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Abstract

The relationship between classically chaotic dynamics and the entanglement properties of the

corresponding quantum system is examined in the semiclassical limit. Numerical results are com-

puted for a modified kicked top, keeping the classical dynamics constant while investigating the

entanglement for several versions of the corresponding quantum system characterized by a different

value of the effective Planck constant ℏeff . Our findings indicate that as as ℏeff → 0, the apparent

signatures of classical chaos in the entanglement properties, such as characteristic oscillations in

the time-dependence of the linear entropy, can also be obtained in the regular regime. These re-

sults suggest that entanglement is not a universal marker of chaotic dynamics of the corresponding

classical system.

PACS numbers: 03.65.Ud,05.45.Mt,34.60.+z,03.67.Mn
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I. INTRODUCTION

There has been a certain degree of ongoing controversy lately concerning the connection

between classical chaos and entanglement. Indeed, the quantum-classical correspondence,

based on the asymptotics of the Schrödinger equation [1] or on the equivalent approxima-

tion in the path integral formulation of quantum mechanics [2], has allowed a successful

interpretation of a host of properties of a quantum system in terms of the properties of

the corresponding classical system. For example fluctuations in the spectrum of a quan-

tum system are well-known to be related to classical periodic orbits [3]; certain quantum

level statistics are in direct correspondence with the average properties of generic regular or

chaotic motion [4].

A few years ago, several groups started investigating the links between classically chaotic

dynamics and the degree of entanglement of the corresponding quantum system. Initial work

[5–7] appeared to indicate that chaos generated a higher and faster degree of entanglement.

This claim was subsequently revised, as it was found that some systems, or even some

initial states in the previously studied systems, could display as much entanglement when

the corresponding classical regime was regular [8–12]. Still, some works [13, 14], although

recognizing that chaos is not necessarily associated with higher and faster entanglement, saw

a specific signature of classically chaotic motion in the dynamics of entanglement, for example

marked oscillations in the time-dependence of the reduced linear entropy. To be fair it must

be noticed that there is a certain degree of confusion when comparing works investigating

the connection between classical dynamics and entanglement: besides the usual problem of

properly identifying the pertinent classical counterpart of a quantum system, most of the

works in this area have dealt with systems composed of two coupled sub-systems, each of

the two sub-systems being characterized by a regular or chaotic classical regime. However,

as it has been previously pointed out [11, 14], the coupling between the two sub-systems is

the process giving rise to entanglement. Therefore, in our opinion, the most relevant systems

to employ in order to understand the connection between chaos and entanglement are those

in which the same physical process creates chaos (in the classical system) and entanglement

(in its quantum counterpart).

The main goal of this paper is to investigate the signatures of chaos in the entanglement

dynamics for such a system as the semiclassical limit is approached. Our system is a modified
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kicked top in which the total angular momentum J is fixed and results from the coupling

of two angular momenta L and N. From a quantum-mechanical perspective, this coupling

gives rise to entanglement. The quantity 1/L plays the rôle of an effective Planck constant

ℏeff . An invariance property of the classical dynamics allows to change J, L and N without

affecting the stroboscopic map; in turn this invariance can be employed to investigate the

properties of the quantum system as J, L and N are increased, i.e. as ℏeff → 0 while keeping

the classical dynamics constant. We will see that the apparent signatures of classically

chaotic dynamics visible in the reduced linear entropy in the deep quantum regime tend

to vanish as ℏeff → 0. The model employed here, introduced previously [11], will briefly

be recalled in Sec. 2. We will compute the time-dependent generation of entanglement for

varying ℏeff in Sec. 3, and examine more closely the Hamiltonian eigenstates as ℏeff → 0 in

Sec. 4. The results will be discussed and summarized in Sec. 5.

II. THE MODIFIED KICKED TOP: A RYDBERG MOLECULE

Let J be the total angular momentum of the system. J and its projection M on an

arbitrary axis are fixed and conserved; J results from the addition of the two coupled angular

momenta,

J = N+ L. (1)

The coupling can be seen as arising from a kick a light particle (an electron) with angular

momentum L receives from the other much more massive sub-system (the diatomic nuclei)

freely rotating with angular momentum N. After the kick the light particle is ejected on an

attractive orbit along which it is brought back towards the nuclei for an additional, periodic

kick. The Hamiltonian is given by

H = bN2 +
L2

2mr2
+ V (k) +Hr (2)

where b is a rotational constant and Hr is the radial Hamiltonian (containing the attractive

potential) of the light particle of mass m. V (k) is the kicking potential whose range is

restricted to r ≈ 0. By making the following additional assumptions, both justifiable on

physical grounds (i) L is conserved by the kick; (ii) L cos θ is also conserved where θ is the

angle L makes with the axis going through the two nuclei, V (k) is chosen so that L can only
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FIG. 1: Poincaré surface of section for different values of the coupling k = 0.01, k = 0.25, k = 0.5

and k = 10. The map shows the position of L after each kick; N lies on the x axis, so that a fixed

value of N corresponds by Eq. (1) to a constant projection of L on the x axis. θ is the angle L

makes with the z axis

rotate by an angle assumed to be given by [15]

δϕ = k cos θ. (3)

Hence k represents the strength of the kick. Since J and L are conserved Eq. (1) implies

that N isn’t, since the standard addition of angular momenta yield |J − L| ≤ N ≤ |J + L|.

A stroboscopic map is obtained by plotting the position of L after each kick (Fig. 1).

In the quantum mechanical version of the system the kicks defined by V (k) become

scattering phase-shifts ηλ depending on k, λ denoting the partial wave in the frame rotating

with the nuclei. Indeed the rotation δϕ defined by Eq. (3) is the deflection angle of the

orbit, whose relation to the scattering phase-shifts in the semiclassical limit is well-known

to be given by the general relation

δϕ = 2
∂ηλ
∂λ

; (4)

for a full description of the quantum and classical versions of the model employed here and

their relations see Ref. [11]. The total energy of the system is

E = bN(N + 1) + ϵN (5)
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where ϵN is the energy of the light particle (the excited but bound Rydberg electron) tradi-

tionally labeled by the effective quantum number νN ,

ϵN =
−1

2ν2N
(6)

(atomic units will now be used throughout). A product state at fixed energy, denoted

|ϕN(E)⟩ = |N⟩ |F (ϵN)⟩ (7)

will not be an eigenstate of the Hamiltonian (2) given that V (k) entangles the states |N⟩

and |F (ϵN)⟩ of the nuclei and electron respectively. Instead, an eigenstate involves the

superpositions

|ψ(E)⟩ =
∑

N

BN(E) |ϕN(E)⟩ (8)

which only exist for an infinite set of discrete energies E that are found by employing the

techniques of quantum defect theory [11].

Note the Poincaré surface of section of the map depends for a fixed value of k only on

the relative periods of the light particle orbit and the rotation of the nuclei, which in turn

depend of the moment of inertia I of the nuclei and the energy E. Hence if the angular

momenta J, L and N are increased, the stroboscopic map at fixed k can be kept invariant

by adjusting them. The surfaces of section shown in Fig. 1 will stick to this convention: a

given surface of section will be characterized solely by the coupling strength k, the moment

of inertia and the energy of the system being adjusted, depending on the values of J, L

and N to their unique values so that the system obeys the map. For the quantum top,

this allows to study the correspondence with the classical map as ℏeff (the inverse of L)

varies, the energy range in which the quantum levels are computed corresponding to the

classical energy keeping the stroboscopic map constant. Obviously as the angular momenta

increase, the number of available quantum states also increases. However these additional

states are quantized on the same underlying classical dynamical substrate (by adjusting the

energy), so that on average one expects the same behavior for the observables obeying the

quantum-classical correspondence as ℏeff decreases.

III. ENTANGLEMENT GENERATION

Entanglement is a distinct quantum feature and has therefore no straightforward marker

that would obey the quantum classical correspondence. To quantify entanglement we will
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determine the linear entropy S2 associated with the reduced density matrix ρe descibing the

outer electron,

ρe(t) = TrNρ(t) =
∑

N

⟨N | ρ(t) |N⟩ , (9)

where ρ(t) ≡ |ψ(t)⟩ ⟨ψ(t)| is the density matrix of the system and TrN (resp. Tre) refers

to averaging over the nuclei (resp. outer electron) degrees of freedom. The reduced linear

entropy employed in this work will be defined by

S2(t) =
n

n− 1

(

1− Treρ
2

e(t)
)

(10)

where n is the dimension of the density matrix. The normalization prefactor ensures that

S2 vanishes for a pure state and is unity for a uniformly mixed state, irrespective of the

number of dimensions. We will investigate the time evolution S2(t) starting from an initial

(at t = 0) product state for 4 regimes of ℏeff : ℏeff ≈ 1 (J = 10, L = 2, deep quantum

regime), 1/5 (J = 20, L = 4, moderately excited states), 1/10 (J = 50, L = 10, excited

states) and 1/100 (J = 500, L = 100, semiclassical regime).

The computations proceed as in [11]: we assume that at t = 0 the system is in a well

defined rotational state |N0⟩ whereas the outer electron is radially localized at the outer

turning point of the Kepler orbit (of period Te), several thousand atomic units away from

the nuclei. Hence

ψ(t = 0, r) = Floc(r ≈ rtp)⊗ |N0⟩ (11)

where Floc(r) has a Gaussian envelop and matches the energy of the corresponding classical

regime. The wavepacket attracted by the Coulomb interaction moves towards the nuclei and

collides at t ≈ Te/2. At later times the wavefunction is given by

|ψ(t)⟩ =
∑

E

∑

N

BN(E)e
−iEt |F (ϵN)⟩ |N⟩ , (12)

where

BN(E) = BN(E)BN0
(E) ⟨F (ϵN)| Floc⟩ . (13)

Note that the scattering nature of the formalism introduces a slight non-Hermiticity that

cannot be neglected and thus needs to be explicitly taken into account [16]. This is one of

the reasons that makes the numerical computations very involved as ℏeff decreases and the

basis sizes depending on n increase.
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FIG. 2: The linear entropy as a function of time (with units parameterized by the number of

kicks) for varying values of ~eff : ~eff ≈ 1 (red curve), ~eff ≈ 1/5 (green), ~eff ≈ 1/10 (purple) and

~eff ≈ 1/100 (blue line), and for different values of k. (a): k = 0.25; (b): k = 0.5; (c): k = 10.

Fig. 2 shows the time evolution of the entanglement for the 4 values of ℏeff mentioned

above. The initial state |N0⟩ lies on a ring centered on the x axis slightly behind the origin.

Fig. 2(a) presents the linear entropy S2(t) for k = 0.25, each of the 4 curves corresponding

to a different value of ℏeff . The time is given as a function of the period of the central

Kepler orbit, i.e. it reflects the number of kicks which is the same in all the cases, whereas

the timescale (the period of the orbits), being proportional to an inverse power of ℏeff , is of

course different for each value of ℏeff .

Figs 2(b) and (c) show S2(t) for k = 0.5 and k = 10 respectively (the corresponding

classical dynamical regimes are given by the surfaces of section of Fig. 1). The results for

the lowest ℏeff values were given previously in [10, 11] (beware however of the different

normalization of the linear entropy employed in those works, since only the situation for

a fixed value of ℏeff was considered); we discussed there the behavior of the entanglement
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FIG. 3: The average linear entropy is given as a function of ~eff for the 4 values of k whose

corresponding classical surfaces of section were shown in Fig. 1. From bottom to top k = 0.01 (red

dots) k = 0.25 (green), k = 0.5 (purple) and k = 10 (blue dots). The lines connecting the dots are

displayed only for visual convenience.

generation when k varied, for a single fixed value of ℏeff . The focus here is on the variation

of S2(t) when ℏeff → 0 but the classical regime is fixed. When the corresponding classical

regime is regular [Figs. 2(a)-(b)] we see a dramatic increase in the entanglement rate: for

the higher values of ℏeff the linear entropy increases progressively after each kick, whereas

for ℏeff ≈ 1/100 it takes only 2 or 3 kicks for S2(t) to reach its maximal, significantly higher,

value. This behavior was generally thought to be typical of classically chaotic corresponding

systems. Note also that the smooth oscillations, clearly visible in the deep quantum regime

(ℏeff ≈ 1/2 and 1/5), which are generally taken to be characteristic of a classically regular

regime, disappear as ℏeff → 0. When the dynamical regime of the corresponding classical

system is chaotic (Fig. 2(c), k = 10) the violent oscillations produced by a single kick tend to

disappear as ℏeff → 0. For ℏeff ≈ 1/100 S2(t) reaches its saturation maximum after a single

kick, and stays approximately constant. In the deep quantum regime, the low dimensionality

of the Hilbert space (n = 3) allows recombinations in which one of the channels is depleted

to occur periodically, giving rise to the dips visible in the ℏeff ≈ 1/2 curve.

IV. ENTANGLEMENT OF THE EIGENSTATES

The eigenstates |ψ(E)⟩ of a Rydberg molecule are given by Eqs. (7)-(8) showing each

|ψ(E)⟩ is a superposition of product states. We compare here the degree of entanglement of

a bunch of eigenstates for a given value of k corresponding to the same classical dynamics

as ℏeff varies. To do so, we compute the reduced linear entropy for each eigenstate, defined
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by

S2(E) =
n

n− 1

(

1− Treρ
2

e(E)
)

(14)

where ρe(E) is obtained similarly as in Eq. (9) by tracing out the nuclear degrees of freedom

from the eigenstate ρ(E) ≡ |ψ(E)⟩ ⟨ψ(E)|. S2(E) ranges from 0 for a product state to 1

for an eigenstate having all the BN coeficients of Eq. (8) equal. The average ⟨S2(E)⟩ is

computed on an energy range over which the classical dynamics is constant; hence in the

deep quantum regime, the average involves a limited number of states (less than 20) whereas

for J = 500 several hundred states are quantized within the same energy range.

Fig. 3 shows ⟨S2(E)⟩ for 4 different values of k as ℏeff is varied. The increase of the

mean linear entropy as ℏeff → 0 is spectacular: even for k = 0.01 near the integrable limit,

the eigenstates become significantly mixed as J and L increase. A better understanding is

gained by looking at S2(E) for individual states. This is done in Fig. 4. The left panel shows

the linear entropy for k = 0.01 when ℏeff ≈ 1 [Fig. 4(a)] and ℏeff ≈ 1/100 [Fig. 4(b)], each

dot giving the value S2(E) for an eigenstate. The right panel gives the same quantities but

for k = 0.5. Both values of k correspond to classical regular regimes (Fig. 1).

For k = 0.01 the classical map tends to conserve the value of N (the rings of the Poincaré

surface of section are centered on the N axis). We see nevertheless that as ℏeff → 0 some

eigenstates present a high degree of entanglement – actually intertwined series of a doublet

of states with higher entanglement than the rest are visible as E varies. This behavior, which

is also apparent in the k = 0.025 case (not shown here) can be explained by considering

that quantization does not necessarily take place on the rings encircling the N axis. For

instance a group of eigenstates tends to quantize on rings encircling the fixed point on top

of the z axis, hence with a spread in N . In the deep quantum regime this spread in N is

contained within the area occupied by a single rotational eigenstate |N⟩ on the sphere; but

as J, L and N increase the relative width of a ring representing the single rotational state

|N⟩ on the unit sphere decreases and an eigenstate quantized around the z axis will span

an area overlapping with the area covered by several |N⟩ states, and will therefore present

a high degree of entanglement. For k = 0.5 most of the points on the surface of section tend

to induce classical dynamics that change the value of N . Hence even in the deep quantum

regime individual eigenstates will present a varying degree of entanglement and as ℏeff → 0

these eigenstates will spread over a higher number of rotational states |N⟩. Indeed the linear

entropy, which shows important variations among the individual states in Fig. 4(c) tends to
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FIG. 4: The linear entropy for the individual eigenstates of the Hamiltonian over an energy range

corresponding to constant classical dynamics. Each dot corresponds to an individual eigenstate.

The energy is parameterized by ν(E) [see Eq.(6)]. (a) and (b) give S2(E) for k = 0.01, for the case

~eff ≈ 1 (a) and ~eff ≈ 1/100 (b). (c) and (d) give S2(E) for k = 0.5, for the case ~eff ≈ 1 (c) and

~eff ≈ 1/100 (d).

accumulate near its maximal value for ℏeff ≈ 1/100 [Fig. 4(d)].

V. DISCUSSION AND CONCLUSION

We have determined the entanglement dynamics for varying values of ℏeff of a typical

Rydberg molecule, i.e. a modified kicked top whose classical corresponding system displays

classically regular or chaotic regimes depending on the coupling constant k between the

angular momenta. The present findings confirm that entanglement can be as effective when

the corresponding classical dynamics is regular than when the regime is classically chaotic.

Moreover, even when there is a difference in the entangling power, this difference tends to

decrease as ℏeff → 0 (compare in Figs. 2(a) and 2(c) the blue ℏeff ≈ 1/100 curves with the red

ℏeff ≈ 1 ones). This is a consequence of the fact that for a given value of k, the entanglement

rate increases as ℏeff decreases. A partial explanation for this behavior was given in Sec. 4: as
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the dimensionality of the Hilbert space increases, the states tend to quantize over a greater

number of channels; put differently, an equivalent kick strength will send the incoming wave

over a significantly higher number of states |N⟩, creating more entanglement. This effect

is expected to be stronger when the corresponding classical dynamics is regular, since the

probability distribution moves smoothly on the sphere; as ℏeff decreases, this distribution

lies in the same region on the sphere but overlaps with a greater number of |N⟩ states (recall

that each |N⟩ state occupies a ring around the x axis whose width is proportional to ℏeff).

Instead when the map is chaotic, different bits of the distribution tend to appear randomly

on the sphere, so that the overlap with the number of |N⟩ states (normalized relative to the

total number of available states) will not increase significantly as ℏeff varies.

The second important conclusion one can draw from the present results concerns the

issue of a specific signature of chaos in the entanglement properties. While it is indisputable

that, provided the mechanism that creates chaos in the quantum system is the same that

the one that creates entanglement in the quantum one, a chaotic map will generically induce

a high entangling power, it is doubtful that a universal signature of chaos can be found in

the generation of entanglement. The oscillations in S2(t) that have sometimes [13, 14] been

associated with a classically regular regime are in fact the visible result of partial revivals in

low dimensional Hilbert spaces. As the dimensionality of the Hilbert space increases, which

is indeed the case as ℏeff → 0, the revivals will not be visible when multiple interferences

between channels having equal weights in the total wavefunction occur. This is precisely

the situation for highly entangled states in the regular regime: the oscillations in Figs. 2(a)

and (b), showing the entanglement rate for k = 0.25 and k = 0.5 respectively, become less

important as ℏeff decreases, and are hardly visible at all for the blue ℏeff ≈ 1/100 curve. By

inspecting the blue curve of Fig. 2(b) (classically regular) and that of Fig. 2(c) (classically

chaotic dynamics), it is hardly possible to identify the entanglement dynamics with a specific

classical regime.

Summarizing, we have investigated the relationship between the entanglement properties

of a modified kicked top (modeling a Rydberg molecule) and the dynamics of the correspond-

ing classical system as the semiclassical limit is approached. This was done by working with

quantum systems characterized by a lower value of ℏeff while keeping the dynamics of the

stroboscopic map constant. Our results indicate that the linear entropy increases as ℏeff → 0,

in particular in the regular regime. Moreover for highly entangled states, the behavior of
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the linear entropy as the semiclassical limit is approached does not discriminate between

classically regular and chaotic corresponding systems. These findings can be qualitatively

explained by drawing on arguments grounded on the classical-quantum correspondence.
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