks (selection, execution and monitoring of services)
to help the planning agent. In the latter approaches,
however, a planning agent is associated with each web
services. Therefore the load is shared among several
agents. In this paper, we define a new methodology
based on graph-based distributed heuristic search, to
automatically compose web services. As opposed to
other decentralised methodologies, it responds to the
implicit web services request as it was introduced in
[21], and it allows much more composition work of-
fline, which improves the scalability of the overall
composition system.



3. Motivating example

Let us consider a set of web services which are in-
tended to deal with files, images and tracks as follows:

1. Web service W S translates file langnages. It has
three services: fr2en translates files from french
to english, en2ar translates files from english to
arabic and en2fr translates files from english to
french.

2. Web service WS, transforms text file formats.
It has two services: latez2doc transforms files
from latex (o doc format and doc2pdf transforms
files from doc to pdf format.

3. Web service W53 merges files. It has two ser-
vices: mergePdf merges two pdf files into a
third one and mergedoc merges two doc files
into a third one.

4. Web service W S wransforms image file formats.
It has two services: prg27if transforms an im-
age from png to jif format and jpeg2png trans-
forms an image from jpeg to png format.

5. Web service W Sy transforms the type of a track.
It has two services: wav2mp3 transforms a track
from wav to mp3 format and rm2mp3 trans-
forms a track from rm to mp3 format.

As an example, let us suppose that we have two files:
the first is in doc format written in English, the second
is in latex format written in French and we want 10
obtain a file which contains the content of the two files
translated to Arabic.

4. Formal framework

Our formal framework is based on extended Plann-
ing-Graph techniques (16] allowing the creation and
elimination of objects when executing services (ac-
tions).

Contrary to classical approaches where a state is de-
fined as a set of predicates, a state in our domain is de-
fined by a set of objects, properties and relations be-
tween these objects. The definition of actions is also
extended to allow the generation and elimination of ob-
jects in the environment, the assignment of new predi-
cates to objects and the definition of new relations be-
tween them.

4.1. Basic idea of the multi-agent approach

The web services composition domain is defined by
a set of web services: (WSy,...,WS,). A planning

agent A, is associated with eachW S;respresented by a
graph of services. A Central Agent A, plays the role of
an interface between a client request R = (init, goal)
and the composition system, and manages a portion
of the coordination between the web services agents.
When a client sends to the system a request R, the cen-
tral agent A, broadcasts R 1o all the agents A,.

Each agent computes its best local plan to reach
goal from init. The central agent sorts all partial plans
based on their heuristics then merges them in order to
obtain a global plan I1,. ITy is applied on init to obtain
inity. Then, it builds a new request By = (inity, goal)
and broadcasts it to all agents. The steps cited above
are called a planning phase. Planning phases are re-
peated within a forward search strategy (see Fig. 1)
until reaching a phase in which init; equals goal
and a solution is found, or distance(init,, goal) >
distance(init,_y, goal) which is the failure case and
no solution is found. In the next section, our formal
framework is defined. It uses a part of the definition of
the composition problem defined in (21] and extends it
to distributed settings.

4.2. Preliminaries and definitions

The domain D = (C, P) is defined by a set of web
services C = (WS, WS,,...,WS,) that we call
a community of web services, and a set of predicate
types P = {pi,pa,...,pn} 10 specify the possible
properties of objects and relations between them.

In the motivating example (Section 3), the commu-
nity of web services is defined by C= (WS, W.S,,
WSy, WSy, WSs) and the set of predicate types is de-
fined by P = {(en F),(merge F1 F2 F), (jpeg I),
(mp3 T),...} where F, I and T are respectively a
file, an image. and a track. The predicate (en F) is
a property of F' which means that F is in English,
(merge F1 F2 F) is a relation which means that F is
amerge of F'1and F2, etc.

Definition 1. A state ¢ = (O, P) of the plan execution
is defined by a set of objects O and their types, and a
set of predicates P specifying the properties of these
objects and the relationship between them.

In Section 3, the initial state is specified as: snit =
{(F1 : file),(F2 : [file)},{(doc F1),(en F1),
(latex F2),(fr F2)}|, where F1, F2 are objects
(files) and file is a type and doc, en, latex, and fr are
properties.
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Definition 2. A web service W S is defined by W.S =
(T, I, S) such that: T is the type of service, [ is the set
of web service attributes, S = (sy,...,8.,) is the set
of services available within W S.

In the example, WS, = (translation, JP =
127.127.0.41°,( fr2en, en2er, en2 fr)).

Definition 3. A service s in a web service WG is
defined by s = (Pin, Pout, Pinout, Prec, Effect)
where:

- Pin = {pin;,...} are input objects of s;

— Pout = {pout, ...} are output objects of s;

— Pinout = {pinout,,...} are input-output ob-
jects of s;

— Prec is the set of conditions to be satisfied by
objects of Pin;

- Effect is the set of explicit execution effects of the
service in the current state of the domain.

We notice that we actually have two kinds of ef-
fects for the execution of a service; implicit and ex-
plicit ones. The implicit effects, namely eliminate all
the input variables in Pin and create new variables for
each output parameter in Pout'. The explicit effects
consist of deleting the predicates of Prec and adding
the predicates of Effect.

In the example mergePdf of W S3, the service is de-
fined as follows:

- Pin = {(F1: file),(F2: file)}.

- Pout = {(#F : file)}.

- Pinout = {}.

- Prec = {(pdf F1),(pdf F2)}.

— Effect = {(pdf #F),(merge F1 F2 #F)}.

"The execution of 2 service leads to the reservation of its inout
objects Pinout, but with the possibility (o change their predicales
and (heir relations.

There is a difference between the STRIPS [30] rep-
resentation of the action and our representation of the
service. In fact, STRIPS representation distinguishes
between the preconditions Prec and the deleted Del
predicates. After an action execution, only the set of
predicates in Del are deleted from the world state. This
is due to the fact that the STRIPS representation is gen-
erally used in physical domains, and not all the pre-
conditions must be deleted after an action execution.
For example, in robotics domains, to put an object on a
table, the robot must be next 1o the table and still next
1o the table after putting the objects.

In our model, since we model web services which
deal with objects 1o change their properties or the re-
lations between them, we simplify our representation
of service. So we don't define the set of deleted pred-
icates Del and we suppose that all the preconditions
are deleted when executing a service. Our model can
be casily extended to a STRIPS model. For example,
10 represent that a precondition predicates must not be
selected as effect of an action execution, one must sim-
ply add this predicate 1o the effect set as in the example
of the en2 fr service represented in Section 5.6.

An agent graph of services G is defined for each web
service.

Definition 4. A graph of services G = (S, E) consists
of a set of services S and a set of edges E to link an
output parameter (or input-output) of one service s, to
an input (or input-output) parameter of another service
sj- An edge has a direction represented by an arrow
link, from the output of a service to the input of another
service.

An edge ¢;7™ connecting two services g; and 3, is
defined between an output parameter out}” of s; and

an input parameter in} of s; if and only if:

- type(out") = type(in}).
- prec(in}) C effect(out]™).
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The graph of services of WS, in Section 3 is
sketched in Fig. 2.
The fr2en service is defined as follows:

Pin = {}.

Pout = {}.

Pinout = {(F1: file)}.
Prec = {(fr F1)}.
Effect = {(en F1)}.

en2ar can be defined in the same way.

An edge is defined between the output parameter
out of fr2en and the input parameter in of en2ar,
because:

— typesracn(OUt) = typEenoar(in) = File,
= precenaar(out) C effect ja.,(in) = (en).

The edge can be viewed as a link to represent a link
of type ‘producer/consumer’. fr2en produces an en-
glish file which is consumed by en2ar.

Definition 5. A plan is defined by a sequence of sets
of services. More formally IT = {my, 7, ....m,) isa
plan such that Vi € [1...n),m, = (s!,...,s") isa
set of independent services, and each s, s instantiated

with real objects in the domain.

The execution of the plan II = (), ma,...,7,)
consists of executing in order the set of services n,,7 €
[1...7n]. However, there are no order constraints re-
lated to the execution of services in ; since we can
execute them in any order, even in parallel.

One plan solution for the problem introduced in Sec-
tion 3 is Tl = {m;,mq, 73, 74, T5) Where:

- 7 = (en2ar|F1), fr2en|F2])

- 7wy = (doc2pdf [ F1), en2ar[F2));

- w3 = (latez2doc|F2));

- g = (doc2pdf | F2));

- 75 = ([F#0file] = mergePdf[F1, F2)).

Definition 6. A service s is execurable in a state g if
and only if:

— For every object 0 € { Py, U Pinout } there exists
a variable in the current state ¢ which is of the
same (ype as 0.

— The set of preconditions on input and inout ob-
jects are all satisfied.

In  Section 3, doc2pdf(F1l]|, en2ar[F1|,
latex2doc|F2|, en2fr[F1)], and fr2en[F1] are exe-
cutable services in the 1nit state.

After the execution of a service, the state of the
world changes. New variables are generated (the out-
put parameters of the executed service), and new pred-
icates are applied 10 the set of the generated variables.
Further updates will be made for all objects of P,,0u¢
based on the effects of the service.

Definition 7. A request R = (inii, goal) is defined
by the initia) state #nit and the goal state goal.

In the previous example, it = [{(F1 : file),
(F2: file)}, {(doc F1),(en F1),(lat F2),(fr F2)}]
and goal = [{(#F0 : file)}, {(pdf #F0), (ar F1),
(ar F2),(merge F1 F2 #F0)}].

The objects of which identifiers start by # consist of
generated objects. The aim of using the symbol # be-
fore the name of the object is to state that it is a gener-
ated object (in the output set of the executed service),
and any other object having the same type beginning
with # can replace it in the domain. We can hence dis-
tinguish such generated objects from the initial objects
which are defined in the initial state of the request (they
do not start with the # symbol).

Definition 8. Let g = (01f Pl) and g2 = (Og, PQ)
be two states, g1 = ¢ if and only if:

- Oy = O, apart from renaming generating ob-
Jjects;

— P, = P, after satisfying the first condition, and
using the same renaming in the set of predicates.

Let:

- q1 = [{(#F0: file), (F1: file)},
{(en #F0), (ar F1)}];

= g2 = [{(#F : file),(F1: [ile)},
{(en #F), (ar F1))|;

- g3 = [{(#F0: file), (F : file)},
{(en #F0),(ar F))

be three states. we have ¢; = g, but ¢; # g3 nor ¢z #
q;5-

In fact, g1 = g5 because the generated object #F0
can replace # F because they have the same type, but
F cannot replace F'1 because they are not generated
objects.



Definition 9. The distance between two states q; =
(0y, Py) and ¢2 = (O3, P,) is defined as follows:
distance(qi,q2)= (|Or] + [O2] — 2% |01 NOy|) +
(JPil + |P2] — 2« |P) N Py]) when neither O, nor
O, contain generated objects. If at least one contains
generated objects then disrance(qy, ¢2) equals the min-
imum of the distances between all possible renaming
objects.

Example Letus remind the sn2t and the goal states of
our motivated example 3 which are defined as follows:

—init = [{(F1 : file),(F2 : file)}, {(doc F1),
(en F1),(lat F2),(fr F2)}];

- goal = [{{#FO0 : file)},{(pdf#F0). (ar F1),
(ar F2),(merge F1 F2 #F0)}].

So, diwstance(init,goal) = (24+1—2%0)+ (4 +4 —
2x0) = 11.

Definition 10. The heuristic function of a partia)
plan h(x), applied in a state g for a request R =
(init, goal) is equal to distance(q’, goal), where ¢ =
7[g| is the state resulting from the application of the
partial plan 7 in q.

Example In the motivating example, the heuristic of
m = {({en2ar[F1], fr2en|F2]}, {en2ar|F2]}) is
h(m\) = distance(n[init], goal) = (2+1 -2 x0) +
(4+4—2%2) =7, where:

- minit] = inity = {(F1: file),(F2: file)},
{(doc F1),(ar F1),(lat F2),(ar F2)}:
—nit = [{(F1: file),(F2: file)},
{(doc F1),(en F1),(lat F2),(fr F2)});
- goal = [{(#F0: file)},
{(pdf #F0), (ar F1), (ar F2),
(merge F1 F2 4 FO0)}].

So, distance(init,goal) = (2 +1 —2%0) + (4 +
4—2x%0) = 11.

5. Multi-agent approach using local heuristic

In this section, we explain our multi-agent approach
based on local heuristic. First, we explain how io ex-
tract the best local plan from an agent graph (Sec-
tion 5.1); second, how two agents collaborate by merg-
ing their best plans (Section 5.2). Then, different
strategies for multi-agent coordination are presented
{Section 5.3) and finally we discuss the empirical re-
sults.

5.1. Plan extraction

First of all, cach agent computes off line the graph of
services GS = (S, E) which defines links between its
services. Then, based on the local heuristic, the agent
extract all reachable executable services from G in a
given state inst. Finally it computes the best local plan
based on the distance to the goal.

We give here the basic idea of the algorithm to ex-
rract the sub-graph of all reachable executable ser-
vices: first, a new colouring service is created s.. This
service will actas a catalyst to helping colouring all the
reachable services from init. This service is defined
by its output parameters, which are the objects of the
init state, and its effects, which are the predicates of
the ¢nil state.

Then, s. is coloured and all its possible links with
services are created. This colour is broadcasted to all
services, for each neighbor service s non-coloured, ¢ is
coloured under the condition that all edges incoming to
it leave a coloured service. This operation is repeated
until no service is colorable. Finally, s. is deleted. The
subgraph GS, defined by the set of coloured services
S, and edges between them E, is extracted.

Example 1. Let ustake a WS defined by six services
illustrated in Fig, 3: Suppose that:

- init = ({(F1: file),(F2: file)},
{(doc F1), (pdf F2)));

— goal = {(#FQ: file)},
{(doc #F), (merge F1 F2 #F0)}.

The executable subgraph is illustrated in Fig. 4. It is
obtained from the graph in Fig. 3 by adding as the first
step the colouring service s.. Services pdf2doc and
doc2pdf are coloured because they have incoming arcs
from s.. Similarly. the service merge Pdf is coloured
because its two incoming arcs leave coloured services
(8¢, doc2pdf). Services txt2lat, lat2pdf and lat2eps
are not coloured because they are non-executable and
unreachable from inst.

5.1.1. Instantiation graph of executable sub-graph
The instantiation graph of services G I represents all
the possible executable plans of the sub-graph of ex-
ecutable services GS, = (8., E.) corresponding to a
request R = (init, goal). This graph is represented by
a node-based tree as illustrated in Fig. 5. Each node
represents a reachable state from znit and each arrow
represents an executable service, which, when it is ex-
ecuted on its left node, gives the right node as a result.
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Eacb path in the graph starting with the init state is a
tocal agent plan.

The Algorithm | shows how to develop the instanti-
ation graph from an executable graph G'S,. This graph
is developed in a breadth-first search strategy. In line 2,
S; is initialised by all executable services on 4nii. The
vector V' is initiatised in line 3 by applying the ser-
vices of S; on inil (States are inserted in order in the
taid). Then, each non-developed state is developed until
reaching the goal or all the nodes are developed (while
toop in line 4).

For each iteration, state ¢ is removed (line 5) from
the head of the set of non developeg states V. g is de-
veloped by applying all the successor services S’ (loop
Jforeachin line 8) of its predecessor service (s in line 6).
In line (0. only the non-duplicated states in the path
from »nif to ¢ awe added.

Example 2. Figure 5 illustrites the instantiated graph
of the sub-~graph of executable services illusirated in
Fig. 4 develaped for the request A of Example [,

The execution of the Algorithm 1 is given below:
in the initial state. services doc2pdf and pdf2doc are
executed on the init state (Jine 3), s0 V' = [¢1,¢2]. At
line 5, the state gl is removed from V to be developed.
Its predecessor service is doc2pdf. The successor ser-
vices of doc2pdf in Fig. 5 are {pdf2doc, merygePdf}.

There are two ways to execute pdf2doc on gl
(tine 9) which are: pdf2doc|F1], pdf2doc{F2).
pdf 2doc[F1] returns a state equal to #12it, so it is not
added 1o V (line 10). pdf 2doc[F1) retums the state g5

Algorithm 1: Instaniated graph of executable sub-
graph
1 Graph_instantiation(GS.. init, goal)
2 S, = erccutable(S, . init)
3V = eapand(S;.inil)
4 while (—stop) && (17 # §) do
5 ¢ = Viremove()
6 s = predessor(q)
7 8§ = successor(s)
8 foreach s’ € 5’ do

\; 9Q= f‘l?[lul‘ll’l('ﬁ’.q)

10 V.add(Q)
11 if goal € Q then stop = lrue

which 35 added to V. The same iteration is repeated
until reaching the goal stare 46.

5.1.2. Best pariial plun extraction

The basic idea to extract the best local plan is to
compule the distance between each state g; in the in-
stantiation graph and the goal. This set is then sorted
10 obtain the set of states {y,. . ... Gn)-Letpy.....py
the set of associated partial paths to reach respec-
tively ¢1,. .., ¢,. Hence the best partial plan is equal
10 © = merge(py, merge(pa. . ..merge(p,_1,7,))).

The use of the rnerge operation locally allows v
extract not only the best local path to reach the goal,
but the set of all possible local paths which can be ex-
ecuted concurrently.
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In Fig. 5, distance(q7, goal) = 0. So the best par-
tial plan is: (doc2pdf(F1], #f = merge Pdf|F1, F2),
pdf2doc[#F1]).

5.2. Plan merging operation

Collaboration between two agents 4; and A, is
achieved by merging the best plan T} = (x{,..., 7%
of A; with the best plan Tl = (r,. .., 75 of A 10

obtain a third plan IT which is defined as follows:

— Plans are comnpletely mergeable if and only if:
prec(Il;) N pree(llz) = 0 and objets([1ly) N
objets(Ily) = 0 where prec([l)), prec(lly)
are respectively the union of all pre-conditions
for all services of I1;, [1» and objects(Ily),
objects(I1,) are respectively the union of all in-
put objects for all services of [Ty, TI,. In this case,

* I1 = merge(lly,Ily) = (r1,...,7)

where { = maz(in,n),

m and n are respectively the size of [T, and Il,.
* 1, =w! Un?ifi < min(m,n).
¥ mp=n,ifm>nandm =72ifn>m.

Example: let [T, = (latea2doc| F'1], doc2pdf [F1)),
and Tly=(fr2en|F2|, en2ar(F2]), then the mer-
ged plan of TTy and II5 is IT= ({latex2doc(F1],
fr2en|F2)}, {doc2pdf [F1),en2ar(F2]}).

— Plans are partially mergeable if and only if:
prec(Il;) N pree(llz) = 0 and objets([1ly) N
objets(Tla) # 0.

Note: we assume that I1; has a better heuristic
cost than IT,.

This is the case when a plan contains fr2en[F']]
and doc2pdf[F1]. The preconditions of execution
are therefore different, but since each service re-
serves objects during its execution, the two plans
cannot run in parallel. They can run sequentially
instead. In this case, we will insert the partial plan
of I, between two partial plans of II,.

The merged plan IT is defined iteratively as fol-
lows:

Initialisation 1 = 11, for + = 1...m, if
objects(r!) N objects(r2) = B then 7; = 7} U 2.
else 7, is inserted in I between ; and 7;4 1.

— Un-mergeable plans if the plans are neither com-
pletely mergeable nor partially mergeable, then
they cannot be merged and I1 = TI, (best of the
two conflicting plans).

5.3. Mulii-agent coordination

There are multiple strategies to coordinate the web
services agents. In this section, we propose three kinds
of coordination: forward, backward and mixed strate-
gies.

5.3.1. Forward coordination strategy

When a client requests the system with R, the cen-
tral agent A, broadcasts R 1o all the agents 4; (the left
side of Fig. 6). Then the agents will compute the best
local plan which, when applied on in:t, will reach the
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state the closest to goal (perhaps A, doesn’t have any
applicable plan ang the best plan is @).

Then, each agent sends its best local plan to the
central agent A.. When A, receives the responses
from all agents, it sorts the plans by descending or-
der (my,...,m,). Then it merges plans, one by one,
to obtain a global plan, [1, is computed repeatedly
by merging the partia) plans in order. So, II; =
merge(m, merge(ns, .. .merge(Tn_1, Tn)))-

After that, A, applies the merged plan [T, on the ini-
tial state init, it obtains a new state inity = II, [inzt).
Then by using inity, A, builds a new request which is
defined by the new state init; and the goal state goal:
hence R, = (inity, goal).

That process, called a planning phase, is then re-
peated: A, distributes the request R, to all agents and
so on until an agent (central or WS agent) reaches
the goal state init, = goal and a solution is found,
or distance(init,, goal) > distance(init;_,, goal)
which is the failure case and no solution is found.

5.3.2. Backward coordination strategy

We can use a similar sequence of planning phases,
but using a backward strategy (right side of Fig. 6) in-
stead of a forward strategy. The idea is to start from the
goal and apply inverse services to produce subgoals,
stopping if we produce 2 set of subgoals satisfied in the
initial state.

An inverse service s~! is defined for each service
s. Effects of s become preconditions of s~!, and the
preconditions of s become the effects of s~!. Input
parameters become output parameters, and output pa-
rameters become input parameters.

Now, instead of each agent seeking the best local
plan from the initial state to the goal state using its
services, agents try to find a plan from the goal state
to the initial state, using the inverse services. When a
plan Il = (x|, m2,...,7,) is found from the goal o

the init state, then the valid plan is its inverse which is
equalto 17! = (xp, ..., m2, 7).

5.3.3. Mixed coordination strategy

Finally, forward and backward strategies can be
applied together (Fig. 6). In this case, a planning
phase consists in applying a forward strategy - for
one time — on the initial state to obtain inity, and
in applying a backward strategy — for one time —
on the goal state 1o obtain goal,. After that, we ob-
1ain two new states insty and goal;, we define a new
request Ry = (inity,goaly). This request is then
distributed to all agents until reaching two phases
where (init, = goal,) and a solution is found, or
distance(init,, goal,) > distance(init,—(, goal;— )
which is the failure case and no solution is found.

Example of mixed strategy

Now we detail the behavior of the three agents
Ay, Ay, Az associated with the web services given in
Section 3 and the behavior of the central agent. Each
web services agent constructs links between its differ-
ent services to construct the graph of services given in
Fig. 7. The central agent A, distributes the client re-
quest R = (init, goal) to all the agents, where:

— init = [{(F1: file),(F2 : file)},{(doc F1),
(en F1), (lat F2), (fr F2)});

- goal = [{(#F0 : file)}, {(pdf #F0), (ar F1),
(ar F2),(merge F1 F2 #F0)}].

First iteration

Forward-strategy These are the responses of each
agent when receiving the request R by applying ser-
vices from wn2t 10 goal:

— A\ : the best partial plan is m; = ({en2ar[F1)],
fr2en[F2]}, {en2ar[F2]}). Its heuristic value
using Definition 10 is A(my) = 7.
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— Aj: there is no executable plan, therefore o =
(. Its heuristic value is h(m2) = 11 which is the
distance between init and goal.

— Aj: the best pantial plan is 73 = ({doc2pdf|F1],
lat2doc[F2)}, {doc2pdf[F2)}). lts heuristic is
/z(7r3) =17.

Since both agents offer services with the same
heuristic value, the list of partial plans is sorted as
IT = (71, 73, m3). Thus, A, computes I, = merge(m,
m3,m2)* which is equal o II, = ({en2ar|F1],
f12en[F2]}, {doc2pdf [F1), lat2doc|F2)},
{en2ar[F2])}, {doc2pdf (F2]}).

Then, A, computes [1)(4nit) and gets init; =
[{(F1 : file), (F2 : file)}, {(pdf F1), (ar F1),
(pdf F2),(ar F2)}].

Backward-strategy These are the responses of each
agent when receiving the request R by applying in-
verse services from goal 10 init:

— A, there is no executable plan, so =’y = 0. lts
heuristic is 11.

— As: the best partial plan is 7' =
(mergePdf ~'[#F)) and heuristic(n’s) =
distance(mergePdf ~1|# F)(goal), init) wher
mergePdf ~'[#F)(goal) = {(F1: file),(F2:

The order between partial plans is very imporian(, as it may
changes the results of the merge algorithm.

file)}, {(pdf F1),(ar F1),(pdf F2),(ar F2)}.
So distance(merge Pdf ~1|# F)(goal), init) =
(242-2%2)+ (d+4—2x0)=8.

— Ajs: there are two possible partial plans:

x pl = (doc2pdf " [#F));
x p2=(doc2pdf ' [#F), lat2doc™ " (#F)).

Hence Aj can propose any one of them, e.g. /3 =
(doc2pdf~! [#F)) and heuristic(n's) = 11.

The list of partial plans is sorted by the central agent
as { wh, 7y, T).

Thus, A. computes I’y = merge(r), 4, 7])
which is equal to 7/, because 7} is not mergeable with
mh and 7] = 0.

Then, A, computes IT}(goal) and gets goal, =
[{(F1 : file), (F2 : file)}, {(pdf F1), (ar F1),
(pdf F2), (ar F2)}).

At the end of the first iteration, 1nity = goal,.
So, our system finds the composition solution which
is exiracted by the central agent: the global plan is
I = (1,1} ') where Ty ! = merge Pdf[F1, F2|.
The plan description is given in Fig. 8.

5.4. Complexity
In this section, we compare the cost of using cen-

tralised and decentralised approaches to compose web
services and we show the effectiveness of our decen-



tralised approach to improving the scalability of the
composition process. Our comparison is based on the
complexity of each algorithm and on the number of
messages exchanged among the agents in the decen-
tralised model.

In [21], Tree-search and Graphplan algorithms are
used to find the plan for web service composition.
Graphplan is more effective than treesearch since (21).
The basic idea behind the Tree-search algorithm is to
apply from the initial state all executable services. By
doing this (expanding a state) we obtain a set of new
states. Based on the strategy of Tree-search we select
one of the unexpanded states to expand it. The expan-
sion procedure is repeated until reaching the goal state
and the solution is found or no state can be expanded
which is the failure case. Tree-search complexity is
O(bP), where b is the branching factor of the graph and
p is the depth of the solution, The Graphplan algorithin
performs a procedure close to iterative deepening, dis-
covering a new part of the search space at each itera-
tion.

In contrast, in the decentralised architecture, com-
puting the best partial plan is distributed among the
agents and hence done in parallel, and a great part
of computing is done offline by linking services. The
search space is then also distributed among the agents.
The complexity of a planning phase in the decen-
tralised algorithm is the sum of:

- The complexity of finding the best partial plan by
each agent which is O(m?) where m is the max-
imunt nuniber of services of an agent A4,;

— The sorting operation computed by the central
agent which is O(n * log(n));

— The merging procedure applied to all the pro-
posed partial plans which is O(n).

Let p the number of planning phases to found the
solution, so the coniplexity of the decentralised algo-
rithm is: p x (O(m?) + O(n * log(n) 4+ O(n)). This
complexity is hence polynomial both in the number of
agents and in the number of services per agent, for the
three strategies.

The number of exchanged messages in the decen-
tralised approach is not high. [t equals 2nx(p), where n
is the number of agents and p is the number of interme-
diate states initl, init2, . .. . In fact, for each planning
session, the central agent sends a message containing
the query to each agent and receives as response a mes-
sage containing the partial agent plan, so we have two
messages per agent per planning session. In total, we

have 2n * (p) message per n agents and p planning
sessions.

5.5. Implementation

The first stage in planning is to define a language for
the specification of the planning domain. In our imple-
mentation we use a part of the PDDL [17] language,
which is intended 10 express the physics of a domain
and extend it to fit our model.

In our architecture, we implement the central agent
that contains a socket server to accept the connections
of web services agents participating in our application.
A web services agent is instantiated with the name
of a file containing a set of services and the name of
the web services composition server. Before sending
a message 1o inform the server of its participation, an
agent creates all the links between its services. When
the server receives a request for the agent participation,
it assigns 10 it a new thread (for sending queries and re-
ceiving partial plans). The server contains an interface
10 read the client request defined also in PDDL.

5.5.1. Empirical results

In our experimentation, we define eight web ser-
vice agents. The number of services in each agent is in
[2, 8]. The number of input parameters, output param-
eters, precondition predicates and effect predicates is
in (1, 3.

Agents are defined to deal with text, sound and pic-
ture files or goods. Services may convert sound tracks
{rm to mp3, ...), convert picture formats (jif to jpeg,
...), convert file formats (pdfto doc, .. .), translate text
files (english to french, ...), merge tracks, documents
and pictures files.

We tested our centralised and decentralised algo-
rithms using the same heuristics (Definition 9) for a
multiple set of queries. Results of four representative
requests are given in Table 1. For each problem, we
give respectively the number of objects in the query for
the init and the goal states; the execution time of tree
search (Tr) and of decentralised algorithms by using
forward (Fo), backward (Ba) and mixed (Mi) strate-
gies. In the last column the number of services in the
solution plan are given.

Experiments show that when the query is simple, the
centralised is faster than the decentralised approach,
because of the time needed to communicate between
agents.

In contrast, when the number of objects in the query
becomes high, the composition problem becomes dif-



Table 1

Empirical results

Query |Objects| |Pred| Execution time Plan
Init Goal Init Goal Tr Fo Ba Mi [TT]
Pl 3 3 4 4 0.01 0.16 0.32 0.3 7
P2 3 1 6 6 0.02 0.57 0.66 0.62 7
P3 7 3 12 10 0.69 6.14 4.03 13
P4 14 14 20 20 0.68 3.23 1.48 18

oo solution not found

ficult, and it requires the composition of a dozen ser-
vices. Treesearch did not found any solution even af-
ter 15 minutes of execution (co symbol). But a decen-
tralised algorithm (using any strategy) can find the so-
lution after a few seconds as illustrated in P5 and Pj.

Comparison between strategies shows that forward
is faster than mixed which is faster than backward; the
interpretation is that the cost of executing an inverse
service s is greater than the cost of its normal execu-
tion.

Regression of a service is a bit more expensive
than its normal execution especially when the service
deletes objects. In fact, during the normal execution of
a service creator of objects, any object name not pre-
viously used can be used to describe the created object
(starts with character # ). By cons, when executing an
inverse service, the names of created objects should be
selected among the names of objects of the same type
of the init state.

Those experiments show the ability of our decen-
tralised multi-agent approach to scaling up the applica-
bility of state-of-the-art techniques for automated web
services composition and confirm the theoretic com-
plexity results.

5.5.2. Comparison with the state-of-the-art

To the best of our knowledge, the best recent re-
sults for the composition of web services are in Freddy
Lécué’s PhD thesis [25]. He presents three different
scenarios:

— A Telecommunication scenario which contains
35 services;

— An e-tourism scenario which contains 45 ser-
vices;

— An e-HealthCare scenario which contains 12 ser-
vices.

The maximum number of parameters used to de-
scribe functional input and output parameters of ser-
vices is 3. The number of instances (concepts) used to

define the input (output) parameters of the service goal
is 4. The execution times (ms) of the discovery process
and the hole process for the composition of the three
scenarios are respectively: 0.63; 1.32; 0.39.

First of all, this is a decentralised approach which
composes a small number of web services (50 services
maximum as the author said). This limitation is due
to the growing size of the single Semantic Link Ma-
trix SLM which must be computed for each client re-
quest.

SLM is used to organise the web services according
to a logical dependency among input and output pa-
rameters of different web services. To deal with a large
number of web services, the author assumes that a pro-
cess of discovery has been performed in order to first
retrieve a finite set of web services. Finally this model
cannot deal with dynamic objects.

In contrast, our decentralised multi-agent approach
can deal easily with a large number of web services,
since agents link their services offline regardless of the
client request. When the central agent receives the re-
quest, it broadcasts it to all available agents, that com-
pute their local plans in parallel, which reduce tremen-
dously the time of the composition process. Also, our
multi-agent model can deal with dynamic domains
and services can create and eliminate objects from the
planning domain.

By comparing the empirical results we can see the
effectiveness of our approach. We will call r4 the re-
sults for the problem P, from our approach and T the
results of the Telecom example from [25].

The two problems take nearly the same time to find
the solution (0,68 s in 4 and 0,63 in T") when the
number of services is nearly the same (30 in 4 and 35
in 7T"), but one can notice that our request (14 objects
with 20 predicates in the initial and the goal states) is
much more complex than the request considered in 7T
(3 instances in the initial state and one concept in the
goal). Also, since our model deals with dynamic ob-
jects and extended services, the execution of a service
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by the planner and the comparison between two states
is more complex than in 7.

5.6. Discussion

Although the multi-agent approach based on local
heuristic has proved its efficiency to scale up the state-
of-the-art of (the web services composition techniques,
it is not able to find solutions for all composition prob-
lems. We give here a simple example to demonstrate.

Let us take the two web services agents illustrated
in Fig. 9.

The decentralised algorithm given is complete if the
agents are independent. To illustrate this idea let us see
the execution of the algorithm in a domain of web ser-
vices constituted from two agents: A; and A,. A, con-
tains one service en2 fr to translate a doc file language
from english to french. en2 fr is defined as follows:

- Pin = {}.
— Pout = {}.

— Pinout = {(F1: file)}.
Prec = {(doc F1),(en F1)}.
Effect = {(doc F1),(fr F1)}.

As contains two services: pdf2doc and doc2pdf .

Let the request R = (init, goal) be defined as fol-
low:

— init = ({(F1: file)}, {(pdf F1),(en F1)};

- goal = ({(F1: file)}, {(pdf F1).(fr F1)).

The distance between init and goal is:

distance(init, goal) = 2.

These are (he responses of each agent when receiv-
ing R by applying the forward strategy:

— A, does not have any executable plan so 7] = 0;

— A5 has only one executable plan which is
({pdf2doc[F1]}). When executing it, the newly
reached state is inity = ({(F1: file)}, {{doc F1),
(en  F1)} The distance between inst, and
goal is 4. So distance(initi.goal) = 4 >
distance(init, goal) = 2. In this case, agent As
ignores this plan which takes away from the goal
and 73 = 0.

After this initial planning phase, no agent has pro-
posed a plan for achieving the goal and the system re-
sults in a failed state. Nevertheless, there exists a plan
which is defined by:

{pdf2doc[F 1], en2 fr[F1], doc2pdf [ F1])}.

Hence the algorithm based on local heuristic is not
complete. The examples show that the method discards
states that are further away from the goal than the cur-
rent state. It may be the case, however, that we need
10 move away from the goal in order to reach it as il-
lustrated above. To overcome this incompleteness, we
extend the approach with a global heuristic to ensure
the completeness of the algorithm.

6. Multi-agent approach using global heurisitic

In this section, we extend the previous multi-agent
approach with a global heurisitic to ensure its com-
pleteness. The global heurisnc is based not only on
a local evaluation of the best promised plan to reach
the goal, but also on a globally distributed estimation
which guides the planner of an agent to choose the best
local plan, guaranteeing the completeness and the opti-
mality? of the algorithm. An agent computes the global
heuristic associated with each service s once for each
request, in a backward manner from the goal to the
init state. We will first give some intuition behind the
algorithm that will be sketched in the next sections.

In the next sections, we first give the basic idea of
the global heurisitic (Section 6.1) and the algorithm to
compute it (Section 6.2). Then we explain how to ex-
tract the best local plan from an agent graph based on
the global heuristic (Section 6.3). and the multi-agent
coordination strategy (Section 6.4). Finally, we study
the complexity and the completeness of the approach
based on global heuristic (Section 6.7) and discuss its
empirical results (Section 6.8).

6.1. Basic idea

The global heuristic still consists of estimating the
distance from a local state ¢* of the agent A, to the
goal state goal but now considering the best local plans
of other agents. Hence the distance is computed in a
distributed way.

3The optimality criterion is: minimising the number of services in
the plan.
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Firs(, as before, the agent .4, computes locally the
distance from ¢* (o the closest node to the goal,
distance(q¥,q*"), where ¢*' = m,(gF) (result of ap-
plying the partial plan 7, to the local state g*) and =, is
the best local partial plan. Then, each other agent A,
can compute its local distances distance(ql,. - gL ) be-
tween all pairs of states ¢}, and g5 of all its loca)
states.

A propagation of such local distances from a local
state ¢* 1o neighbor agents is performed (as depicted in
Fig. 10), using dependency links between agents (i.e.
a link appears between a service s of agent A, and
a service s’ of agent A, ., when the preconditions of
an input parameter of &’ are included in the effects of
an output parameter of s) to get a global heuristic mea-
sure (called Distance). This global heuristic measure
is then given by:

Distance(Qf; Ggoal)

= distance(qf,qf/) + Z distance(q’aj,qgj)
o, el

where: ggoq1 1s the goal state, qf,’] qﬁk”‘, i.e. the
final state of agent A, has a direct external link to
the initial state in agent A, , and I denotes the set of
agents indices {1,...,n}.

The best local plan 7 of an agent A, is thus the
one leading 10 a state ¢ such that 7(¢*) = ¢*" and
7 =arg ming 7, (gf)-

6.2. Global heuristic algorithm
The global distributed heuristic of a service s is

based a on distance measure which consists of two cri-
teria which are:

— P: the promised degree to achieve the goal when
using s;

— O: the promised degree 1o obtain the optimal so-
lution when using s.

Initialisation A colour c, (designated by a number)
is assigned 10 each goal predicate gp, € goal in the
request R = (inst, goal). Two vectors V,[s] and Vy|s]
are assigned to each agent service s. Both vectors have
a dimension equal to the number of predicate colours
¢,. The type of vector V,[s] is boolean and indicates
if s is coloured with ¢,*. Vy[s] contains the number of
intermediate services needed to colour s with ¢;.

We first compute for each predicate goal gp; all
the producer services CS* of this predicate (i.c. those
which have the predicate gp, as an effect of their exe-
cution). Then, each service 57 in CS; is coloured with
the colour ¢,. Each coloured service computes its links
with services of other agents in a manner similar to that
defined in Definition 4. This is repeated recursively un-
til no links can be created.

Dissemination of colours After the initialisation,
each colour ¢, is disseminated as follows: for each
service s predecessor of a coloured service s¢, s is
coloured with ¢, if all edges leaving s enter in a ser-
vice coloured with ¢,: then Vy[s] is assigned the value
Vd[sc] + 1.

Computing promised degrees Finally, for each ser-
vice s, the promised degree to achieve the goal by
using s is P(s) = >, V.[s](4), i.e. the number of
predicate goals that are expected to be satisfied. The

4For the sake of readability, we will insiead show V. in the next
example with he index 7 explicitly written in true cells, and “_’
written in fealse cells.



promised degree to reach the optimal solution by us-
ing s is O(s) = >, Vu[s](1), iL.e. the expected num-
ber of services (o execute before reaching the goal. As
it might be easily guessed, the algorithm will aim at
maximising the P and minimising V..

After coniputing promised degrees, each agent
erases the colour of its services and keeps only the de-
grees P(s) and O(s) of each service s.

6.3. Best local plan extraction

The extraction of the best local plan using global
heuristics is as described in Section 5.1 with two ex-
tensions:

- Extending the condition of developing neighbor
services of a service s (Section 5.1.1).
The condition is that all incoming edges leave a
colored service and P(s) > max(P{Pred(s)))
where Pred(s) are all predecessor services of s.

— Extending the criteria used to extract the best par-
tial plan (Section 5.1.2).
When sorting the states based on their heuris-
(ics, if there are (wo states g, g2 having the same
distance (0 goal, then the state having a path that
maximises the promised degree P to reach the
goal is preferred. The shortest path of services be-
tween the initial state and the closest state to the
goal state is computed based on the promised de-
gree of services O(s) rather than the current ac-
tal number of services in the plan. Finally, the
state having the shortest path to inif is preferred.

6.4. Multi-agent coordination

In this section, we explain the coordination strategy
between agents by extending the failure condition of
the distributed algorithm and the merged strategy of
the agents’ plans based on the global heuristic.

In the complete approach, a necessary condition that
a solution plan exists is that the union of colours of ex-
ecutable services in init is equal to the set of all the
goal predicates colours C. Let S,,,,; be the set of all
executable services on init coloured by any goal pred-
icate colour ¢,.

Formally, (¢, . colours(s) = C.

When this condition is verified, the selection of the
best partial plan in a planning phase is made as fol-
lows: each agent A is supposed to record all interme-
diate states init, for each planning session (defined by
a request R = (init, goel)).

Let {g1y.--yqr,---,qi) be the sorted set of all
reachable states in the instantiation graph (Sec-
tion 5.1.1) when receiving init,, and let py, . . ., p,n be
the associated paths to reach the states respectively.

During the planning phases, an agent can receive the
same intermediate states init; for a multiple times. To
avoid deadlock, the agent will not always propose its
best partial plan p1, but a worse plan which helps reach
the goal. To choose from the set of less plans, we use
an indicator & which is equal to the number of times
that A receives ini{, in the planning session. So when
A receive a state init, for the first time, it will propose
its best loca) plan p1. and so on it proposes pj, when re-
ceiving 1nit, for the k-th imes. If & > m, then A does
not have a plan to propose. This idea will be explained
in detail in Example 6.6.

When A, receives agent plans Plans={my,..., T},
it divides it into two sets:

- Plans, Usrcpiansi7/heuristic(n) <
distance(init,, goal)}, those are the plans which
allow to approach the goal;

- Planse = Upepigns {7/ heuristic(m) >
distance(init,, goal)}, those are the plans that
drive away from the goal.

If the set Plans, # O, then A, sorts Plans,
and merge them to obtain a global partial plan II,.
IT, is then applied to init; to obtain a new state
init;1y. If dnit; 1y = gocal then a solution is found.
If Plans, = 0 and the necessary condition that a so-
lution exists is satisfied, this mean that we must tem-
porarily go away from the goal to allow for another
agent 10 reconcile or achieve it later.

For that purpose, A, sorts Plans, in ascending
order to obtain (m,...,m,,...,m) and apply the
first plan 7. Finally. the failure case is expressed by
Plan, = Plan. = 0. This strategy of partial plans
selection avoids the sinks in the graph.

6.5. Example

In this section, we give an example to illustrate
the execution of the planning algorithm based on
global heuristics. Suppose that we have two agents:
A) contains services lat2doc and doc2pdf, Ay con-
1ains two services: mergedoc and mergePdf. Let
R = (init, goal) where:

— it = {(F1 : file),((F2 : file))},
{(lat F1),(doc F2)};

— goal = {(#F : file)}, {(doc #F),
(merge F1 F2 #F)}.
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Fig. 11. Instantiation graph of Aj.

The graph of services is given in Fig. 10. A, dis-
tributed R (0 A, and A,.

Initially, the list of colours [r, v] (red and violet) is
associated with goal predicates which ace (doc #F'),
(merge F1 F2 #F). Each agent colours its services
which produce each goal predicate with associated
colour, so: A; colours lat2doc by (r). Az colours
mergePdf by (v) and mergeDoc by (1, v).

Second, the value (0) is associated with each colour
predicate pg; in Vy which contains the number of in-
termediary services required for colouring s with ¢,.
Then, colours are broadcasted for the pairs of vectors
V. and V; of each service.

For example, (v) is propagated back from mer ge Pdf
to doc2pdf to be coloured by (v) as a result of externa)
links, so the degree Vj; of service associated with the
colour (v) is equal to (1).

Colours (r, v) are propagated from mergedoc back
to lat2doc to be coloured by (7, v).

Regarding the degree Vy(r] of lat2doc; since Vy[r)
was equal (o (0) and with the spread of colour (r) via
mergedoc, the degree Vy[r) becomes (1), the agent
takes the niinimum value to colour his service lat2doc
by (r). Hence Vy|r] = 0.

The necessary condition for the existence of a plan
solution is verified for this problem. In fact, execuiable
services in (he ¢nit state are {lat2doc, doc2pdf}. Its
services are coloured by the goal predicates colours
(r,v). After the verification of this condition, each
agent deletes the colours of its services and keeps only
the degrees P(s) and O(s) of each service s. Finally,
the pair (P, O) (written in the figure close to each ser-
vice box) is computed based on V. and V.

Now, we illustrate the planning phases:

First iteration
The responses of the agents to R are:

— A,: in wnit, lat2doc is executable on F1 and
doc2pdf is executable on F'2;

Hence after the instantiation of the executable
graph, we obtain the graph in Fig. 11. Dur-
ing the instantiation of the graph, it should be
noted that the service doc2pdf successor service
lat2doc is omiued because P(doc2pdf) = 1 <
P(lat2doc) = 2.

By computing the distances between each state of
the instantiation graph and the goal state, we find
that there are two states with the same distance
that is equal to 7. The plan for each state is:

* (doc2pdf|F1]): which reach ¢1. The degree to
reach the goa! through this path is
P(doc2pdf|F1|) = 1;

= (lat2doc[F2]). The degree to reach the goal
through this path is P(lat2doc|F2]) = 2;

In this case, the agent chooses the path that max-
imises P, so 7y = (lat2doc|F2]);
— Aj: no service is executable, so ) = ©.

Because there is one parhal plan executable on tnat,
the global partial plan is [Ty = (laf2doc[F2)).

Then A. computes ITi(inzt) to obtain init, =
({(F1: file),((F2: file))},{(doc F1),(doc F2)};

From init' and goal, A, constructs a new request
Ry = (init, goal), which will be distributed to all
agents and save the parhal plan from 3! to init,.

Second iteration
The response of agents to R; is:

— Aj:the only executable service is doc2pdf , where
the best local plan is
m1 = {doc2pdf|F1|,doc2pdf | F2|};

— A, the only executable service is mergedoc, the
best local plan is mp, = {mergedoc|F1, F2|}
which reaches the goal state.

When receiving both plans, the central agent notices
that the plan 75 has 0 as heuristic value, so [, = n;.
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In this phase, our system found the solution plan
which is extracted by the central agent: the overall plan
is [T = {lat2doc[F2], mergedoc|F1, F2)).

6.6. Example I

Now we recall the example introduced in Sec-
tion 5.6 and show how the decentralised algorithm us-
ing global heuristic can find its solution.

Given the query R = (init, goal) defined by:

- nit = [{(F1: file)}, {(pdf F1),(en F1)}];
- goal = [{(F1: file)}, {(pdf F1),(fr F1)}].

The computation of the global heuristic correspond-
ing to the request is illustrated in Fig. 12.

The necessary condition to find a solwion plan is
verified for this problem. In fact, the service {en2fr}
is executable in ¢nif and is colored by r and v, which
are the colors of the goal predicates.

Since the three services have the same degree P 10
achieve the goal, the extraction of the best partial plan
is computed by using the local heuristic. In contrast,
the merger strategy conducted by the central agent will
be different in this example.

These are the responses of each agent when receiv-
ing the request R by applying services from inat 10
goal:

First iteration
- A/ does not have any executable service in init.
So T = 0;
— As has two executable partial plans:
* w3 = {pdf2doc|F1]}.
By applying this plan, the new reached is

init] = ({(F1: file)}, {(doc F1),(en F1)}).

The distance between init] and goal is 4. So
distance(init], goal) = 4 > distance(init,
goal)=2.

* 73 =0. In this case, the agent does not change
the current state snst. The distance between
init and goal is 2.

In this case, the agent A, sorts the plans in as-
cending order. It obtains (73, 73). Since it is the
first time that 4, receives the intermediate state
init, it sends to the central agent the plan 72.

Since the central agent has receive two empty partial
plans, the result of their merge is an empty plan and the
new request R1 = (init, goal) is broadcasted to the
agents since the necessary condition to find a solution
plan is verified.

The responses of the agents after receiving the re-
quest R1 are:

Second iteration
— A, have one partial plan 7y = 0 executable in
inaé. Since it has already proposed when receiv-
ing the int¢ in the previous phases, it will respond
to the central agent that it does not have any plan
to propose;
— Aj has two partial plans:

x 74 = {pdf2doc[F1)}, with heuristique(n}) =
4;
x 2 = 0.

since A, has received the init state for the second
time, it will respond by the plan having the sec-
ond position in the sorted list of plans (73, 73).
Hence, it sends to the central agent the second
plan 7).

Since the central agent does not receive any par-
tial plan which allow to approach the goal, then
Plan, = 0. In this case, the central agent chooses the
best plan from Plans. which drive away from the
goal. So Ty = =3 = {pdf2doc[F1]}.

Afterward A, computes I1, (init) and obtain init! =
[{(F1 : file)},{(doc F1),(en F1)}|; from inat,
and goal, A. build a new request R' = (inity, goal),
which will be broadcasted to all agents and save the
partial plan form init 1o init;.



Third iteration
The responses of the agents when receiving R are:

— A has (wo plans to propose:

* ] = 0 with (4) as heuristic;
* 72 = ({en2fr|F1]}) with (2) as heuristic.

So 7% which has the minimal heuristic is sent 10
the central agent.
— As has two plans to propose:

* 73 = @ with (4) as heuristic;
« 72 = ({doc2pdf [F1)}) with (2) as heuristic.

So 7% which has the minimal heuristic is sent to
the central agent.

The two plans received by the central agent allow to
approach the goal. Thoses plans are not mergeable. In
fact:

- prec(n}) = {(enF1), (docF1)};
- prec(n?) = {(docF1)}.

So, prec(r}) N prec(n3) = {(docF1)}.

Since the two plans have the same heuristic (2), the
central agent chooses the plan maximising P to reach
the goal which is 72 (P(x?) = 2 and P(n3) = 1).

So, I, = 77 = {en2fr|F1)).

The new intermediate state is

inity = [{(F1: file)}, {(doc F1),(fr F1)}].

Then A, builds a new query Ro = (inita, goal), 1o
be distributed to the agents and saves the partial plan
from init; to init,.

Fourth jteration
The agents responses to Ry are:

— A, has only  to propose;

— A5 has one partial plan that reach the goal. This
plan is . = ({doc2pdf|F1]}). This plan is di-
rectly send to the central agent.

The agent A informs A, that it finds the goal,
so 13 = ({doc2pdf|F1)}). A, extracts the solu-
tion plan (IT', 112, 11%) = (pdf2doc(F1]. en2fr|F1),
doc2pdf | F1))).

6.7. Complexity and completeness
6.7.1. Complexiry

The complexity of the complete algorithm is equal
1o the sum of the complexity of computing the global

heuristic (Section 6.2) and the complexity of the al-
gorithm based on local heuristics (Section 5.4). From
Section 5.4, the latter is polynomial both in the number
of agents n and in the number of services per agent i 5.

Let m, be the number of colours in the goal pred-
icates, and m the maximum number of services per
agent.

The complexity of computing the global heuristics
is equal to the sum of the complexity of*

— Computing the service producer of the goa! pred-
icates which is equal to O(m, * n * m);

— The dissemination of colours which is equal to
Ofm, * n* «+ m?);

— Computing the promised degrees which is equal
to O(2 * n * m.);

This complexity is polynomial, so the complexity of
the complete algorithm is also polynomial.

6.7.2. Completeness

The decentralised algorithm based on global heuris-
tic is complete and optimal. In fact, in the worst case,
each agent proposes a plan to build a single service
which ensures that every state will be visited including
the goal state.

Proof. Let C = (WS,,...,WS,) the community of
web services, 4y, ..., A, the set of associated agents,
R = (init, goal) the request. Qur proof by induction
is:
if Il = <7\'1>

since the problem is resolvable by a single partial
plan, thus inif and goal states are partitionable as
follows: it = {inity,...,init,} and goal =
{goaly, ..., goal,}. where:

- wnit = {inity U -~ Usnit, ) and snsty N -+ N
init, = Q, wnit, C prec(services(A;)).

- goal = {goaly U---Ugoal,} and goaly N--- N
goal,, = @ and goal, C effect(services(4,)).

In this case, when the central agent broadcasts R to
the sct of agents, cach agent A4, will propose a par-
tial plan p! that is the optimal local plan from init;
10 goal,. The local algorithm is complete since it se-
lects its local optimal plan from all the possible lo-
cal plans constructed by using all un-pruned local ser-
vices (pruned services are omitted because the local
plan cannot reach its goal by using them). Also, the lo-
cal plan is optimal because it uses the promised degree
for the services (O(s)) to compute the shortest path
between inif and goal! which is the optimal solution.



Since the preconditions of the partial plans are in-
dependent, the partial plans are completely mergeable

and 7y = merge(r},...,n}) is the solution.

if | 11> 1

Now suppose that our algorithm is able to find all
the partial plans (7, ..., 7,,~1) constructed by m — 1

iteration of the algorithm. We should prove that it is
also able (o find the last partial plan 7,,.

In fact, after executing m — 1 iterations of the algo-
rithm, the plan obtained will be [II,,_, =
(T1y .oy Tm—1). When T1,,_; is applied on init. the
result will be init,, ;. When the central agent broad-
casts the new query R,y = (init,_), goal) each
agent A; computes its optimal local plan p™ based on
the promised degrees (degree to achieve the goal and to
reach the optimal solution) computed initially by using
the global heuristic algorithm explained in Section 6.2.

For (he same reasons explained when the size of
the global plan is 1, the set of plans (x{",... 7")
proposed by the agents are mergeable, so 7,, =
merge(n], ..., m"). Also when the last partial plan
T 1S added to (my,..., Tm—1), the global plan ob-
tained (my,..., Tm_1, Tm) is optimal since the com-
putation of x, takes into account the optimality by us-
ing the promised degree of services to reach the opii-
mal solution.

The algorithm is complete and optimal by induction.

O

6.8. Extending the implementation with the global
heuristic

The architecture developed in Section 5.5 is ex-
tended to implement the complete distributed algo-
rithm. So, each agent joining the community of web
services will create not only the links between its ser-
vices, but also links with the other agents’ services.
When a client submits a request to the system, and
before starting the planning phases, each agent must
compute the promised degrees (see Section 6.2) of all
its services.

Table 2 shows the comparison between the execu-
tion time of decentralised incomplete (I-MA) and de-
centralised complete (C-MA) algorithms. For each re-
quest, we give also the number of objects (|Obj|) and
the number of predicates (|pred|) in the query for the
initial (/n) and the goal (Go) states, and the number of
services in the plan solution (|IT)).

Empirical results show that the time execution is al-
most the same for both decentralised algorithms. Com-

Table 2
Empirical resolts

Query |Obj| |Pred| Excc time (s) Plan

In Go In Go 1-MA C-MA M|
P3 7 312 10 0.69 0.74 13
P4 14 14 20 20 0.68 0.75 18
PS 9 5 18 8 - 0.91 13
P6 14 7 23 4 - Lt 23

plete algorithm takes a few milliseconds more. This is
the time to compute the global heuristics.

In contrast, the experiments of the algorithm based
on globa) heuristic shows its ability to find solutions
when the the algorithm based on local heuristic is not
(P5 and PG). Experiments show also that the dis-
tributed complete algorithm can find the solution for
complex problems in a short time. For example, in
(1.1) second, the algorithm finds the solution for the
problem PG which contains 14 objects in its initial
state and require the composition of 23 services to find
the optimal solution.

7. Usefulness and applicability of the approach in
multiple domains

In order to show the usefulness and applicability of
our distributed approach in domains other than text
processing, we present another example which deals
which deals with travel web services.

Let us consider three web services which are in-
tended to reserve train or plane tickets.

1. Web service WS, is a train service. It has two
services: (T'oulouse — Lyon) and (Lyon —
Paris) to reserve tickets to transport persons
from Toulouse 0 Lyon, and Lyon 1o Paris.
Other services could be considered in this web
services such that (Lyon — Rouen), etc.

2. Web service WS, is a plane service. It has
one service: (Parts — Washington) to re-
serve tickets to transport persons from Paris to
Washington. Other services could be consid-
ered in this web services such that (Paris —
Miami), etc.

3. Web service WS3 is a plane service. It has
three services: (Washington — Chicago),
(Chicago —  San — Francisco) and
(Chicago — Los — Angeles) (o reserve tick-
ets 1o transport persons from Washington to
Chicago, from Chicago to SanFrancisco and
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Fig. 13. Graph of (ravel web services.

from Chicago to LosAngeles. Other services
could be considered in this web services.

As an example, let us suppose that we have a person
who wants (o reserve a ticket to travel from Toulouse
to LosAngeles. In this case the request is defined by
R = (init, goal) where:

- init = ({(Ps : Person), {(Toulouse Ps)}),
— goal = ({{Ps : Person), {(Los—Angeles Ps)}).

The travel service (Toulouse — Lyon) can be de-
fined as follows:

- Pin={}.

— Pout = {}.

- Pinout = {(Ps : Person)}.
- Prec = {(Toulouse Ps)}.
— Effect = {(Lyon Ps)}.

All the other services can be defined in the same
way.

The graph of services is given in Fig. 13. A, dis-
tributes R o A, to A5 and to Aj.

Initially, the colour [b] (blue) is associated with
the only predicate in the goal state which is (los —
angeles Ps). Each agent colowrs its services, which
produce the goal predicate, with blue. Az is the
only agent having service (chicago — losangeles)
which produces (losAngeles Ps), so (chicago —
losAngeles) is coloured by (b) (V. = |b] and V4[b) =
o).

Second, the colour (b) is propagated back from
service: (chicago — losAngeles) to service:
(washington — chicago) to be coloured by (b)
(Vglb) = [1]), and from service: (washington —
chicago) to service: (Paris — washington) as a
result of external links (V4[] = [2]) and so on.

The necessary condition for the existence of a plan
solution is verified for this problem. In fact, the exe-
cutable service in the init state (Toulouse — Lyon)
is coloured by the goal predicate colour (b).

After the verification of this condition, the pair
(P, O) (written in the figure close (o each service box)
is computed based on V, and V.

Now, we illustrate the planning phases:

First iteration
The responses of the agents to R are:

— Aj:ininat, two plans are execuatble:

1. m} = (Toulouse — Lyon|Psl).

2. n? = (Toulouse — Lyon[Ps|, Lyon|Ps| —
Paris[Ps)).

ni[init] = init] = ({(Ps person),

{(Lyon Ps)}) and 73 [init) = init? = ({(Ps :
person), {(Paris Ps)}). Since distance(init|,
goal) = distance(init?, goal) = 2 and P(n}) =
P(x}) = 1; in this case, the agent chooses the
path that minimises O. Since O(n}) = 4 and
O(n?) = 3, the best partial plan is 7, = =7

— As: no service is executable, s0 ™y = Q.

— Ajs: no service is executable, so T3 = Q.

Because there is one partial plan executable on init,
the global partial plan is I, = n? = (Toulouse —
Lyon[Ps], Lyon|Ps] — Paris(Ps|).

Then A, computes Il;(init) to obtain init,
({(Ps : person), {{ Paris Ps)});

From init! and goal, A, constructs a new request
Ry = (inaty, goal), which will be distributed to all
agents and save the parhal plan from inaf to tnut,.

In the second iteration and the third iteration, the
global partial plan are respectively I, = (Paris —
washington[Ps]) and T3 {(washington —



Table 3
Empirical results

Query People number [-MA C-MA ||
P7 | 0.17 0.15 5
P8 3 - 0.33 13
P9 7 0.61 0.53 25

chicago|Ps|, chicago — los —angeles|Ps)). Finally,
the obtained plan is formed by (I1;, [T, [13) leading to
the goal.

7.1. Empricial results

In this section, we give the results of our experimen-
tations in the travel domain. This domain is defined by
a set of travel web services like Section 7. The domain
contains seven web services. Six of them are dedicated
to reserve trains between cities in a country (France,
Spain, Gennany, Greece, Italy and the United King-
dont) The seventh web service is dedicated to reserve
planes between the airports of the six countries. The
number of train services is in |3, 10] per country. The
number of services in the plane web services is 12.
The results of three queries are given in Table 3. For
each query, we give respectively the number of peo-
ple who want (o (ravel between multiple cities, the ex-
ecution time for decentralised incomplete (I-MA) and
decentralised complete (C-MA) algorithms. Those re-
sults show the effectiveness of the approach to find
a solutions in about one second in multiple complex
problems.

More sophisticated scenarios can of course be de-
signed in such a domain, using the full expressiveness
of our model, through preconditions and effects that
will represent the links between services provided by
distinct web services. In fact, almost all kinds of do-
mains that are present today on the web can be ex-
pressed in such a way. For instance, our approach can
be applied in a scenario of a user who wants to buy
a book on intemet (amazon.com for example); in this
scenario, this request will be sent in a context where
a postal web service and a bank web service are com-
posed to respond to the request. Our distributed ap-
proach can also be applied in a scenario where a user
wan(s to rent a movie, in MPEG format; in this sce-
nario, this request will be sent in a context where no
agent providing MPEG videos is available. However,
there is instead a UIF video provider and a2 UIF-MPEG
converter. Such scenario could be addressed by our ap-
proach.

8. Conclusion and future works

In this paper, we proposed a complete algorithm
for the composition of web services which models the
problem as a multi-agent planning problem. In this
new approach, a planner agent is associated with each
web services. Each planning agent builds from its ser-
vices a graph to relate its homogencous services. It
also creates links between its own services and the ser-
vices of all other agents in the planning domain. By
doing so, the response time of the system is decreased,
since a large part of planning computation is made of-
fline and only once for all the requests. Agents col-
laborate by merging their best plans to reach the goal
quickly. The central agent controls the collaboration
among web services agents, and the dissemination of
the requests to the agents. Generaly speaking, our ap-
proach is able to address problem of multi-agent plan-
ning where the planning problem of each agent is rep-
resented as a local graph.

From a modeling point of view, this work gives us
a solid first step to introduce fault occurrences in web
services, and integrate planning with diagnosis of such
faults. Each agent has to monitor the execution of its
plan and infer the current (possibly faulty) state of the
plan execution, which will be used to repair the faults
by re-planning.

Finally, we want to enhance our model through the
notion of resource reservation: once a plan is found,
one nceds before executing it 10 reserve the actual ser-
vices that are needed over the Internet, in order to avoid
conflicts with other plans being concurrently executed
over the community of web services.
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