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ON RANDOM HERMITE SERIES

by

Rafik Imekraz, Didier Robert & Laurent Thomann

Abstract. — We study integrability and continuity properties of random series of Hermite functions.
We get optimal results which are analogues to classical results concerning Fourier series, like the Paley-
Zygmund or the Salem-Zygmund theorems. We also consider the case of series of radial Hermite functions,
which are not so well-behaved. In this context, we prove some L bounds of radial Hermite functions,
which are optimal when p is large.

1. Introduction

In this paper we prove some optimal integrability and regularity results on the convergence of
random Hermite expansions, i.e. on series of eigenfunctions of the harmonic oscillator with random

coeflicients.

Before we enter in the details, let us recall an old result on the 1-D torus T = R/277Z. Let

u(z) = Z cne™ and define the Sobolev space H*(T) by the norm Hu||%{S(T) = Z(l + |n])**|en|*. By
nez nez

the usual Sobolev embeddings, if u € H'/>~Y/P(T) with p > 2 then u € LP(T), but in general u ¢ C(T).
Paley and Zygmund (1930) have improved this result allowing random coefficients.

Theorem 1.1 (Paley-Zygmund). — Let u“(x) = Zan(w)cnemx where (en)nez 1S a sequence of
nez
independent Rademacher random variables. If u € L*(T) then for all 2 < p < +o0, a.s u* € LP(T).
Moreover if for some o > 1, Zlna(l + [n])|en|? < 400 then a.s u* € C(T).
nez
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Many other results concerning random trigonometric series were obtained by Paley and Zygmund,
as it is detailed in the book of J-P. Kahane [9]. The study has been extended to random Fourier series
on Lie groups (see Marcus-Pisier [12]) and to Riemannian compact manifolds for orthonormal basis
of eigenfunctions of the Laplace-Beltrami operator (see Tzvetkov [21] and references therein).

On the torus T¢ = R?/(277Z)?, there is a natural choice of the basis for the expansion, namely
the (e ),cz. In our context (or more generally, if one study expansions on eigenfunctions of the
Laplacian on a compact manifold) it is not clear which basis to choose, and the convergence properties
of the random series u“(z) = Y ¢, Xy (w)e@n(x) might depend on the choice of the basis (¢p)n>0-
For instance, an analogous result to Theorem [[T] has been obtained by Tzvetkov [21], Theorem 5] in
compact manifolds with a condition depending on the L* bound of the ¢,,.

Here we show that by adding a squeezing condition (see condition (LBl below), we can use the
intrinsic estimates of the spectral function, and obtain a convergence condition on the (¢,,) which does
not depend on the choice of the basis of Hermite functions. The idea to take profit of the bounds
of the spectral function and of the Weyl law comes from [18], 3] and has been fruitful in different
contexts (see [16], [I5], [17]), where results have been obtained for a large class of probability laws.
Here we extend this approach by working in a space Z;, (instead of using condition (LH))) and which
also enables to exploit the estimates of the spectral function and which is compatible with the Lévy
contraction principle of random series. We refer to the next paragraph for more details.

Let us now briefly describe our main contribution in this paper:

We first study integrability properties of the random series u“. We then detail the case of series of
radial Hermite functions, for which the situation is different than in the general case.

In a second time, we prove regularity results of the random series. We prove a Salem-Zygmund
theorem which describes the behaviour of partial sums. We are then able to obtain an analogous
result to Theorem [Tl in our context, and we show that the In factor is optimal. Finally, we state in
Theorem 2.7 some more precise regularity results. Notice that due to dispersive effects of the harmonic
oscillator on R?, the randomisation yields better estimates than on the torus.

In Proposition 2.4] we state some LP bounds of radial Hermite functions and which are optimal
at least for p > 2 large enough. Even if the proof is elementary, using the well-known asymptotic
estimates of Laguerre functions, we did not find the result in the literature. Therefore, we have
written down the details, since the estimates we obtain are better than the bounds of general Hermite
functions.

Finally, we point out that the previous results have analogues for random series of eigenfunctions
of the Laplacian on a Riemannian compact manifold or for the Laplacian on R? with a confining
potential. These results can be obtained with the same strategy by using the corresponding bounds
of the spectral function.
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1.1. Functional analysis. —

1.1.1. Some elements on the harmonic oscillator. — We consider the multidimensional harmonic
oscillator H := —A + |2|? on L?(R%) with d > 1. The spectrum of H is d + 2N and we consider the
sequence of eigenvalues (\,)n>0 by counting multiplicities:

d=Xg <A\ <A< A<

Fix any orthonormal basis (¢, )n>0 of normalized eigenfunctions for the harmonic oscillator H such
that Hy, = A\ypp. For j > 1 denote by

I(j)={neN, 2j <\, <2(j+1)}.
Observe that for all j > d/2, I(j) # 0 and that #I(j) ~ Cyqj%" when j — +o0, and therefore
An ~ cgn/?. Though (@, )n>0 is arbitrary, the vector space spanned by {¢,,n € I(5)} is independent
of the choice of the Hilbert basis.
Now, we recall what are the natural Sobolev spaces for H:
Vs >0 Vpel[l,400)U{+ox} W'P(RY) :={ueS'RY, H'?ue PR
Therefore, we define
(1.1) [ullwsemay == [1H2ul| Lo (ra)-
It turns out (see [23, Lemma 2.4]) that a functional characterisation of W*P(R?) for 1 < p < +o0 and
s > 0 is given by
we WPRY & (1= A)2ul oy + (@) *ull 1o gey < +oo.
In the Hilbertian framework, we have
HI(RY) == W2(RY) = {u € H*(RY), (z)%u € L*(RY)}

where H*(R%) = Dom((I — A)/?) is the classical Sobolev space. Thus, up to an equivalence of norm,
one can define

(1.2) HUHHS(Rd) = HHS/QUHL%W) = HUHHS(Rd) + H<9U>SUHL2(RCI)-

Consequently, one can check that #*(R?) is an algebra if s > ¢ and is included in L>(R9).

We will need the L estimate of the spectral function given by Thangavelu/Karadzhov (see [16],
Lemma 3.5]) which reads

2 ~(d
(13) ML 22 gty ety = 502 D> N ()] < €570,
"R ne1()
with v(1) = —1/6 and y(d) = d/2 — 1 for d > 2 and where II; is the spectral projector of H on
the eigenspace associated to the unique eigenvalue which belongs to I(j). It is classical that the
function defined in (I3]) does not depend on the choice of the (¢)n>0. For d = 1, (L3]) comes from

the simplicity of the spectrum of H and the classical estimate of the normalized Hermite functions:
L

loilleom) S 7712
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In the sequel we will also need the notation 5(d) =d — 1 — y(d) as follows

v(d)

ol &

(1.4) d=1
d>2|42-1

i)

o —
[ISUReN ~
N~—

1.1.2. The space Z;(Rd). — Given a Hilbertian basis of Hermite functions (¢, )n>0 and s € R, any
u € H5(R?) can be written in a unique fashion

u= chgpn, Z)\fl|cn|2 < +00.

n>0 n>0

We define the space Z(R?) by the norm

Jully, = 325 ma e
7j>1 €

and we stress that this space depends on the choice of the basis (¢,). It is clear that we have the
strict embeddings

s+d—1(md s (md s (mpd
H (R) C Z5(RY) C H*(RY).
In the works [16], 5], 7], the following assumption on the coefficients of u € H*(R%) was made
(1.5) e < gy D leals VR EIG), izl
ne[ ()

Let us explain why the condition u € Z;(Rd) is more natural. Firstly, observe that if the coefficients
of u € H*(R?) satisfy (L) then u € Z;(Rd). Secondly, consider two functions u,v € H*(R?)

+o0o +00
u = Z CnPn, V= Z’Yncn@na

where (7,,) is a real bounded sequence. The contraction principle for the random series (see Theo-
rem [5.0)) states roughly that if one can prove an almost sure convergence for the random series coming
from u (see below (L9)), then the same is true for v. But it is easy to see that condition (LX) is
not stable by multiplication by bounded sequences whereas u € Z;(Rd) is the most general condition
which is implied by (LI and stable by multiplication by bounded sequences.

Sometimes, we also need the stronger condition

(1.6) < Jexl? <

Vk € I(j), Vj>1.
"EI (4) "EI (4)
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1.2. Probabilistic setting. — Consider a probability space (€2, F,P) and let (X,),>0 be indepen-
dent and identically distributed random variables which are not constant almost surely. All random
variables are real valued. In all the paper (except in the annex[Hl), we will make two different assump-
tions depending on whether we study integrability or regularity results:

(1.7) E[X;]=0 and Vk>1 E[X;[*] < 4oo.

2,2

(1.8) 3o >0, ¥r>0, E[¥]<es””

One checks that (L.8]) implies (7). The usual laws we have in mind fulfill (L8]): the real Gaussian law
Nr(0,1) or the Rademacher law (in that case, we will write X,, = &,,). More generally, any centered
and bounded r.v. satisfies (L8]).

We explain now the way we introduce randomness in Sobolev spaces. Let (¢,)n>0 be such that
350 Ailen]? < +oo. Then we can define a random variable u* by

—+o0

(1.9) u” = ZXn(w)cngon.
n=0

It is clear that we have

E |62 )| = E

+00 +oo
zmcmm] CEXH Y Aol < o0,
n=0

n=0

In other words w + u“ belongs to L2(Q, H*(R?)) and almost surely u* belongs to H*(R?).

2. Main results of the paper

2.1. Integrability results for random Hermite series. — We state here convergence results in
the LP(R?) scale with p € [2,00). The following result (used in a slightly weaker form in [7]) will
play a key role. It is a combination of results of Hoffman-Jorgensen, Maurey-Pisier [13] and the fact
that LP(R?) has finite cotype.

Proposition 2.1. — Letp € [2,+00) and (fn)n>0 be a sequence of LP(RY). Assume that the sequence
(Xn)n>o fulfills (LD), the following statements are equivalent:

(i) the series . e, fn converges almost surely in LP(RY),
(ii) the series S X, fn converges almost surely in LP(RY),
(iii) the function Z | fn|? belongs to L% (RY).
n>0
This proposition is a synthesis of known results on the convergence of random series in Banach
spaces. For the reader’s convenience, we have gathered the elements of the proof in Section [l

Here is our first result involving random Hermite series. Recall the definition (L4)) of v and 5.
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Theorem 2.2. — Letd > 1 and 2 < p < +oo. We assume that the r.v. (X;,)n>0 fulfill (L1) and that

28(d)(3—5
u= Z cnon belongs to Z “ ( >(Rd), i.e. the sequence (cp)n>0 is such that
n>0

(2.1) Z] 5 ma(x)|cn| < +00.
j

Then u® = Z Xpcnpn converges almost surely in LP(RY).
n>0

We will see in the proof that the exponent ~y(d) + M which appears in (2] is such that

| 3 tentart]

nel(j)

26(d)
~'y(d)+ b

Lr/? (]Rd

We refer to [I5] Proposition 2.1] where a result similar to Theorem was given using the condi-

tion (LH).

By considering radial functions as in Ayache-Tzvetkov [2] and in Grivaux [7], we introduce now a
natural example for which the gain of integrability may not hold in all the spaces LP(R?), in this case
condition (LH) does not hold true and we may have u € Z°(R%) and u € HS T4 (RY)\HsHd-1+2(RY).

Let d > 2 and L2 ,(R?) be the subspace of L?(R?) invariant by the action of the rotation group SO(d).
One can prove that there exists a Hilbertian basis (¢,,)n>0 of L2 ;(R?) of eigenfunctions of H. Indeed,
we have Hi, = (4n+ d)i,, each eigenspace has dimension 1 and 1), may be expressed with Laguerre
polynomials (see Section Bl for more details).

Theorem 2.3. — Let d > 2, assume that (X, )n>0 verifies (LT) and that uyqq == Z cntPn belongs to
n>0

N H5(R?). The random series
e>0

rad Z X Cn T;Z)n )

converges almost surely in LP(R?) for any p €]2, %(C)[ and diverges almost surely for any p > —ajc)

where

N
oy (c) :=inf {a>0: an_l|cn|2 =O(N™)}.

n=0
Let us give some examples:
o If d = then by Theorem 22] the series u¥ , (defined in the obvious way) converges a.s.
in LP(R ) for all p < oo.
e If (¢,) is such that anong71|cn|2 < 400, then %(C) = +o00o. Therefore u¥ , converges a.s.

in LP(R%) for all p < oo.
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e Assume that ¢, ~ n™" with x > 1/2, then a,(c¢) = max (% — 2k,0) and then

2
d min (ﬁ
— 4K

,+oo), if /@<%,
ax(c) ~+00, if mz%.

An analogous result to Theorem 23] but with a different numerology, was first obtained in [2} [7]
for the family of the radial eigenfunctions of the Laplacian on the unit disc in R? where the analogue
value of %(c) is called the critical convergence exponent of ¢. We will follow the main lines of [7], the

difference in the proof involves the study of LP(R?) bounds of the radial Hermite functions.

Proposition 2.4. — Let d > 2. Consider the family ({n)n>0 of the L?*-normalized radial Hermite
functions which satisfies Hip, = (4n + d),. Then

(i) Assume that dZTdI <p < +oo. Then

4(

N

)_

B =
NI

é(l_l)_l
epn < H¢n||Lp(Rd) < C’an 27p)73,

(ii) Assume that p = dQle. Then

1 1
[¥nllLegay < Cpn™3 Ine (n).

(iii) Assume that 2 <p < dQle. Then

1 1)

_d
||7;Z)n||Lp(Rd) < Cpn 5G—% )

The proof uses asymptotic estimates of Laguerre functions proved by Erdelyi (such a method has
been used in [4, Lemma 3.1] for d = 2 and is indicated in [20, Chapter 1]).

We do not know if the estimates stated in (iz) and (iii) are optimal or not. To get the lower bound
in (7) we show that there exist &, ¢ > 0 such that for all n > 1 and all |z| < ﬁ, [t (z)| > eni~2, and
the result follows by integrating this estimate.

In the figures below, we represent the estimates of Proposition 24l The dashed lines represent
the bounds of Koch-Tataru [10], Corollary 3.2] obtained for general Hermite functions as defined in
Section [LT We see that in the range 2 < p < % the radial functions enjoy better bounds than in
the general case, but not in the regime % <p < +oo.
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LP estimates of radial Hermite functions: the case d = 2

d/4—1/2]

~1/(2d+6)]

—1/4]

LP estimates of radial Hermite functions: the case d > 3

In the second figure we have set

2d 2(d+3) 2d
2 = —— <pyi= —= < p3i= ——.
SPUE T SPT T ST g
2.2. Continuity results for random Hermite series. — We are concerned with the random

behavior of the partial sums of (L) in the space L= (R?). Let us define for any A > d

(2.2) ug(2) = Y enXn(w)en(2).

An <A
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There is not an equivalent of Proposition 211 for the space L>°(R%) (the reason is that L>(R?) is not
a Banach space with finite cotype, see Annex[d)). Hence, we will use other methods to get probabilistic
results, like the following one which is in the spirit of the Salem-Zygmund inequality (see [9, Theorem,

page 55]).

Theorem 2.5. — Assume that (X,)n>0 is an i.i.d. family of r.v. which satisfies the subnormality
condition (L8]) with a real number o > 0. For any positive integer N > 0, there is C:= C(N,d, o) > 0
such that for any A > 1 one has for any sequence (¢ )n>0

(2.3) H Z Cn Xnon

where y(d) is defined in (L4). Furthermore, if d > 2 holds and if the (X,)n>0 are independant
Gaussians Nr(0,1), then one can find a sequence (cn)n>0 such that we cannot replace the function
A= In(A) with a slower function of order o(In(\)).

1

(@) 2

co Rl < Cln(A E J7 nrg?x leno| > 1 — R
<[>\/2}

In particular the previous result shows that there exists C' > 0 such that almost surely we have

. H 2onnx enXnon L=(RY) 2\1/2
lim sup Z] maX leal?) /7
A—400 ln()\) >0
Furthermore there exists a sequence {c,} and ¢ > 0 such that >, >0]7( ) max nel(j) len]? =1 and
- H 2 zx CnXnion L (R9)
lim inf >
A—+400 ln()\)

It is straightforward that if the coefficients (¢, )n>0 satisfy (LH), then ([23]) implies

(2.4) H Z Cn ngon

An <A

1
< Cln(A Z)\ﬁ(dk ? >1_)\_N’
An <A

Lo (RY)

with £(1) = 1/6 and B(d) = d/2 for d > 2. The Salem-Zygmund inequality in the classical case of
random trigonometric polynomials is similar to (Z4]) but holds for 5(d) = 0. Thus, (24]) shows that
randomness for Hermite series has a much more smoothing effect than for Fourier series. Indeed, this
is a consequence of a better behavior of the spectral function (IL3)) of H in the space L>®(R%).

Let us add that the proof of the classical Salem-Zygmund inequality [9] Theorem 1, page 55]
uses in an essential way that the torus T is compact. In our setting, the non-compactness of R%
is counterbalanced by the localization of (Z2)) in any subset or R? which contains strictly the ball
B(0,4/\) (here we will choose the closed ball B(0,\) which is much bigger than B(0,v/\)).

Our next result gives a sufficient condition to get almost surely continuity as in Theorem [L1
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Theorem 2.6. — Let v(d) be defined by ([L4]), and let (¢n)nen be such that

“+oo
2.5 Ja > 1, 779D (0 j)® max |en]? < +00.
(2. X700 o

Assume that (X,,)n>0 is an i.i.d. family of symmetric r.v. such that (L8) holds. Denote by
ug\} - Z chn(w)QOn-

An <A
Then u — u® in L°(RY) almost surely when X — +oc.
In particular for almost all w € Q, u¥ is a bounded continuous function on R

In the particular case where (¢,),>0 are such that (LH) holds, then the assumption (23] becomes
+oo
Ja>1, Z AP (In X)) en|? < +o0,
n=0

with 5(1) = 1/6 and B(d) = d/2 for d > 2. This shows that for d > 2, u is in a slightly smaller space,
denoted by H~%?T(R?) (with a log correction), than H~%2(R%). In other words, under condition
([LH) almost all series u* in the very irregular distribution space H~%2*(R%) is actually a continuous
function on R<.

It is interesting to notice that if we forget the logarithmic term in in the assumption (Z3]), we find
exactly the assumption (2.I) of Theorem as p tends to infinity although methods of proofs are
different.

The symmetry assumption of the r.v. is only needed for the convergence of the partial sums, but
the continuity result holds without this assumption.

We shall give two different proofs of Theorem one is an application of the Salem-Zygmund
inequality (Theorem [2.5]), and the other relies on an entropy criterion (see Section [A]).

From the Salem-Zygmund inequality we can also get a sufficient condition so that u“(x) satisfies a
global Holder continuity condition. Recall the definition of the modulus of continuity of u : R¢ — C,

my(h) = sup |u(z) —u(y)|, h>0.

|z—y|<h
m,yERd
Theorem 2.7. — Let (cy)n>0 such that there exists C > 0 such that
27+1
2.6 max |, |? < 020 D=mi 2y >,
(2.6) kzzy”e[(k)‘ nl” < J J =

with C >0, veR and 0 < p<1)or (v<—1and p=0). Assume that (X, )n>0 is an i.i.d. family
of r.v. such that (L8) holds. Then we have, almost surely in w,

My (h) = O(h*|1n h|%)

where
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ef=1+vifo<p<l
e =1+vifu=0
e if u =1 then
0=1+v, ifl/>——
0—5 if —1<y<——
u® is a.e differentiable 1f v < —1.

In particular, if (¢,)n>0 is a sequence which satisfies (L5]) and such that there exists C' > 0 such
that
Yoo el <02V >,
n:29<Ap<20+!

then (2.6]) is satisfied.

Remark 2.8. — With a slight modification of the proof of Theorem 7] we can get the following
extension of Theorem If

zy ()" max [enf? < 4o

nel(y

then almost surely in w,
My (h) = O(h*|In h|?)
where

09:%—a+6f0ra116>01f0<,u<1
ef=1—a+cforalle>0if u=0.

3. Notations and plan of the paper. —

Notations. — In this paper c¢,C > 0 denote constants the value of which may change from line to line.
These constants will always be universal, or uniformly bounded with respect to the other parameters.
We write a Sb if a < Cb and a = b if ca <b < Ca, for some ¢,C > 0.

The rest of the paper is organised as follows. In Section [3] we prove the integrability results on the
Hermite series. Section llis devoted to the proof of the regularity results (Theorems 23] and [Z7)).
In Section Bl we review some results we need about the convergence of random series in Banach spaces.
Finally, in Section [6] we give an alternative proof of Theorem

3. Proof of the integrability results

3.1. Proof of Theorem — We see Theorem as a consequence of Proposition 1] and it is
equivalent to check

(3.1) Y lenllonl € L2 (RY).

n>0
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By interpolating the L5 norm and using that I(j) ~ C’-jd_1 we get

| Z onl 5 g < | Z [onl? Z o’ HLDO(Rd < @13 _ s
nel(j

Ll(]Rd)
as a consequence
callon? <22 (s fenl?)|| D0 Jenl?]| 5 gy S D57 mas fenf? < oo
H nzzo U LE (Ray = nel( " Z "ULEmey ™~ Z nel(j)
We get (BI) and hence conclude.
3.2. Proof of Proposition [2.4l — Let us first recall some results concerning the Laguerre poly-

nomials, see [20, Chapter 1] or [19]. For a > —1, the Laguerre polynomial LS?‘) of type a and
degree n > 0 is defined by

-r,.xa « 1 dn —-r,.nTo
(3.2) e rLg)()—n'drn(e ), zeR
We need the following identities (see [19] lines (5.1.1),(5.1.3),(5.1.7) and (5.1.14)]):
Feo Fn+a+1)
(@) @) (pe Trody = —- "2 7
(3.3) /0 Ly (r) Ly (r)e”"rdr Tt 1) Snms
Fn+a+1)
3.4 L0 ~ n®
(3.0 (90) = it
(3.5) Va1, L) = —L0),
r
L dLy” o
(3.6) ) +(a+1-7) = +nL® = 0.

We will need the following lemma

Lemma 3.1. — For any o > —1 there are c,e > 0 such that

2
Yn>1 Vre <0, 6—), |L (r)] > en®.
n

Proof. — As in [19] p. 176], we introduce the function

2
7 nLnOHrll)(r)2 +7r <%L£La+11)(r)>

whose derivative is 2(r — 2 — a) (diL,(1 ))2 thanks to (B.6). Thus, one has
3
vre a4+ 3], L) < LY 0) S vt
By using (3.3)), we have

Vr e [O, a+ g], |L) () — L (0)] < rnotL.

n
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We can conclude by using a new time (3.4]). O

Because of the orthogonality condition (B3], it is usual to introduce the Laguerre functions nor-
malized in L?(0, +00)

| |
(3.7) o) = Y @ (2 vl e

Fn+a+1) 7 Fn+a+1)
Those functions satisfy the following uniform estimates (see [6], [, 14]).

Proposition 3.2. — For any a > —1, there are C = C(«) and v = vy(a) > 0 such that, by denoting
v=4n+ 2a+ 2, one has

C(rv)/? if 0<r<2
C(rv)~1/4 if L<r<¥
<] < S
Cv VAWB 4y —r|)~ V4 if L<pr<
Ce™r if <

Now, denote by 1, the nth L*(R?)-normalized radial Hermite function for d > 2. One can prove

that Hi, = (4n + d)1, holds and that v, is proportional to Lgld/%l)(|x|2)e_|gﬁ|2/2 (see for instance

)

d_
[20], Corollary 3.4.1]). By using the orthogonality of Laguerre functions E&f ! , one easily gets

(3.8 bale) 1= @ L™ (223D = (@)=L LED (jaf)e o2
I'(n+ %l)
with ¢(d) := \/% (see below ([B.9) for p = 2).

Let us estimate the LP(R?) norm of 1, for p > 2 by using Proposition B2 with v ~ n and o = %— 1.
The case p = oo is the easiest, and we get directly that |E,(1a) (r)|r~2 < Cv?%, in other terms

[¥nll oo ey < ni=2. To get the lower bound, it is sufficient to combine Lemma B.J] with (88 and
the equivalent in (37)).

We now consider p € [2,4+00). Then we have

+o0
[l = cldpVol(st) [T 2D ) E Dy
(3.9) 0

= c(d)P—Q /0+°° |£1(1d/271)(T)|pr—(§_1)(g_1)dr.

We begin by the following integrals:

1 1

/ Y@ (e (B3 < pb(3-1) / il < nb-0)-4 Z B (6-5)4
(3.10) o e 0
/ ’ﬁgd/Qfl)(r)’pr_(g_l)(g_l)dr g / e 'Yrr_(g_l)(%_l)dr:(’)(nfoo)
3v 3v

2 2
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To study the integrals over the others intervals given by Proposition 3.2, we have to consider several
subcases.

o lfp> dZTdI holds, one has obviously % — % > 2—1d and the comparison of different exponents of n
will rely on:

—d /1 1 d/1 1 1
3.11 S gl e
(3.11) 2 (2 p><2<2 p> 2

Notice that one also has

(3.12) §+<§—1>(g—1>>2(dd_1)+<dfl—1>d;2:1,

which implies that the following integral is of interest near r = 0:

(3.13) /5 £@/2=0) ()P~ (5-D)(E 1) g <k /E i (B-)GE g <
1 1

The integral over [§, 37”] is bounded by

3v 3v

2120 (- (51D (31 g

o

N
3
[Nk
—
(V]
—~
5
<
+
<
|
= a
el
)
—~
[ V)
A
N—
—~
N|
L
S~—

d_pd 2 dr
< n%+5—%—1/ i
o (Vv+r)1
1,3
d_ pd 1 2¥ dr
< n%+5—%—1yg—%/ i
0 (1+7r)1

2
12
pid_pd_2 /5”3 dr
< n6T27 13 -
~Y
o

d/1 1 1 1 d d 2 d 2 2\ 1 d 1
|z z—-|z+=—"—")|=z—"5—-(d—z|=-—>—-—=z>0.
2\2 p 2 6 2p 4 3p 2 3 3)p 4 2
That brings us to
a0 n%"'%_pzl_d_% < np[%<%7%
2 —(2_1)(2_
(3.14) / 2D GNEdr S8 - dmey <t =BG o
: i A (B Co) BTSN

Thanks to ([3.II), the comparison of exponents in EI0), BI3) and EI4) gives [[Ynllrr@e) S

df1_1)_1
n2\27p)7 2,
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% < Ld and the contrary of (BI1]) and (B.I2)) hold:
d (1 1 —-d /1 1
(3.15) [ Bl
2\2 »p 2 2 \2 »p

(¢

Hence, the integral over [%, g] is of interest for r > 1:

o Ifp< dd holds, one has 2 5=

(3.16) / * @20 =B g < / P8 Dgr <
1

We deal with the integral over [%, 37”] by the same way with the help of ([8.I4]) and by noticing that
p < 2d < 4 holds. Hence we get

3v

L )

N
|
—
SN—
U
3
A
S
[
/
SR
N
~—

(3.17)

o

Once again, we compare the exponents in (B.10), (BI6]) and (B.I7) with the help of (BI5) and we get
_d(i1_1
[l ey 5 E ).
o If p = 2% holds, we follow the previous analysis and we see that |1, |7, <n~ T1n(n).
We have finished the proof of Proposition [Z4]

3.3. Proof of Theorem — We will use Proposition [Z.I] and Proposition [2.4]
We consider p > %(C) and we write

L (G prrr) e 2w [

N b
d
> Csup%(Z\%Pﬂ? 1)2
N>0 N2 —
n=1
> +o0

We consider p < a*d( ) and we write

| 2 teal ], . gy < 3 len 9oy = 32 lnl" ol

n>0 n> n>0

If p belongs to (2, 24], then [%nlp(ray is less than n™¢ for some € > 0 (see Proposition 24]). By

using that cn ¥y belongs to it is clear that the series Cn, n converges.
g that Y cath, belong ﬂO”H *(RY), lear that th > len P llnll 0 gay g
n>0 e>
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If p is greater than d2d1, we use first an Abel summation and then two times the inequality oy (c) <

I

to bound the sum of the series Y- ¢, |* |43, (R) by
2 2 d_1 -4
Cleo* + Y leal®n2tn"» <
n>1

N N
da d d
< Cleof + (Jim N2 3 fenPnt ™) + 30 (lealnd ) INTE - (V1)

— 100
n=1 N>1 n=1

< Cleol* + 0+ Z
N>1

<Z |cn|2n2 ) < +00.

Remark. If we define for any sequence (¢, )n>0

1
N 2
2d
0o 2 ey ol L (Yt 1)

then the previous proof shows that one has

w>0  Clefap <

Z |Cn|27,l)2

n>0

= COlelp

It is not clear if one can find a more precise norm on the sequence (cy),>0 which is equivalent to

H\/ n>0 |Cn|2¢n

convergence in LP Rd) holds if p is the critical convergence exponent CEC).

. Indeed, this is essentially equivalent to decide whether or not the almost sure

4. Proof of the regularity results
4.1. Proof of Theorem — Let us begin by introducing the following notation:
VA>0 Ep(X):=Span{p;, \; <A},
and let us recall the following bound on the spectral function of H (see [16, Lemmas 3.1, 3.2 and 3.5]:

there are constants C, ¢ > 0 such that for any A > 1 and = € R? one has

2
(4.1) YVu € E(N), lu(z)] < OAT exp (—c%) ull 2 (ray,

The first tool we need to prove Theorem is a Bernstein inequality for the harmonic oscillator.
In the Hilbertian framework, it is easy to check that one has

YA>1 VueEu(N) [0pullp2@ay < CVAullp2ga).

We need a version of the previous inequality by replacing the space L?(RY) with L>(R9).
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Lemma 4.1. — For any dimension d > 1, there are s(d) > 0 and C = C(d) > 0 such that the
following inequalities hold

(4.2) VA>T VueEu(N) ||Vl poomay < CND ]l poo gy

Proof. — For any real number s > %l, the Sobolev embedding H*(R%) ¢ L>°(R?) allows us to write
for each £ € {1,2,...,d}:

10 ull poeray < CllOr,ulls ey

< Cllullygs+r(ray
N
< o[ S xm [ @i
A <A
<

CASHVH“HL@(W) fug;\H(ijLl(Rd)'
g >

In view to get a bound of [|¢;|;1(ray we just use the Cauchy-Schwarz inequality:

d+1

L@l = [ @ 0% o @)t

d+1
< Cle) = wj(@)l L2 me)
< Cllegll, a1 g
d+1
< ON°
Thus ([@.2) is proved. O

It is not clear for us if the exponent s(d) can be chosen to be independent of d or if we can find the
optimal value of s(d).

Corollary 4.2. — If X is enough large, there is a constant ¢ > 0 which is independent of A such that
for any u € Eg(N) there is y € B(0,\) for which we have

(i) HUHLOO_(E(O,,\)) = HuHLj(Rd)a
(ii) Ve By, A )N BO,N), |u(z)] > Flul -

(iii) by denoting Vol the volume function, we have

(B(O,\)?

Vol{ (y, A5y N B(0, )\)} > éVol{E(y,c)fs(d))}.

Proof. — By the same argument we used in the proof of LemmadLI] we claim that there is a constant
v > 0, independent of A, such that

(4.3) Yu € EH()\) HUHLQ(Rd) S C)\VHuHLoo(Rd).
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By combining (£1]) and ([@3]), we understand that if A is enough large and if |x| > A holds then we
have

d cA 1

()] < N exp (= D) Jull sy < 2l ey

That proves Point (7). Let us check Point (i7). By a compactness argument, there is y € B(0, \) which
maximizes u on the whole space R%. For any 2 € B(0,\), Lemma E1] gives us

lu(@) — u(y)| < Clz — y|X*D|[u]| o (ga).-

If | —y| < %)\_S(d) holds then |u(z)| > %HUHLOO(Rd).
Point (7ii) is a consequence of a geometric fact. Indeed, it is quite clear that we have
Vol{B(z,R)NB(0,1)} 1

liminf inf = —.

R—0 2eB(0,1) VOI{F(Z, R)} 2

Consequently, if A is enough large then Point (7i7) holds. O

We can prove Theorem 2.5 by following [9, Theorem 1, page 55]. Our preliminaries allow us to deal
with the non-compactness of R%. We define the random maximum

MY = [Juf ()| Lo rey = [[uX (@)l Lge (BO,N)) -

We apply Lemma to the random function u§ € Ex(A). If = belongs to the random set AY :=
B(y~, C)\fs(d)) N B(0,)\) then we have

Thus, it comes for any r» > 0

E[exp(%rﬂffﬂ 51E[V6£Z§5/C

From Point (ii7) of Lemma L2 we get

exp (ruf (x)) + exp (—ruf(x)) dw} .

w
A

E[exp (Ary) } < C)\ds(d)E[/A exp (ruf (x)) + exp (—ruf(x)) dw}

w
A

O \35(d) / E[exp (ruf(z)) + exp (—ruy(z)) } dz.
B(0,\)

IN

By coming back to the definition (L9) of uf, we can use the independence of the random vari-
ables X,;:

E[exp (ru‘j(x))] = H E{exp (rchn(w)gpn(x))}.

An <A
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Now we use (L8] and ([L3) to get

E[exp (ru‘j\’(x))} < exp <C7“2 Z |Cn|2|80n(33)|2>
An <A
< exp <CT2Z [ max |cn | Z |on(z D
(4.4) < exp (Cr? px),
where we have set
Zjv( )JQ?X lenl?.

<A
Obviously, a similar argument gives the same bound for E [exp ( — ru‘;\’(w))] , and we have obtained

E[ex L] < oadstrd gy (0
P(QT A)]— eXP( 2PA),

which is totally equivalent to

S

YL>1 Vr>0 E [exp (g (Mj‘\’ — Crps — gln(C)\ds(deL)))} <

From Markov’s inequality, it comes

P [M;” —Crp3 — 21n(CAdS<d>+dL) > o] <1
T

h

Now we just have to optimize in r by choosing 2 = pig ln(C)\dS(d)+dL). For another constant C' > 0,
A

we have

P [M;\" > Cpxy/In(CNds(d HdL)] %

The conclusion comes with the choice L = AV,

Finally, we have to see that the term In(\) is optimal in ([Z3)) if d > 2 holds, and when the (X,),>0
are independent Gaussians Ng(0,1).

Let us suppose the contrary and consider a function J(A) = o(In(\)) such that Theorem 25 holds
true by replacing In(\) with 9(\).

To see that implies a contradiction, let us recall a result proved in [16 Theorem 1.1] (with the
sequence d; = )\j_%cj and assuming (LG), there are real numbers Cy > 0 and ¢ > 0 such that for any
7> 1 one has

1
Coln Hng(]))\n Cn, n(Pn w2 < H Z(J))\n Cn n(Pn (Rd)] >1- (j_|_2)c.

([T6], Theorem 1.1] is stated for complex Gaussians, but the result also holds for real r.v. (see [I6], Assumption 1]).
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From the definition (I.I]) and Theorem with the function 9 and any chosen positive integer N, we
1 1

have with probability greater than 1 — Gio~ ~ ¥
-4

H Z An tenXnon W%’OO(Rd) = H Z cnXnPn Lo (RY)

nel(j) nel(j)
< H Z CnXn¥n Lo (RY) H Z CnXn¥n Lo (RY)

An<2j An <2542
< C\2)) +192]+2< > o 2|cn|)
An<2j+2

We have now to make use of the condition (LG):

<Z " 2|cn|2> () S <O Y e X = CH 3 A eaXngn

nel(j) nel(j) nel(j) nel(j)

2

%\&

L2(R2)

By combining these arguments, we have with probability greater than 1 — G+2F ~ GroF T GF

% S |Xn|2§019(2j)+19 2j +2) ( S 2|Cn|2>< B 2|6n|2>

#1(5) nel(s) In(j An <242 nel(j)

One can obviously choose the sequence (¢,)n>0 such that (L6]) and the two following properties hold:

_d
u € H_g(Rd), Z Z A len]? < oo,

J>1nel(j)
1
—d H27) + (25 +2)\2
#{sz S Al > < (25) + 925 + )) }=+oo.
A In(j)
nel(j)
Hence, we get for probability greater than 1 — (j+—2)c — W — JLN
1
(4.5) T O Xl <)
I
#10) &,

where liminfe(j) = 0. Since lim #I(j) = 400 holds, the Law of Large Numbers ensures that the
j—+o0 J—r+oo
left side of (A3H]) converges almost surely to IE[|X1|2] > (. Since the almost sure convergence implies

the convergence in probability, we understand that (£5]) cannot hold. That proves that Theorem

is optimal for the function In(\).

4.2. Proof of Theorem [2.6. — We give here an argument which uses the Salem-Zygmund theorem.
In Section [6l we will present an alternative proof relies on an entropy argument.
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4.2.1. Proof of Theorem [Z.8 using the Salem-Zygmund Theorem — For any positive integer K,
we introduce J(K) :={neN, X, € [22° 921 _ 1]} and

up = Z cnXn(w)pn.

neJ(K)
By using Theorem 2.5, we have
22K+1_171 1 .
w K/2 (d) A
Pl lieen 2 02 (3 s )| < s
j=22" -

The Borel-Cantelli lemma ensures that almost surely there is C,, > 0 such that

g2+ 1
2
US| 7 0o < 2K/ (4 max |c 2)
vk lr (Rd) = w | 22; J kel@)| nl
]:22 —1
) 92Kt 1y 1
< C,———— In )57 max |c, |2
- “QK(a—l)/2< A QQZKI (n3)%3 ke[()j()‘ nl
]:

Now by ([Z3]) and by the Cauchy-Schwarz inequality since az > 1 holds we get

D lufll poomay < +oo0  as.
K>1

As a consequence, we have shown that a sub-sequence of the partial sum converges uniformly, a.s.
This implies that u“ is a continuous and bounded function, a.s.

Now if we moreover assume that the (X,,) are symmetric, we can apply [11, Theorem IL.5, p.120]
which yields that

uf = Z chn(W)QOna
An<A

also converges in L>®(R%), a.s. for A — +oo.

4.3. Proof of Theorem [2.7. — The proof will follow the proof of J.-P. Kahane [9, Theorem 2,
p. 66], with the necessary modifications in our context.
Let k > 1 and let us introduce the notations:

Vi = I{2J71, Nj = 2Vj,

u‘é’(m) = Z Can(w)(Pn(x)7 for Jj=1,
An<N1

w(zr) = > e Xn(w)en(@).

N;j<An<Nji1
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Using the triangle inequality and the fundamental calculus theorem we have

M (h) < AIVouglpoomey +2 D0 g e)-

1<j<+00
From Theorem we have for j > 1,
1/2 d 1/2 1
(4.6) P Hu“»JHLoo(Rd) > C(In Njiq)Y < Z ') max len ] > < —5
J nel(l) N+ 1
Nj/2S5<NJ’+1/2 Jj+
The j7 = 0 term satisfies the following
Lemma 4.3. — There exists C > 0 large enough such that
w 1/2 11~(d) 1/2 1
(4.7) P |[[ Vot | o gy = Cn N)Y2( Y £?kw <~
(<N7y/2 1
The lemma will be proved later.
Remark 4.4. — More generally, we can get a similar bound for a(z, D)ug, when a(z,§) is a polyno-
mial in (x,&) € R?. We leave the details to the reader.
Using this lemma we can prove Theorem 271
Let us denote Q;(k) the event in ([46l), Qo(x) the event in [@T) and Q™ (x U Q;(
7>0

Using the definition of N; we have
Pp%mﬂgQP%.
Hence using the Borel-Cantelli lemma we get that

P [lim sup Qoo(/{)] = 0.

K—>—+00
On the other side denote by
4 1/2
Ey = (lnN1)1/2< Z D max e, | )
<Ny /2 nel()

1/2
B = mNg)2 (> 0@ max eal?)
N, /2<0<N;41/2 "
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Using assumption ([2.6]) we have

Ey < (InNy) 1/2(2 Z D max e, )1/2

121 pgtt nel(k)
K—1 2! 1/2
< Cﬁl/z(z 2¢(1+7(d) max |cy| >
= it nel(k)
K—1 1/2
< CHI/2 < Z 25(17“)(21/ ) ,
/=1

and for all j > 1

2 1/2
E; < C(I{2j)1/2< Z Z k(@) nrél%i len| >/
v <U<vjyq k=2¢-1
2¢ 1/2
< C(I{2j)1/2< Z 26(d) max |cy| )
v <U<vjq k=2t~ nel(k
1/2
< C(KQJ')1/2< Z 2—M662u> / |

Vi <E<vjir
e Assume that 0 < u < 1. We easily compute the following estimates
Ey < CR%J”’Z(I*“)“/{ E; < C(,ﬂj)%ntu?—;my’*?
and
ZEj < CZ(,{Qj)%+V2—M52j72 < CK%+V2—H;,L/2‘
Jj=1 j>1

Now taking h = h,, = 27" we have proved that for every w ¢ limsup Q*°(x) and
K—>+00
for every k large enough

Mo (he) < ChY|In(hy)|2 .
Using that my«(h) is non increasing in h we have proved Theorem 2.7 for 0 < p < 1.
e Assume that 4 =0 and v < —1. Then in this case we get
Ey < Cr3tvon/2 E; < CrrHio+i ZE < CrvH,
7>1

and the end of the proof is similar.
e The other cases are proved in the same way (see [9]) excepted the last one (u = 1, v < —1) where
the result is obtain by applying Theorem to the partial derivatives 0, ;u®, 1 < j <d. U

Now we prove the Lemma 431
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Proof of Lemma[{.3 — It is more convenient here to index the Hermite basis by N?. So we have
ug (z) = Z caXa(w)pa(z)
2]al+d<N,

where we have denoted |a| = a1 + -+ + ag. We have Hp, = Aqpa, with A\, = 2|a| 4+ d. Tt is easier to
consider first the tensor basis:

Pa(®) = ba() = bay (21) -+ Doy (Ta)-
Recall that in 1D the Hermite functions satisfy for all ¢ € R

Dut) =27 (V1 (1)~ VA Ty (1))
So we get
ﬁamug (z) = Z VarcaXa(w)ha—e, (z) — Z Var + leaXa(W)harte (2)
2|a\+d§N1 2|a\+d§N1

where {e;}1<j<q is the canonical basis of R?. Applying the Theorem to each term of the sum we
have proved the Lemma for the tensor basis b,,.
For a general orthonormal basis (¢q),ene of Hermite functions, we write

Pa(®) = D taphs()
lal=15]

where {t, g} is a unitary matrix. So we have
V205, ug (z) =
= Z VarcaXa(w) Z ta,805—e) () — Z var + leaXa(w) Z ta,80+e (2)-

2lal+d<Ny 18/=laf 2ol +d<Ny 18=lof

Now we estimate separately the two sums by revisiting the proof of Theorem
It is enough to consider the first one denoted v§(x) where A = N;. We have to estimate:

E[exp(rv&”)} < exp (C’r2 Z a1 cal? Z \ta,ghg,qﬁ).
Aa<A |Bl=le
For A\, € I(j) we have

S atleal] 3 taphs e @] < CO+) max feal?| 3 tashse, @)

Ao €1
Aacl() 1Bl=Tal <) el
a€l(g

:

Using that the matrix {t, g} is unitary we have

S taghpa @] < > ba(2)? < €7

1B]=|a| Aa€I(i—1)
Xa€1(3)

:
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and

E {exp(rvf)] < exp (C’I“2 Z AY(@d)+1 |ca|2>.
Aa<A
This inequality has the same form as ([4.4]), hence we can conclude here as in the proof of Theorem 2.5
]

5. Annex: about random series in Banach spaces

We present here some elements on the theory of random series in Banach spaces. We refer the
reader to the books [8], [5] and [11I] for more elements on this subject.

Let B be a Banach space on the field of real or complex numbers. Let (¢,,)n,>0 be a sequence of
Rademacher i.i.d. random variables and let us define

(5.1) ¥(B) = {(bn)nzo, anbn converges a.s.}

It is clear that ¥(B) is a vector subspace of BY. The following theorem is well-known in the theory
of Banach random series (see for instance [I1), Chapitre 3, IV.2]):

Theorem 5.1. — Let B a Banach space and consider a sequence (byp)n>0 in B. The following facts
are equivalent

(1) the sequence (by)n>0 belongs to X(B),
(ii) the random series Y en(w)by, converges in probability,
(i1i) the random series ) e, (w)by, converges in law,
(iv) there is some p > 1 such that the random series »_ e, (w)b, converges in LP(Q), B),
(v) for any p > 1, the random series > e,(w)b, converges in LP(Q), B).

For instance, if B is a Hilbert space, the previous theorem can be used to see that ¥(B) is nothing
else than ¢2(B) (see also [9 Chapter 3]).

A natural question is to study what happens for the almost sure convergence of ) X,,by, if (X;,)n>0
is i.i.d. with another reference law. A part of this question is solved by the following result proved by
Hoffman-Jorgensen.

Theorem 5.2 (Hoffman-Jorgensen). — Let (X,,)n>0 be a sequence of real, non-constant and i.1.d.
random variables and (by,)n>0 be a sequence which takes values in a general Banach space B, we assume
that the series Y X, (w)by, converges almost surely in B. Then the series y  ep(w)b, converges almost
surely in B, in other words (by)n>0 belongs to X(B).

We emphasize the fact that no integrability assumption is made on the law of X,,. We do not know
any published reference of Theorem and we give below a proof we learned from Hervé Queffélec.
The converse question is not easy and needs assumptions on the geometry of the Banach space B. It
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is worthwhile now to recall Kahane-Khintchine’s inequalities. For any real numbers ¢,p > 1 and any
finite sequence (by,)n>0 in B there is a constant K (p, ) which depends only on p and ¢ such that

(5.2) E[H nz>oanbn q} v < K(p, q)E[HnEOanbn p} "

For the specific case B = R, those inequalities are called Khinthine’s inequalities and we have

IEU 3 cubn

n>0

1/2

57 1/2
| = [z

n>0

We can now define the notion of cotype of a Banach space.

Definition 5.3. — A Banach space B has cotype p > 2 if there are real numbers ¢ > 1 and C;; > 0
such that for any finite sequence (b,),>0 in B one has
q} 1/q

1/p
(5.3) (Z ||bn||p> < CqE[H 3 enbn
n>0 n>0

Thanks to (5.2]), notice that if (53] holds then it holds for any ¢ > 1. For instance, one can prove
that for any p > 1 the Banach space B := LP(R?) has cotype max(2,p). To see this, we can make use
of Kahane-Khintchine’s inequalities for ¢ = p:

/ | Z () a1 ] dt

N p
o
o (3 |fn<t>|2)§dt
n=1

In the case p < 2, by denoting || - [[2/, the obvious norm of RY, we can write

N b
/Rd <n; Ifn(t)|2>2dt = /Rd H(|f1(7f)|p,,..,|fN(t)|p)”2/pdt
| sor....isoma

N
(,; 1l )

2

Y

2/p
p
2

Y

In the case p > 2, we write

N
/Rd@'fn( [ Zlfn )Pt = Z\Ifnlle(Rd

As used in [7] for Gaussian random variables, we have the following astonishing result of Maurey
and Pisier:
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Theorem 5.4 (Maurey-Pisier). — The following assertions are equivalent

(i) the Banach space B has finite cotype (that means that there is p > 2 such that B has cotype p),
(i1) for any sequence (by)n>0 of B, the almost sure convergence of Y e,by implies the almost sure
convergence of Y Gpby, where (Gp)n>0 is a sequence of i.i.d. Ng(0,1) Gaussian random vari-
ables,
(111) for any sequence (bn)n>0 of B the almost sure convergence of > epby, implies the almost sure
convergence of Y Xyb, where (X,,)n>0 is any sequence of real, centered and i.i.d random vari-
ables with finite moments of any order.

Proof. — The equivalence (i) < (i) is done in [13], Corollaire 1.3]. Obviously, (#ii) = (ii) is true by
choosing X,, = G,,. Let us explain arguments which are not explicitly written in [13 Corollaire 1.3].
To see (i) = (ii1), we begin by assuming that the random variables X,, are symmetric. The proof
of [13], Corollaire 1.3, a) = b), page 69] shows that there is a positive constant C' which involves a
moment E[|X1]9] (for some ¢ > 0) such that for any sequence (by,),>0 we have

l l
Vk(>1 E [H 3 Xuba H > cubn 2] .
n=~k n==k

Since the series > ,b, converges almost surely, it converges in L?((2, B) (see Theorem [E.1]), so does
> X,b,. Now assume that X, are merely centered. Clearly, Z,(w,w') = X, (w)— X, («) is symmetric
on the probability space Q x . Therefore, the previous analysis shows that > Z,,(w,w’)b, converges
in L?(Q2 x ', B) and also in L'(Q x €/, B). Now we use that random variables X,, are centered:

H Zg:Xn(w)bn ] .
n==k

That means that > X,,b, converges in L'(Q, B), so converges in probability and almost surely in B
(see [11l Théoreme I1.3]). O

2
<CE

vi>k E,

S]Eww’

H zéj X ()b — X (&)br
n==k

5.1. Proof of Proposition 2.3 — Equivalence of (i) and (i7) comes from Theorem (2] Theo-
rem [5.4] and the fact that LP(R%) has finite cotype. In view to check the link with (i44), it is necessary
and sufficient to study convergence in LP(2, LP(R%)) (see Theorem B.I)). Cauchy criterion leads to
handle terms of the following form:

oo

By Khintchine’s inequalities (5.2)), there exists C), > 1 so that

l
Sinf s [ ]

and we conclude easily.

’ p l ,
3 2n(6) o) AP = | B | en1fate) ]dx.

d p/2
> @) de,
n=k

¢
nz;ﬁan(w)fn(x)‘ dP(w)dz < C, /Rd

1
C% Rd
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5.2. Proof of Theorem — We need the contraction principle (see for instance [11, Théoréme
II1.1] or [9, Chapter 2.6 in the Rademacher framework]) and a few lemmas.

Theorem 5.5 (contraction principle). — Let (X,,)n,>0 be a sequence of symmetric independent
random variables which takes values in a Banach space B. If " X, converges almost surely in B
then, for any bounded real sequence (An)n>0, the series Y A\, X, converges almost surely in B.

Let us recall a classical lemma in the probability theory.

Lemma 5.6. — Let X be a real random variable, the following statements are equivalent:

(i) X is not almost surely constant,
(ii) there is & € R such that |E[exp(i£X)]| < 1 holds,
(iti) the set {¢ € R, |E[exp(i{X)]| = 1} is countable.

Proof. — The implications (iii) = (i7) and (i7) = (i) are obvious. Suppose now (i) and let &y # & €
R\{0} be two numbers such that |E[exp(i§oX)]| = |E[exp(i1X)]| = 1. Since |exp(i{oX)| < 1 holds,
the equality |Efexp(i€oX)]| = 1 ensures there is ag € R such that one has ¢®0% = /%0 for y-almost all
x € R where p is the law of X. Hence, x € % + %—QZ for p-almost all z € R. The same is true by
replacing &y with & and ap with «1. Because X is not constant almost surely, there are at least two
numbers x # y which both belong to % + %—QZ} N {% + E—TZ} We notice that x — y # 0 belongs to

%—SZ N Z—TZ. Finally &y/&; is rational and (iii) is proved. O
Lemma 5.7. — For any sequence of real, non-constant and i.i.d. random variables (Yy)¢>1 we have
lim P[[Yi+---+Yy|>1]] =1
N—+o0

Proof. — Let p be the law of Y7 and ¢ € L'(R) be a function such that @(z) > 1 holds for any
x € (—1,41). It comes

N times
P[Vi+--+Yy<1] = /Rl(_l’l)(x)d",u*--_\-*,u(x)

< [ Badun s ula) = [ o) e

Point (i7i) of Lemma ensures that |7i(£)| < 1 holds for almost all £ in the sense of Lebesgue. We
conclude by the dominated convergence theorem if N tends to infinity. U

Lemma 5.8. — Let G be a locally compact Abelian group, consider a subgroup Go C G which has a
positive Haar measure and is everywhere dense. Then Gq is the whole group G.

Proof. — It is sufficient to prove that Gg is closed. Steinhaus theorem states that Gy — Gog C Gy
contains an open neighbourhood of the origin. By using translations of G, it turns out that Gy is an
open subgroup of G. A classical argument from the theory of topological groups asserts that G is
also closed: we just write G = L;e(Go + g;) where (g;)ier is a family of elements of G and g; = 0 for
one ¢ € I, it appears that the complementary subset of Gg is open. ]
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We can now prove Theorem

Proof of Theorem[2.2 — Step 1. It is well known that we can realize any sequence of independent
real random variables on the probability space [0, 1] endowed with the Lebesgue measure [22] (p. 34
and p.43). For any n > 0, we consider a sequence (ng)gzl of i.i.d. random variables on [0,1] and
such that X, = An,o for any n > 0. The following random variables

Zne: [0,1]N — R
(wo,wi,...) = Zpe(wn)

are i.i.d with the same law than the random variables X,,. The assumption of Theorem ensures
that the series > <o Zno(W)by = > <0 Zn.e(wn)b, converges in B almost surely in w € [0,1]Y. By
combining Lemma and the equations

VE>1 B[exp(i€Zn o1 —i€Zn )| = |Elexp(i€ X1)][,

we see that Z, 201 — Z,, 2, is not constant almost surely. By using Lemma (.7 with the sequence
Yy = Z,,20-1 — Zy, 20, we see that there is an integer N > 1 which depends only on the law of X; such
that

1
3 <P|Zn1—Zna+-+ Znan-1— Zpon| > 1] and is independent of n.
By setting Sy, := Zp1 — Zno+ -+ ZnaonN—1 — Zp2N, We have the three properties:

(i) the series }, - Spbn converges almost surely in B in w € [0, 1N,

(77)  (Sn)n>0 is a sequence of real, non-constant, symmetric and i.i.d. random variables,
(iii) for any n > 0 one has P[|S,| > 1] > 1.
By construction, S, (w) = g;(wn) with 3; = Aml — /Z\n,g + -+ /Z\mgN,l — Z\mgN.

Step 2. On the probability space [0, 1]" x [0, 1], one checks that the sequence (S, (w)e,(w'))n>0 is
i.i.d. and has the same common law than S;. From (i) and (ii), the series Y S, (w)en (w’)b, converges
almost surely in (w,w’) € [0,1]N x [0,1]. Fubini’s theorem ensures that almost surely in w € [0, 1]Y
the sequence (Sy,(w)by,)n>0 belongs to £(B) (see definition (5.1J). Since Sy (w) = Sp(wy), we also have
P(|S,| > 1) =P(|S,| > 1) > 3. Thus, we can consider a Borel subset 4,, C [0,1] such that

P(A,) = % and A, C {wn € [0,1],  [Sn(wn)| = 1]}

Let us define py,(w) := 14, (wn) < |Sy(w)] for each w € [0, 1]N. It is obvious that (p,,),>0 is a sequence
of i.i.d. random variables with the %—Bernoulli law. From the contraction principle (Theorem [B.5]), we
know that almost surely in w the sequence (pn,(w)by)n>0 belongs to 3(B).

Step 3. Let us identify Z/27Z with {0,1} and introduce the compact group G := (Z/2Z)" which
becomes now our reference probability space. It is clear that the maps g € G — g, € {0,1} seen as
random variables are independent and identically distributed with a %—Bernoulli law. Let us define
Go C G the subset of elements (g, )n>0 such that (g,by,)n>0 belongs to £(B). Since X(B) is a vector
space, G is a subgroup of G. We directly get from the previous analysis in Step 2 that Gg has a
full Haar measure in G. Furthermore, Gy contains obviously the everywhere dense subgroup of G
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of elements (gp)n>0 which satisfy g, = 0 for n > 1. We use Lemma to conclude that (1,1,...)
belongs to G, in other words (by,)n>0 belongs to X(B). O

6. Annex: An alternative proof of Theorem inspired by [21]

We give here a different proof of Theorem we learnt from [21], which we decided to detail for
pedagogical reasons.

Lemma 6.1. — Let (py)n>0 be any Hilbertian basis of eigenfunctions for the harmonic oscillator H.
Let y(1) = —1/6 and v(d) = d/2 — 1 for d > 2. Then for all j > 1 and z,y € R? we have

< Z lon(y) — on( )!2>1/2 < Cly— Uv(d /2+1/2

nel(j

Proof. — By the Taylor formula and Cauchy-Schwarz we get, for n € I(j)

1
o) = u@P < ly=al( [ V(o + (o= ae)|ar)’

IN

1
< |y—x|2/0 ‘Vgpn(ﬂ:%—(y—x)t)‘Zdt

(6.1)

IN

1
Cily — af /O lon(e + (y — o)1) [,

where in the last line we used

! 2 ! 2 ! 2
/ ‘Vgpn(x—k(y—x)tﬂ dtg/ ‘H1/2gon(x+(y—x)t)‘ dt:)\n/ ‘gpn(az—k(y—x)t)‘ dt.
0 0 0

Now we sum up the inequalities (G.1]) and get with (L3))

> len(y) = en(@)* < Cily — sup 37 len(2)])? < O DF Yy — 22,
nel(j) ne[ ()
which was the claim O

We follow the main lines of the proof of N. Tzvetkov [2Il Theorem 5]. We define the pseudo-

distance ¢ by
1/2
2.9) = (D leallon() = ea(@)?)

n>0

For a > 1, we define the function @, : (0, +00) — (0, +00)
(=Int)®? if 0<t<1/a,
Do (t) =

®,(1/a) if t>1/a,

where a > 1 is chosen in such a way that the function ¢ — t®,(t) is increasing on (0, +00). Observe
also that ¢ — ®,(t) is non-increasing on (0, +00). Then we have a result similar to [2I Theorem 5.
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Lemma 6.2. — Assume that the coefficients (c,,) satisfy (2.0), then

6(w,y) < —F———.
)= 3y —aD)
Proof. — We clearly have
+o0o
(O(x,y)> <CY (max lee®) D len(y) — enl@).
Jj=1 nel(j)

We split the previous sum in two parts. Then, by Lemma

Lzy) = > max [eif”) > len(y) - (@)l

jiaj/2<ly—al| ! ke[ nel)
< C -y (d)+1 2
< oo e lex[*ly — 2]
jrajt/2<y—z| 1
(62) = o Y O max faf (ly - al@u(y - 2)
’ P2(y —x kel (5) “ ’

jeag/2<ly—a| -1

Now we use that the function t — t®(t) is increasing, thus for aj'/? < |y — z|~' we have

(!y — x| Pu(y — ﬂc))2 <j M (Inj)?,

therefore from (6.2]) and the assumption ([Z35) on the ¢,, we get

Ii(z,y) <CO2(y — Zﬂ(d (Inj)* max]ck\ <CO % (y — ).
Next, by (L3)
Lx,y) = > (maox fef?) > len(y) — enl@)?
jrajl/2>|y—z|-1 2 nel(j)
(6.3) < C Z §7@ max e ]2

o kel(j)
gragt/?>ly—a| =1

|=! we get

Now we use that ®, is non-increasing and for aj'/? > ly —x
Po(y—x) < Cba(a_lj_l/Q) < C(lnj)a/Q-

As a consequence, from (6.3 and the assumption (23] on the ¢,, we deduce that
Lz, y) < CO 2 (y —x Zf/(d) Inj)“ max lex]? < CO%(y — ),

which completes the proof.

31
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Proof of Theorem[ZAl — It is enough to prove that on every compact set K C R? a.e. in w, u® is

continuous on K. Hence we can follow the proof given in |21 Theorem 5] using an entropy argument

(Dudley-Fernique criterion), together with the result of Lemma O
Remark 6.3. — Let’s compare the two different proofs. This proof relies on both a decomposition

in space and in frequencies, while in the other proof one only needs a decomposition in frequencies.

Observe also that in the first proof one moreover gets that for almost all w € €, u* is bounded.
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