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vlevorato@cesi.fr, vincent.levorato@univ-orleans.fr

Pre-print version

Abstract. In this paper, we propose a method allowing decomposition of di-

rected networks into cores, which final objective is the detection of communi-

ties. We based our approach on the fact that a community should be composed

of elements having communication in both directions. Therefore, we propose a

method based on digraph kernelization and strongly p-connected components. By

identifying cores, one can use based-centers clustering methods to generate full

communities. Some experiments have been made on three real-world networks,

and have been evaluated using the V-Measure, allowing a more precise analysis

through its two sub-measures: homogeneity and completeness. Our work pro-

poses different directions about the use of kernelization into structure analysis,

and strong connectivity concept as an alternative to modularity optimization.

Keywords: cores;communities detection;directed networks;kernelization;strong con-

nectivity;graph theory;clustering;

1 Introduction

Complex networks appear in many applications, including social networks analysis on

the Web, which is a topical research subject. These networks carry non-trivial topo-

logical properties that characterize their connectivity, and affect the dynamics of their

behaviors. The analysis of complex networks often leads to the analysis of the roles of

elements, or groups of elements, composing a network. Communities detection belongs

to this research field, and can be very useful to better understand how networks are struc-

tured. In this article, we focus on the problem of finding communities in networks, and

more specifically finding cores in directed networks. Dealing with methods of commu-

nity detection for directed networks is a difficult task, and few methods exist compared

to methods used in the undirected case. Here are some of the most known works in

the literature [9, 18, 14] dedicated to directed networks, or which can be adapted to

work with directiveness: Clauset et al. method [5], CFinder based on the Clique Per-

colation Method (CPM) [23], Louvain method [3], InfoMap [26], Simulated Annealing

for modularity [11], Wu-Huberman method [34], MarkovCluster algorithm [32], Mul-

tistep Greedy algorithm [27] and EM method (Expectation-Maximization) [20]. More



recently, others methods concerning directed networks have been proposed, with more

or less good results [35, 16, 15].

Generally, these methods are most of the time designed for undirected networks, and

adjusted to work in the directed case: they are not initially dedicated to the directed

case. There is also a significant amount of methods using modularity optimization.

However, this kind of approach has its limits, and can “miss important substructures

of a network” [10]. Some recent work discuss about reciprocated interaction [4], that

two people should communicate in both directions, the first person expecting messages

from the second person, and vice versa. Our approach is based on this simple idea: in a

directed network, a community should be composed of nodes which can communicate

with every nodes in the community, in both directions. Interesting results in our previous

exploratory work [21] encourage us to continue in this direction. Usually represented by

graphs in undirected networks, this kind of representation can be modeled by the con-

nected component concept, and more restrictively by the clique concept. Except that for

the directed case, it can be represented by the concept of strongly connected component.

Finding these components should be equivalent to find cores to which other elements

of the network will be assigned. This work gives the key concepts of this approach,

focusing on the cores finding.

Our paper is structured as such: the first section gives the definitions of graph theory and

formal concepts needed to understand our method. Then, the second part exposes the

different steps of our approach, followed by some experimental results on real networks.

The paper ends by a conclusion which opens discussion on future work directions.

2 Graph Theory Notions

2.1 Graph definitions

In this article, we consider only directed graphs (also noted digraph). We give here a

short reminder of graph theory notions. Formally, a digraph G = (V,A) is the pair

composed of [2]:

– a set V = {x1, x2, ..., xn} named vertices or nodes.

– a family A = (a1, a2, ..., an) of elements of the Cartesian product V × V =
{(x, y)/x ∈ V, y ∈ V } named arcs.

The amount of vertices is noted n (also noted |V (G)|) and the amount of arcs is

noted m (also noted |A(G)|).
A path P is composed of k arcs such as P = (a1, a2, ..., ai, ..., ak) where for every arc

ai the terminal end coincides with the initial end of ai+1. Several equivalent notations

can be used: P = ((x1, x2), (x2, x3), ...) = [x1, x2, ..., xk, xk+1] = P [x1, xk+1].
A chain is, like a path, an alternating sequence of vertices and edges, where an edge is

an arc without orientation.

A circuit is a path such that the first node of the path corresponds to the last. It can be

viewed as an oriented cycle.



2.2 Connected Components

Here are the different types of connected components we could have in a directed graph

[13]:

– a weakly connected component WCC of a digraph is a subgraph where: ∀x, y ∈
WCC, there is a chain between x and y.

– an unilaterally connected component UCC of a digraph is a subgraph where:

∀x, y ∈ UCC, there is a path between x and y OR there is a path between y
and x.

– a strongly connected component SCC of a digraph is a subgraph where: ∀x, y ∈
SCC, there is a path between x and y AND there is a path between y and x.

To discover cores in a network, we use a special case of strongly connected com-

ponent named strongly p-connected component by [33] which is related to l-edge-

connectivity [7] (we use p-connected notation instead of n-connected to avoid con-

fusion):

– a strongly p-connected component p-SCC of a digraph is a subgraph where: ∀x, y ∈
p-SCC, there is a path of length p or less between x and y, and there is a path of

length p or less between y and x, with p ≥ 2.

3 Core detection

3.1 Related work

Finding cores in order to find communities is a method that can be related to pattern

identification [14]. This consists in finding maximal subsets which implies separation

between them. Clique finding is one of these methods, but is also very restrictive, be-

cause each node must have a direct connection to other nodes. This approach has been

relaxed by the n-clique definition where each node is connected to others by at least

one path which length is at most n, but that can be outside of the n-clique. The n-clan

concept, by adding a constraint on the diameter of a n-clique that should not be greater

than n, fixes the connectedness issue of the n-clique [22]. Some concepts in the directed

case exist such as the f -groups (maximal subsets of weakly and strongly transitive tri-

ads, like 3-clique or triangle) [12], and directed k-clique [24]. Our approach is related

to these works, but we don’t put strong constraint on the size (triads), and we don’t

want to avoid circuits (directed k-clique), as it is specifically the configuration we are

looking for: strongly p-connected components.

3.2 Searching for cores using p-SCC concept

Our community definition refers to a group containing elements that can communicate

with all other elements of the group. In digraphs, this idea is formalized by the concept

of strongly connected components (SCC). Searching for SCCs in a digraph is equivalent

to search for circuits, and Tarjan based his algorithm on this idea [29], which returns

maximal strongly connected subgraphs. To our knowledge, no work has considered the



SCCs in the case of researching communities. By simply applying Tarjan’s algorithm

on directed graph generated through LFR benchmark [17], some communities can be

found, but SCCs are often oversized. To refine the process, our approach proposes to

find p-SCCs (fig. 1). The problem is that in a digraph, the number of circuits may be

exponential in the number of vertices [30]. Therefore, processing all circuits of a graph

is not relevant, especially if the graph has a significant number of nodes like in large

real-world networks.

(a) (b)

Fig. 1. Examples of p-SCCs: (a): nodes are connected by paths of length at most 2 (2-SCC) (b):

nodes are connected by paths of length at most 3 (3-SCC).

To be able to process large graph, our method finds p-SCCs by starting from a given

node s. Starting from this node, finding p-SCC also means searching for circuits, but

circuits with a given size. Trivially, the length of the path p is bounded by the length of

the circuits found into the p-SCC :

p ≤ 2× (c− 1)

where c is the size of circuits we are searching for.

s

Fig. 2. Searching p-SCC is similar to search circuits from a starting node s. In this case, searching

for 4-SCC means searching for circuits of length at most 3. The highlighted path length is 4, the

maximal path length which can be found.



For instance, searching for circuits of length 3 starting from a node means searching

for at most 4-SCCs (fig. 2). We propose an algorithm which returns a p-SCC starting

from a given node (alg. 1). As the algorithm is searching for circuits, and considering

that p parameter sets the circuit length, we can only find p-SCCs with p being an even

number. It is written in a non-recursive way, but time complexity should be approxi-

matively the same as Tarjan’s algorithm, which is O(n+m), with two differences: we

don’t always need to pass through every arc (depends on path length), but we should

pass through nodes several times.

Input: G: digraph, s:starting node,

p:path length (even integer)

Data: astack: stack of arcs, vpath: stack of nodes,

c: integer (circuit size)

Remark: Aout(k) represents set of outing arcs of the node k.

source(a) represents the source node of the arc a.

dest(a) represents the destination node of the arc a.

Result: C:set of nodes (p-SCC)

C ← ∅; C ← C ∪ {s};

vpath.push(s); c← (p+2)
2

;

foreach a in Aout(s) do

astack.push(a);

end

while astack 6= ∅ do

a← astack.pop();
w ← vpath.peek();
if source(a) 6= w then

while source(a) 6= w do

w ← vpath.pop();
end

vpath.push(w);

end

z ← dest(a);
if z = s then

C ← C ∪ vpath;

end

else

if |vpath| < c then

foreach b in Aout(z) do

astack.push(b);

end

vpath.push(z);

end

end

end

return C;

Algorithm 1: Algorithm extracting p-SCC.



3.3 Digraph kernelization

In the previous part, we explained the general idea of our approach, finding communities

cores by searching p-SCC, which means exploring a digraph in order to find circuits.

Before describing the whole method based on core detection, we show how we can

optimize the search for p-SCCs by “cleaning” the digraph, meaning excluding nodes

and arcs which should never belong to a circuit: this brings us to the notion of graph

kernelization. We are interested in the kernelization which is used in the FVS problem

(Feedback Vertex Set) [31]. Its purpose is to find a set of nodes which gives a graph

without cycles if this set of nodes (and their adjacent edges) is removed from the graph.

The general interest of the kernelization process is the reduction of the size of the input

given to an algorithm which is not polynomial in time (in most cases): the graph is being

“compressed”. As we work in the directed case, we used the kernelization technique

applied to the directed FVS [8], following the four first rules of the method. The two

first rules imply a simple digraph (no self-loop, no multiple arcs), the third one removes

isolated nodes (degree equal to zero), and the last one removes the chained nodes, by

removing nodes from the digraph while it contains nodes with only one outgoing or

incoming arc. The experiment part shows that the kernelization operation can be very

effective on real-world networks.

4 Digraph cores decomposition method

This section describes our method for core detection in directed networks. Let use the

following notations: G is the input digraph (network), and K is the set of output cores.

The method follows these steps, considering a given p:

1. Kernelize G.

2. For each node of G as the starting node, process p-SCC.

3. Sort p-SCCs by size. Starting from the biggest one, put them one by one in K if it

doesn’t intersect existing cores already inserted into K. In case of cores having the

same size, take the most connected one (biggest amount of arcs).

4. (optionnal) Remove p-SCCs with size inferior to a given threshold Kmin.

Illustration: The figure 3 gives an illustration of our method, step by step, with

p = 4 (meaning we search for circuits of length at most 3). Let take a digraph (a), and

apply the first step which is kernelization (b). Some nodes are ignored, and won’t be

considered. The second step processes 4-SCCs, node by node: in the example (c), only

five iterations are represented (nodes with labels 4 ,5 ,8 ,10 ,13), and for each node, a

4-SCC is computed, which can be the same for several nodes (nodes 5 and 8 produce

the same 4-SCC, same thing for nodes 4 and 13). The last step (d) extracts the biggest

and non-intersecting 4-SCCs giving the final result with 3 cores.

This method returns a set of cores which can be used to cluster the rest of the

network to have a complete clustering. As some clustering methods like k-means algo-

rithm, the number of communities is set by the number of cores. In this article, as we

don’t focus on clustering methods, our experiments use a simple aggregative method

like center-based clustering methods, and assign each node to the community having
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(a) Input digraph
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(b) Kernelization
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(c) Processing the 4-SCCs
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(d) Cores result

Fig. 3. Illustration of the decomposition method of a digraph into cores.

the nearest core. The distance corresponds to the chain length from node to core (at this

point, link orientation is ignored). At each step, the cores absorb their nearest neigh-

bors, and the process continues until all the nodes belong to a group. If a node can be

absorbed by more than one community, meaning the distance between several cores is

equal, it will be absorbed by the community sharing the biggest amount of edges with

it. The Kmin value can be useful to avoid too small cores that shouldn’t be considered.

5 Experiments

Validating communities structures corresponds to validate a clustering method. The dif-

ficulty is to find an objective measure of quality of clusters. For our experiments, we

use V-Measure which is an alternative to F-Measure, and Normalized Mutual Infor-

mation from the information theory field to compare the clustering obtained by our

method to the reference classes. We based our experiments on real data networks, as

some experiments have already been done on generated networks (LFR Benchmarks

[17]) in our previous work with good results [21]. Moreover, there is an issue with the

LFR Benchmark, as it produces graphs already kernelized, which puts a strong con-

straint on generated graphs. On the contrary, in the experiment part, we observe that the

real-world networks we used are strongly kernelizable.



5.1 Clustering Evaluation

The entropy notion is used to express the used measures, and is noted as follow, with

X and Y two discrete random variables: H(X) and H(Y ) for the marginal entropies,

H(X|Y ) and H(Y |X) for the conditional entropies, H(X,Y ) for the joint entropy.

Measures give results between 0 (worst matching) and 1 (best matching). Here are the

two evaluation measures definitions:

– V-Measure [25] is an entropy based-evaluation measure, composed of two con-

cepts: completeness and homogeneity. The V-Measure corresponds to the harmonic

mean of these two concepts, just like F-Measure with precision and recall. With C
a set of classes (reference), K a set of clusters (unsupervised method), the homo-

geneity is defined as:

h =

{

1 if H(C,K) = 0

1− H(C|K)
H(C) else

and the completeness is defined as:

c =

{

1 if H(K,C) = 0

1− H(K|C)
H(K) else

A clustering result satisfies homogeneity if all of its clusters contain only elements

which are members of a single class, and a clustering result satisfies completeness if

all the elements that are members of a given class are elements of the same cluster.

The V-Measure is based on homogeneity and completeness scores such as:

Vβ =
(1 + β) · h · c

(β · h) + c)

with a β parameter which can be used to weight homogeneity and completeness

scores.

This measure solves the problem of other measures like F-Measure which only

consider the contributions from the clusters which match a target class, and has

sub-measures useful to evaluate precisely the quality of a clustering solution. In

our experiments, we set β = 1 (balanced weights).

– Normalized Mutual Information (NMI) [6] Mutual information is a measure used

in information theory domain, giving the amount of information that one random

variable contains about another. The entropy reflects the self-information of a ran-

dom variable. Mutual information can be can be summarized in a measure of the

distance between two probability distributions. This measure is defined between

the cluster assignments K and a pre-existing labeling set of classes C normalized

by:

NMI(K,C) =
I(K,C)

√

H(K)H(C)



with I(K,C) the mutual information of K and C such that:

I(K,C) = H(K) − H(K|C)

5.2 Results

In order to test our approach, we used directed network datasets already known in the

literature [1, 28]. Three networks have been used: a political blog network about US

politics, and two citation networks (Cora and Citeseer) (see tab. 1). Our method have

been applied on the biggest connected component (WCC) to avoid noisy results. Several

characteristics of the network are given like density, degree information, communities

maximum and minimum sizes, but also the mixing parameter µ [18] and the directed

modularity Qd [20].

Directed Network Political Blog Cora Citeseer

|V | 1,222 2,485 2,120

|A| 19,024 5,209 3,768

Classes 2 7 6

Density 1.27% 0.08% 0.08%

Degrees kmean = 31 kmean = 4 kmean = 4
kmin = 1 kmin = 1 kmin = 1

kmax = 467 kmax = 169 kmax = 100

Communities size |C|min = 588 |C|min = 131 |C|min = 115
|C|max = 636 |C|max = 726 |C|max = 532

µ 0.09 0.18 0.28

Qd 0.41 0.63 0.51

Table 1. Network datasets.

The mixing parameter is used by Lancichinetti and al. to generate datasets of net-

works. It represents the fraction of all links in a particular community that end outside

this community. More its value increases, less the communities are well defined and

less easily detectable. Network modularity is defined as the fraction of all links that

lie within communities minus the expected value of the same quantity in a network in

which nodes have the same degree but with links placed randomly. It gives an idea on

the ”good“ separation of communities.

For each network, we seek for cores, and study the results using only V-measure. Then

we focus on the communities result with both NMI and V-Measure.

Core decomposition The quality of the core depends on the kernelization process, as

graph compression is highly different from a network to another (tab. 2). In tab. 3, we

compare the obtained cores with the reference classes, using the p parameter which cor-

responds to the path length of a p-SCC, and the Kmin parameter which is the minimum

core size (only relevant results are shown). In our experiments, the use of the minimum



core size has been relevant. In most cases, cores have a good completeness score, mean-

ing that we succeed in having nodes which belong to a single class in only one core.

On the other hand, the homogeneity score tends to be better when the threshold of the

minimum core size is increased (Political Blog and Cora networks), having nodes of a

same core belonging to a single class. The interpretation that can be made from these

results is that the more the graph is compressed, the less the Kmin gets an high value.

When too many nodes are available to build cores, the Kmin threshold has to be high to

remove some eventual noise, giving less nodes usable in the core creation (illustration

fig. 4). In the results of tab. 3, we first consider completeness value, and then the ho-

mogeneity value. We give more importance to the completeness score, as it gives better

results in the final process communities detection.

Directed Network Political Blog Cora Citeseer

|V |K 811 399 69

|A|K 15,833 786 97

Compression rate (nodes) 33% 84% 97%

Table 2. Network kernel sizes.

Communities detection Using an aggregative method, the cores first absorb nodes

which are in the kernel but not in the cores, giving pre-built communities. Then, the

nodes outside the kernel are absorbed by the pre-built communities to give a final clus-

tering of communities. Clusters are not strongly connected, but unilaterally connected.

The results in tab. 4 show that even with a naive method of clustering, the communities

structures remain ”acceptable“. The cores used in the final clustering process are the

cores having the best completeness scores in the core decomposition operation. Com-

pared to InfoMap algorithm (tab. 5), which stays the method with best results obtained

in directed networks [18], our results look pretty similar, with best performance on

the Political Blogs network. Infomap also tends to subdivide too much the networks,

finding 30 to 60 times more communities than expected. Observing the results, we can

make the assumption that the compression of graphs impacts the quality of cores, and

therefore the detection of communities. With a small amount of nodes in the kernel, the

choice to make between the nodes to build the cores is important, as it determines the

final process of communities detection. Also, having only big cores means setting a too

high Kmin threshold value, which can have a negative impact on the cores detection,

and some communities cannot be found in the process. For instance, in fig. 5, the cen-

tral community has been found by our method using the parameters p = 4,Kmin = 2.

If we set Kmin = 3, cores of size 2 are excluded, and this central community is not

detected.



(a) Political Blog

p K min size h c V Nb Nodes Nb Cores

2 2 0.35316 0.95295 0.51534 329 20

2 3 0.40471 0.94876 0.56739 308 13

2 4 0.44344 0.94601 0.60383 296 10

2 5 0.52053 0.96137 0.67538 281 7

2 6 0.59364 0.97468 0.73787 269 5

2 7 0.7381 1.0 0.84932 255 3

2 16 1.0 1.0 1.0 239 2

4 2 0.60926 0.98967 0.75421 401 12

4 3 0.79398 0.98896 0.88081 380 5

4 4 0.90979 1.0 0.95276 372 3

4 5 1.0 1.0 1.0 367 2

V-Measure

(b) Cora

p K min size h c V Nb Nodes Nb Cores

4 2 0.41019 0.9412 0.57137 98 28

4 3 0.57836 0.9352 0.71471 47 11

6 2 0.41481 0.93729 0.5751 103 28

6 3 0.58141 0.92778 0.71485 52 11

6 4 0.70183 0.92268 0.79724 32 6

V-Measure

(c) Citeseer

p K min size h c V Nb Nodes Nb Cores

2 1 0.49039 0.93415 0.64315 54 26

2 2 0.19087 0.29364 0.23136 6 2

4 1 0.48994 0.93454 0.64285 58 26

4 2 0.5907 0.77251 0.66948 12 3

V-Measure

Table 3. Cores detection on real-world networks.

Network Amount of 

Communities

h c V NMI

Political Blog 0.70385 0.69929 0.70156 0.70116 2

Cora 0.35335 0.46349 0.40099 0.40469 28

Citeseer 0.28162 0.38734 0.32613 0.32742 26

Measures

Table 4. Real-world networks communities detection results based on core decomposition.

Network Amount of 

Communities

h c V NMI

Political Blog 0.281 0.759 0.410 0.462 56

Cora 0.259 0.833 0.395 0.465 438

Citeseer 0.228 0.721 0.347 0.404 311

Measures

Table 5. Real-world networks communities detection results obtained by InfoMap.



(a) Bad-defined cores (number of cores=20)

(b) Well-defined cores (number of cores=2)

Fig. 4. Illustration of core decomposition in the Political Blog network.

6 Conclusion

In this article, we focused on an approach dedicated to directed networks, and we gave

a method allowing the decomposition of these networks into cores. These cores can

be used by any clustering method based on centers to detect communities. Our various

contributions can be presented as follows:

– Using the strongly p-connected components is the key of our approach, which has

not been used in any scientific work in order to detect cores or communities in di-

rected networks. Moreover, we provide a simple and efficient algorithm to generate

these p-SCCs in a digraph. This approach can be classified in the pattern identifi-

cation category that we can find in some method classification, while being flexible

enough.



(a) Clustering using an aggregative method based on core decomposition.

(b) Reference classes.

Fig. 5. Communities detection comparison on the Cora citation network (p = 4,Kmin = 2).



– The interest of using kernelization process has been highlighted : it reduces the

core detection process, and can give some information on the network structure.

The hypothesis of having the compression rate of a digraph correlated to the mix-

ing parameter has to be taken into account, and more experiments on real-world

networks have to be done to verify this intuition.

– During our experiments, we obtained some encouraging results on the network

datasets we used. An important thing about these results is that we didn’t take into

account the modularity concept in our approach. As a large part of the communi-

ties detection algorithms are dedicated to modularity optimization [14], we want to

stress the point that we can have interesting results in communities detection with-

out this concept, which some limits are already known even in the undirected case

[19].

Several options can be considered for the continuation of this work. As we said, we

have to apply our method to others real-world datasets. We should also study how to

increase the quality of the core detection, and it could be interesting to have the possi-

bility to automatically fix the Kmin threshold value. Testing other based-centers clus-

tering methods should be done too. Also, the case of overlapping communities should

be considered, as our approach could be quickly adaptable with p-SCCs which natu-

rally overlap each other. In our opinion, our work points out that no clear or unanimous

consensus about the definition of communities exists, and provides a new point of view

on the detection of communities into directed networks, being omnipresent in the Web

nowadays.
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