Timothy Wang

Romain Jobredeaux

Marc Pantel

Pierre-Loic Garoche

Eric Feron

Didier Henrion

Credible Autocoding of Convex Optimization Algorithms

Keywords: Control Theory, Autocoding, Lyapunov proofs, Formal Verification, Optimization, Interior-point Method, PVS, frama-C

The efficiency of modern optimization methods, coupled with increasing computational resources, has led to the possibility of real-time optimization algorithms acting in safety critical roles. There is a considerable body of mathematical proofs on on-line optimization programs which can be leveraged to assist in the development and verification of their implementation. In this paper, we demonstrate how theoretical proofs of real-time optimization algorithms can be used to describe functional properties at the level of the code, thereby making it accessible for the formal methods community. The running example used in this paper is a generic semi-definite programming (SDP) solver. Semidefinite programs can encode a wide variety of optimization problems and can be solved in polynomial time at a given accuracy. We describe a top-to-down approach that transforms a high-level analysis of the algorithm into useful code annotations. We formulate some general remarks about how such a task can be incorporated into a convex programming autocoder. We then take a first step towards the automatic verification of the optimization program by identifying key issues to be adressed in future work.

Introduction

The applications of optimization algorithms are not only limited to large scale, off-line problems on the desktop. They also can perform in a real-time setting as part of safety-critical systems in control, guidance and navigation. For example, modern aircrafts often have redundant control surface actuation, which allows the possibility of reconfiguration and recovery in the case of emergency. The precise re-allocation of the actuation resources can be posed, in the simplest case, as a linear optimization problem that needs to be solved in real-time.

In contrast to off-line desktop optimization applications, real-time embedded optimization code needs to satisfy a higher standard of quality, if it is to be used within a safety-critical system. Some important criteria in judging the quality of an embedded code include the predictability of its behaviors and whether or not its worst case computational time can be bounded. Several authors including Richter [START_REF] Richter | Certification aspects of the fast gradient method for solving the dual of parametric convex programs[END_REF], Feron and McGovern [START_REF] Mcgovern | Computational Analysis of Real-Time Convex Optimization for Control Systems[END_REF] [START_REF] Mcgovern | Requirements and hard computational bounds for real-time optimization in safety-critical control systems[END_REF] have worked on the certification problem for on-line optimization algorithms used in control, in particular on worstcase execution time issues. In those cases, the authors have chosen to tackle the problem at a high-level of abstraction. For example, McGovern reexamined the proofs of computational bounds on interior point methods for semi-definite programming; however he stopped short of using the proofs to analyze the implementations of interior point methods. In this paper, we extend McGovern's work further by demonstrating the expression of the proofs at the code level for the certification of on-line optimization code. The utility of such demonstration is twofolds. First, we are considering the reality that the verifications of safetycritical systems are almost always done at the source code level. Second, this effort provides an example output that is much closer to being an accessible form for the formal methods community.

The most recent regulatory documents such as DO-178C [START_REF] Rtca | DO-178C, software considerations in airborne systems and equipment certification[END_REF] and, in particular, its addendum DO-333 [START_REF] Rtca | DO-333 formal methods supplement to DO-178C and DO-278A[END_REF], advocate the use of formal methods in the verification and validation of safety critical software. However, complex computational cores in domain specific software such as control or optimization software make their automatic analysis difficult in the absence of input from domain experts. It is the authors' belief that communication between the communities of formal software analysis and domain-specific communities, such as the optimization community, are key to successfully express the semantics of these complex algorithms in a language compatible with the application of formal methods.

The main contribution of this paper is to present the expression, formalization, and translation of high-level functional properties of a convex optimization algorithm along with their proofs down to the code level for the purpose of formal program verification. Due to the complexity of the proofs, we cannot yet as of this moment, reason about them soundly on the implementation itself. Instead we choose an intermediate level of abstraction of the implementation where floating-point operations are replaced by real number algebra.

The algorithm chosen for this paper is based on a class of optimization methods known collectively as interior point methods. The theoretical foundation behind modern interior point methods can be found in Nemrovskii et. al [START_REF] Nesterov | A general approach to the design of optimal methods for smooth convex functions minimization[END_REF] [START_REF] Nesterov | Self-Concordant functions and polynomial time methods in convex programming[END_REF]. The key result is the self-concordance of certain barrier functions that guarantees the convergence of a Newton iteration to an ǫ-optimal solution in polynomial time. For more details on polynomial-time interior point methods, readers can refer to [START_REF] Nesterov | Interior-point Polynomial Algorithms in Convex Programming[END_REF].

Interior-point algorithms vary in the Newton search direction used, the step length, the initialization process, and whether or not the algorithm can return infeasible answers in the intermediate iterations. Some example search directions are the Alizadeh-Haeberly-Overton (AHO) direction [START_REF] Alizadeh | Primal-dual interior-point methods for semidefinite programming: Convergence rates, stability and numerical results[END_REF], the Monteiro-Zhang (MZ) directions [START_REF] Monteiro | Primal-dual path-following algorithms for semidefinite programming[END_REF], the Nesterov-Todd (NT) direction [START_REF] Nesterov | Primal-dual interior-point methods for self-scaled cones[END_REF], and the Helmberg-Kojima-Monteiro (HKM) direction [START_REF] Helmberg | An interior-point method for semidefinite programming[END_REF]. It was later determined in [START_REF] Monteiro | A unified analysis for a class of long-step primaldual path-following interior-point algorithms for semidefinite programming[END_REF] that all of these search directions can be captured by a particular scaling matrix in the linear transformation introduced by Sturm and Zhang in [START_REF] Zhang | Quadratic maximization and semidefinite relaxation[END_REF]. An accessible introduction to semi-definite programming using interior-point method can be found in the works of Boyd and Vandenberghe [START_REF] Boyd | Convex Optimization[END_REF].

Autocoding is the computerized process of translating the specifications of an algorithm, that is initially expressed in a high-level modeling language such as Simulink, into source code that can be transformed further into an embedded executable binary. An example of an autocoder for optimization programs can be found in the work of Boyd [START_REF] Mattingley | Cvxgen: a code generator for embedded convex optimization[END_REF]. One of the main ideas behind this paper, is that by combining the efficiency of the autocoding process with the rigorous proofs obtained from a formal analysis of the optimization algorithm, we can create a credible autocoding process [START_REF] Wang | From design to implementation: an automated, credible autocoding chain for control systems[END_REF] that can rapidly generate formally verifiable optimization code.

For this paper, we selected an interior point algorithm with the Monteiro-Zhang (MZ) Newton search direction as the running example. The step length is fixed to be one and the input problem is a generic semi-definite programming problem obtained from system and control. The paper is organized as follows: first we introduce the basics of semi-definite programming and program verification. We then introduce a specific interior point algorithm and recall its properties. After that, we discuss some general principles in how optimization algorithms can be included as part of the credible autocoding framework in generating domain-specific properties and their proofs expressed in the language of the generated optimization source code. We then give an example of a code implementation annotated with the semantics of the optimization algorithm using the Floyd-Hoare method [START_REF] Hoare | An axiomatic basis for computer programming[END_REF]. Finally, we discuss how such autocoding environment can be used as part of the certification process and discuss some future directions of research.

Credible Autocoding: General Principles

In this paper, we introduce a credible autocoding framework for convex optimization algorithms. Credible autocoding, analogous to credible compilation from [START_REF] Rinard | Credible compilation[END_REF], is a process by which the autocoding process generates formally verifiable evidence that the output source code correctly implements the input model. An overall view of a credible autocoding framework is given in figure 1. Existing work already provides for the automatic generation of embedded convex optimization code [START_REF] Mattingley | Cvxgen: a code generator for embedded convex optimization[END_REF]. Given that proofs of high-level functional properties of interior point algorithms do exist, we want to generate the same proof that is sound for the implementation, and expressed in a formal specification language embedded in the code as comments. One of the key ingredients that made credible autocoding applicable for control systems [START_REF] Wang | A graphical environment to express the semantics of control systems[END_REF] is that the ellipsoid sets generated by synthesizing quadratic Lyapunov functions are relatively easy to reason about even on the code level. The semantics of interior point algorithms, however, do not rely on simple quadratic invariants. The invariant obtained from the proof of good behavior of interior point algorithms is generated by a logarithmic function. This same logarithmic function can also be used in showing the optimization algorithm terminates in within a specified time. This function, is not provided, is perhaps impossible to synthesize from using existing code analysis techniques on the optimization source code. In fact nearly all existing code analyzers only handle linear properties with the notable exception in [START_REF] Roux | A generic ellipsoid abstract domain for linear time invariant systems[END_REF] 3 Semi-Definite Programming and the Interior Point Method

In this section, we give an overview of the Semi-Definite Programming (SDP) problem. The readers who are already familiar with interior point method and convex optimization should skip ahead to the next section. The notations used in this section are as follows: let A = (a i,j) 1≤i,j≤n , B ∈ R n×n be two matrices For X, Z ∈ S n+ , some basic properties of matrix derivative are ∂ Tr (XZ) ∂X =

Z T = Z and ∂ det (X) ∂X = det (X) -1 X -1 T = det (X) -1 X -1 . 3.1 SDP Problem Let n, m ∈ N, F 0 ∈ S n+ , F 1 , F 2 , . . . , F m ∈ S n , and b = b 1 b 2 . . . b m T ∈ R m .
Consider a SDP problem of the form in [START_REF] Alizadeh | Primal-dual interior-point methods for semidefinite programming: Convergence rates, stability and numerical results[END_REF]. The linear objective function F 0 , Z is to be maximized over the intersection of positive semi-definite cone {Z ∈ S n |Z 0} and a convex region defined by m affine equality constraints.

sup

Z F 0 , Z , subject to F i , Z + b i = 0, i = 1, . . . , m Z 0. (1)
Note that a SDP problem can be considered as a generalization of a linear programming (LP) problem. To see this, let Z = Diag (z) where z is the standard LP variable. We denote the SDP problem in (1) as the dual form. Closely related to the dual form, is another SDP problem as shown in [START_REF] Baudin | ACSL: ANSI/ISO C Specification Language[END_REF], called the primal form. In the primal formulation, the linear objective function b, p is minimized over all vectors p = p 1 . . . p m T ∈ R m under the semi-definite constraint

F 0 + m i=1 p i F i 0. Note the introduction in (2) of a variable X = -F 0 - m i=1 p i F i such that
X 0, which is not strictly needed to express the problem, but is used in later developments. inf p,X b, p

subject to F 0 + m i=1 p i F i + X = 0 X 0. (2)
We assume the primal and dual feasible sets defined as

F p = X|X = -F 0 - m i=1 p i F i 0, p ∈ R m , F d = {Z| F i , Z + b i = 0, Z 0} (3)
are not empty. Under this condition, for any primal-dual pair (X, Z) that belongs to the feasible sets in (3), the primal cost b, p is always greater than or equal to the dual cost F 0 , Z . The difference between the primal and dual costs for a feasible pair (X, Z) is called the duality gap. The duality gap is a measure of the optimality of a primal-dual pair. The smaller the duality gap, the more optimal the solution pair (X, Z) is. For (2) and (1), the duality gap is the function

G(X, Z) = Tr (XZ) . (4)
Indeed,

Tr (XZ) = Tr -F 0 - m i=1 p i F i Z = -Tr (F 0 Z) - m i=1 p i Tr (F i Z) = b, p -F 0 , Z .
Finally, if we assume that both problems are strictly feasible i.e. the sets

F p ′ = X|X = -F 0 - m i=1 p i F i ≻ 0, p ∈ R m , F d ′ = {Z| F i , Z + b i = 0, Z ≻ 0} (5)
are not empty, then there exists an optimal primal-dual pair (X * , Z *) such that

Tr (X * Z *) = 0. (6)
Moreover, the primal and dual optimal costs are guaranteed to be finite. The condition in [START_REF] Kojima | Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices[END_REF] implies that for strictly feasible problems, the primal and dual costs are equal at their respective optimal points X * and Z * . Note that in the strictly feasible problem, the semi-definite constraints become definite constraints. The canonical way of dealing with constrained optimization is by first adding to the cost function a term that increases significantly if the constraints are not met, and then solve the unconstrained problem by minimizing the new cost function. This technique is commonly referred to as the relaxation of the constraints. For example, lets assume that the problems in (2) and (1) are strictly feasible. The positive-definite constraints X ≻ 0 and Z ≻ 0, which defines the interior of a pair of semi-definite cones, can be relaxed using an indicator function I(X, Z) such that

I : (X, Z) → 0, X ≻ 0, Z ≻ 0 +∞, otherwise (7)
The intuition behind relaxation using an indicator function is as follows. If the primal-dual pair (X, Z) approaches the boundary of the interior region, then the indicator function I(X, Z) approaches infinity, thus incurring a large penalty on the cost function.

The indicator function in [START_REF] Löfberg | Yalmip : A toolbox for modeling and optimization in MATLAB[END_REF] is not useful for optimization because it is not differentiable. Instead, the indicator function can be replaced by a family of smooth, convex functions B(X, Z) that not only approximate the behavior of the indicator function but are also self-concordant. We refer to these functions as barrier functions. A scalar function F : R → R, is said to be self-concordant if it is at least three times differentiable and satisfies the inequality

|F ′′′ (x)| ≤ 2F ′′ (x) 3 2 . (8
)
The concept of self-concordance has been generalized to vector and matrix functions, thus we can also find such functions for the positive-definite variables X and Z. Here we state, without proof, the key property of self-concordant functions.

Property 1. Functions that are self-concordant can be minimized in polynomial time to a given non-zero accuracy using a Newton type iteration [START_REF] Nesterov | Self-Concordant functions and polynomial time methods in convex programming[END_REF].

Examples of self-concordant functions include linear functions, quadratic functions, and logarithmic functions. A valid barrier function for the semi-definite constraints from (2) and (1) is

B(X, Z) = -log det (X) -log det (Z). (9
)

Introduction to Program Verification

In this section, we introduce some concepts from program verification that we use later in the paper. The readers who are already familiar with Hoare logic and axiomatic semantics should skip ahead to the next section.

Axiomatic Semantics

One of the classic paradigms in formal verification of programs is the usage of axiomatic semantics. In axiomatic semantics, the semantics or mathematical meanings of a program is based on the relations between the logic predicates that hold true before and after a piece of code is executed. The program is said to be partially correct if the logic predicates holds throughout the execution of the program. For example, given the simple while loop program in figure 2, if we while (x *x >0.5)

x =0.9* x ; end Fig. 2. A while loop Program assume the value of variable x belongs to the set [-1, 1] before the execution of the while loop, then the logic predicate x*x<=1 holds before, during and after the execution of the while loop. The predicate that holds before the execution of a block of code is referred to as the pre-condition. The predicate that holds after the execution of a block of code is referred to as the post-condition. Whether a predicate is a pre or post-condition is contextual since its dependent on the block of code that its mentioned in conduction with. A pre-condition for one line of code can be the post-condition for the previous line of the code. A predicate that remains constant i.e. holds throughout the execution of the program is called an invariant. For example, the predicate x*x<=1 is an invariant for the while loop. However the predicate x*x>=0.9 is not an invariant since it only holds during a subset of the total execution steps of the loop. The invariants can be inserted into the code as comments. We refer to these comments as code specifications or annotations. For example, inserting the predicate x*x<=1 into the program in figure 2 results in the annotated program in figure 3. The pseudo Matlab specification language used to express the annotations in figure 3 is modelled after ANSI/ISO C Specification Language (ACSL [START_REF] Baudin | ACSL: ANSI/ISO C Specification Language[END_REF]), which is an existing formal specification language for C programs. The pre and post-conditions are denoted respectively using ACSL keywords requires and ensures. The annotations are captured within comments denoted by the Matlab comment symbol %%. Throughout the rest of the paper, we use this pseudo %% r e q u i r e s x * x<=1; %% e n s u r e s x * x<=1; while (x *x >0.5)

x =0.9* x ; end Fig. 3. Axiomatic Semantics for a while loop Program Matlab specification language in the annotations of the example convex optimization program. Other logic keywords from ACSL, such as exists, forall and assumes are also transferred over and they have their usual meanings.

Hoare Logic

We now introduce a formal system of reasoning about the correctness of programs, that follows the axiomatic semantics paradigm, called Hoare Logic [START_REF] Hoare | An axiomatic basis for computer programming[END_REF]. The main structure within Hoare logic is the Hoare triple. Let P be a precondition for the block of code C and let Q be the post-condition for C. We can express the annotated program in 3 as a Hoare triple denoted by {P } C {Q}, in which both P and Q represent the invariant x*x<=1 and C is the while loop. The Hoare triples is partially correct if P hold true for some initial state σ, and Q holds for the new state σ ′ after the execution of C. For total correctness, we also need prove termination of the execution of C.

Hoare logic includes a set of axioms and inference rules for reasoning about the correctness of Hoare triples for various program structures of a generic imperative programming language. Example program structures include loops, branches, jumps, etc. In this paper, we only consider while loops. For example, a Hoare logic axiom for the while loop is

{P ∧ B} C; {P } {P } while B do C done {¬B ∧ P } . (10
)
Informally speaking, the axioms and inference rules should be interpreted as follows: the formula above the horizontal line implies the formula below that line. From [START_REF] Mcgovern | Computational Analysis of Real-Time Convex Optimization for Control Systems[END_REF], note that the predicate P holds before and after the while loop.

We typically refer to this type of predicate as an inductive invariant. Inductive invariants require proofs as they are properties that the producer of the code is claiming to be true. For the while loop, according the axiom in [START_REF] Mcgovern | Computational Analysis of Real-Time Convex Optimization for Control Systems[END_REF], we need to show that the predicate P holds in every iteration of the loop. In contrast, axiomatic semantics also allows predicates that are essentially assumptions about the state of the program. This is especially useful in specifying properties about the inputs. For example, the variable x in figure 3 is assumed to have an value between -1 and 1. The validity of such property cannot be proven since it is an assumption. This type of invariant is referred to as an assertion. In our example, the assertion x<=1 && x>=-1 is necessary for proving that x*x<=1 is an inductive invariant of the loop.

For this paper, we also use some basic inferences rules from Hoare logic. They are listed in Table 1. The consequence rule in [START_REF] Monteiro | A unified analysis for a class of long-step primaldual path-following interior-point algorithms for semidefinite programming[END_REF] is useful whenever 1. Axiomatic Semantics Inference Rules for a Imperative Language a stronger pre-condition or weaker post-condition is needed. By stronger, we meant the set defined by the predicate is smaller. By weaker, we mean precisely the opposite. The substitution rules in (14) and (15) are used when the code is an assignment statement. The weakest pre-condition P [x/expr] in [START_REF] Nesterov | Self-Concordant functions and polynomial time methods in convex programming[END_REF] means P with all instances of the expression expr replaced by x. For example, given a line of code y=x+1 and a known weakest pre-condition x+1<=1, we can deduct that y<=1 is a correct post-condition using the backward substitution rule. Although usually (14) is used to compute the weakest pre-condition from the known post-condition. Alternatively the forward propagation rule in (15) is used to compute the strongest post-condition. The skip rule in (13) is used when executing the piece of code does not change any variables in the pre-condition P .

{P1 ⇒ P2} C {Q1 ⇒ Q2} {P1} C {Q2} (11) {P } C1 {Q} ; {Q} C2 {W } {P } C1; C2 {W } (12)

Proof Checking

The utility of having the invariants in the code is that finding the invariants is in general more difficult than checking that given invariants are correct. By expressing and translating the high-level functional properties and their proofs onto the code level in the form of invariants, we can verify the correctness of the optimization program with respect to its high-level functional properties using a proof-checking procedure i.e. by verifying each use of a Hoare logic rule.

An Interior Point Algorithm and Its Properties

We now describe an example primal-dual interior point algorithm. We focus on the key property of convergence. We show its usefulness in constructing the inductive invariants to be applied towards documenting the software implementation. The algorithm is displayed in Table 2 and is based on the work in [START_REF] Monteiro | Primal-dual path-following algorithms for semidefinite programming[END_REF].

Details of the Algorithm

The algorithm in Table 2 is consisted of an initialization routine and a while loop. The operator length is used to compute the size of the input problem data. The operator ˆ-1 represents an algorithm such as QR decomposition that returns the inverse of the matrix. The operator ˆ0. 5 represents an algorithm such as Cholesky decomposition that computes the square root of the input matrix. The operator lsqr represents a least-square QR factorization algorithm that is used to solve linear systems of equation of the form Ax = b. With the assumption of real algebra, all of these operators return exact solutions.

In the initialization part, the states X, Z and p are initialized to feasible values, and the input problem data are assigned to constants F i , i = 1, . . . , m. The term feasible here means that X, Z, and p satisfies the equality constraints of the primal and dual problems. We discuss more about the efficiency of the initialization process later on.

The while loop is a Newton iteration that computes the zero of the derivative of the potential function

φ(X, Z) = n + ν √ n log Tr (XZ) -log det (XZ) -n log n, (16)
in which ν is a positive weighting factor. Note that the potential function is a weighted sum of the primal-dual cost gap and the barrier function potential.

The weighting factor ν is used in computing the duality gap reduction factor σ ≡ n n + ν √ n . A larger ν implies a smaller σ, which then implies a shorter convergence time. For our algorithm, since we use a fix-step size of 1, a small enough σ combined with the newton step could result in a pair of X and Z that no longer belong to the interior of the positive-semidefinite cone. In the running example, we have ν = 0.4714. While this choice of ν doubled the number of iterations of the running example compared to the typical choice of ν = 1,

Algorithm 1. MZ Short-Path Primal-Dual Interior Point Algorithm Input: F0 ≻ 0, Fi ∈ S n , i = 1, . . . , m, b ∈ R m ǫ: Optimality desired 1. Initialize: Compute Z such that Fi, Z = -bi, i = 1, . . . , m; Let X ← X; // X is some positive-definite matrix Compute p such that m i piFi = -X0 -F0; Let µ ← X, Z n ; Let σ ← 0.75; Let n ← length Fi, m ← length bi; 2. while nµ > ǫ { 3.
Let φ-← X, Z ; 4.

Let Tinv ← Z 0.5 ; 5.

Let T ← T -1 inv ; 6.

Compute (∆Z, ∆X, ∆p) that satisfies (17); 7.

Let

Z ← Z + ∆Z, X ← X + ∆X, p ← p + ∆p; 8. Let φ ← X, Z ; 9. Let µ ← X, Z n ; 10. if (φ -φ-> 0) { 11. return ; } } Table 2. Primal-Dual Short Path Interior Point Algorithm
however it is critical in satisfying the inductive invariants of the while loop that are introduced later this paper.

Let symbol T = Z -0.5 and T inv denotes the inverse of T . The while loop solves the set of matrix equations

F i , ∆Z = 0 m i ∆p i F i + ∆X = 0 1 2 (T (Z∆X + ∆ZX) T inv + T inv (∆XZ + X∆Z) T) = σµI -T inv XT inv .
(17) for the Newton-search directions ∆Z, ∆X and ∆p. The first two equations in [START_REF] Richter | Certification aspects of the fast gradient method for solving the dual of parametric convex programs[END_REF] are obtained from a Taylor expansion of the equality constraints from the primal and dual problems. These two constraints formulates the feasibility sets as defined in Eq (3). The last equation in (17) is obtained by setting the Taylor expansion of the derivative of (16) equal to 0, and then applying the symmetrizing transformation

H T : M → 1 2 T M T -1 + T M T -1 T , T = Z -0.5 (18)
to the result. To see this, note that derivative of (16) is XZ -

n n + ν √ n Tr (XZ) n I ZX - n n + ν √ n Tr (XZ) n I .
The transformation in (18) is necessary to guarantee the solution ∆X is symmetric. The parameter σ, as mentioned before, can be interpreted as a duality gap reduction factor. To see this, note that the 3rd equation in [START_REF] Richter | Certification aspects of the fast gradient method for solving the dual of parametric convex programs[END_REF] is the result of applying Newton iteration to solve the equation XZ = σµI. With σ ∈ (0, 1), the duality gap Tr (XZ) = nσµ is reduced after every iteration. The choice of T in (18) is taken from [START_REF] Monteiro | A unified analysis for a class of long-step primaldual path-following interior-point algorithms for semidefinite programming[END_REF] and is called the Monteiro-Zhang (MZ) direction. Many of the Newton search directions from the interior-point method literature can be derived from an appropriate choice of T . The M-Z direction also guarantees an unique solution ∆X to [START_REF] Richter | Certification aspects of the fast gradient method for solving the dual of parametric convex programs[END_REF]. The while loop then updates the states X, Z, p with the computed search directions and computes the new normalized duality gap. The aforementioned steps are repeated until the duality gap nµ is less than the desired accuracy ǫ.

High-level Functional Property of the Algorithm

The key high-level functional property of the interior point algorithm in 2 is an upper bound on the worst case computational time to reach the specified duality gap ǫ > 0. The convergence rate is derived from a constant reduction in the potential function in [START_REF] Nesterov | Primal-dual interior-point methods for self-scaled cones[END_REF] [START_REF] Mcgovern | Requirements and hard computational bounds for real-time optimization in safety-critical control systems[END_REF] after each iteration of the while loop.

Given the potential function in [START_REF] Nesterov | Primal-dual interior-point methods for self-scaled cones[END_REF], the following result gives us a tight upper bound on the convergence time of our running example.

Theorem 1. Let X -, Z -, and p -denote the values of X, Z, and p in the previous iteration. If there exist a constant δ > 0 such that

φ(X -, Z -) -φ(X, Z) ≥ δ, (19)
then Algorithm 2 will take at most O √ n log ǫ -1 Tr (X 0 Z 0) iterations to converge to a duality gap of ǫ, For safety-critical applications, it is important for the optimization program implementation to have a rigorous guarantee of convergence within a specified time. Assuming that the required precision ǫ and the problem data size n are known a priori, we can guarantee a tight upper bound on the optimization algorithm if the function φ satisfies [START_REF] Roux | A generic ellipsoid abstract domain for linear time invariant systems[END_REF]. For the running example, this is indeed true. We have the following result.

Theorem 2. There exists a constant δ > 0 such that theorem 1 holds.

The proof of theorem 2 is not shown here for the sake of brevity but it is based on proofs already available in the interior point method literature (see [START_REF] Kojima | Interior-Point Methods for the Monotone Semidefinite Linear Complementarity Problem in Symmetric Matrices[END_REF] and [START_REF] Nesterov | Primal-dual interior-point methods for self-scaled cones[END_REF]).

Using theorems 1 and 2, we can conclude that the algorithm in Table 2, at worst, converges to the ǫ-optimal solution linearly. For documenting the while loop portion of the implementation, however we need to construct an inductive invariant of the form 0

≤ φ(X, Z) ≤ c, (20)
in which c is a positive scalar. While the potential function in (16) is useful for the construction of the algorithm in Table 2, but it is not non-negative. To construct an inductive invariant in the form of (20), instead of using (16), consider φ(X, Z) = log Tr (XZ), [START_REF] Rtca | DO-333 formal methods supplement to DO-178C and DO-278A[END_REF] which is simply the log of the duality gap function.

Theorem 3. The function in (21) satisfies theorems 1 and 2.

An immediate implication of theorem 3 is that Tr (XZ) converges to 0 linearly i.e. ∃κ ∈ (0, 1) such that Tr (XZ) ≤ κ Tr (X -Z -), in which X -and Z -are values of X and Z at the previous iteration. Using Tr (XZ), we can construct the inductive invariant from [START_REF] Rtca | DO-178C, software considerations in airborne systems and equipment certification[END_REF] and to express the convergence property from theorem 1.

Additionally, there are two other inductive invariants to be documented for the while loop. The first one is the positive-definiteness of the states X and Z. We need to show that the initial X and Z belongs to a positive-definite cone. We also need to show that they are guaranteed to remain in that cone throughout the execution of the while loop. This inductive property is directly obtained from the constraints on the variables X and Z. It is also important in showing the non-negativeness of the potential function Tr (XZ). The second inductive invariant is a constraint on the distance of XZ from the central path defined by µI. This inductive property is expressed by the formula

XZ -µI F ≤ 0.3105µ. (22
)
The value 0.3105 in (22) is selected to guarantee that inductive invariant in (32) holds. Its method of selection is explained later in this paper.

Running Example

The Matlab implementation of the algorithm from Table 2 can be found in figure 4.

Input Problem

The input data is obtained from a generic optimization problem taken from systems and control. The details of the original problem is skipped here as it has no bearing on the main contribution of this article. We do like to mention that the matrices F i , i = 0, . . . , 3 are computed from the original problem using the tool Yalmip [START_REF] Löfberg | Yalmip : A toolbox for modeling and optimization in MATLAB[END_REF].

Autocoding of Convex Optimization Algorithms

In this paragraph, we describe some general ideas towards the credible autocoding of convex optimization algorithms. We also want to refer the readers to an existing work by Boyd [START_REF] Mattingley | Cvxgen: a code generator for embedded convex optimization[END_REF] on the autocoding of convex optimizatino algorithm. first interior point algorithm can be modelled within synchronous language environment. For example, the dynamics of the Newton iteration can be modelled using delays and a feedback loop. The scaling matrix T for the Newton direction or the duality gap reduction parameter σ can be captured by the appropriate choice of gains and sums. For the more complex interior point implementations such as those with heuristics in the predictor, it is far less likely that one can easily construct the model in a synchronous programming language. The variations of the interior point method discussed in this paper is relatively simple with changes in one of the parameters such as the symmetrizing scaling matrix T , the step size α which is defaulted to 1 in the algorithm description, the duality gap reduction parameter σ, etc. If we can have standard templates of optimization models that are parameterized by those values, then we can easily plug in the values and then auto-generate the code. This can be applied to the proof as well, as we can construct proof templates for each major variations of interior point algorithms and then plug-in the appropriate values into the auto-generated proof templates. In the next section, we give an example proof template on the code level in the Hoare-triple style for the Matlab implementation.

Matlab Implementation

The Matlab implementation has one main difference from the algorithm description. The first is that, in the Matlab implementation, the current values of X, Z, p are assigned to the variables X -, Z -, and p -at the beginning of the while loop. Note that the variables X -, Z -, and p -are denoted by Xm, Zm and pm respectively in the Matlab code. Because of that, steps 3 to 6 of algorithm in Table 2 are executed with the variables X -, Z -, and p -instead of X, Z, and p. Accordingly, step 7 becomes Z ← Z -+ ∆Z -, X ← X -+ ∆X -, p ← p -+ ∆p -. This difference is the result of the need to have the invariant of the form φ (X, Z) ≤ κφ (X -, Z -) for κ ∈ (0, 1), which is important since it expresses the fast convergence property from theorem 1.

Annotated Matlab Implementation

Now we want to express the inductive invariants and their proofs as Hoare triples [START_REF] Turing | Checking a large routine[END_REF] on the Matlab implementation. For the reason of compactness, we have chosen to annotate a Matlab implementation of the algorithm.

Preliminaries

The annotations are expressed using a pseudo Matlab specification language that is analogous to the ANSI/ISO C Specification Language (ACSL) for C programs. We use overloaded operators in the annotations such as > to denote ≻ as well as its regular meaning with scalars. Variables are referenced using either their mathematical symbols such as φ, φ -, X, and X -or their corresponding Matlab names phi, phim, X, and Xm Likewise code and invariants are expressed using the Matlab language i.e. phim=trace(Xm*Zm)/n or their equivalent mathematical representation φ -= Tr (X -Z -) n . The implementation calls three functions vecs, mats and krons. These functions are used to convert the matrix equations from (17) into matrix vector equations in the form Ax = b. This type of transformation is commonly used in algorithms in which solutions to matrix equations are needed. For more details, please refer to the appendix.

Annotations For the Initialization

The implementation is consisted of two parts. The first part is the initialization routine. This part defines all the constants required for the formulation of the problem, and initializes the states. The constants are F0, F1,F2,F3,b which corresponds to the symbols F 0 , F i , i = 1, 2, 3 from the algorithm. The states are X, Z, and p corresponds to the variables X,Z,p in the Matlab code. The second part of the implementation is a while loop, in which its execution generates a trace (X(k), Z(k), p(k)) , k ∈ N until Tr (X(k)Z(k)) ≤ nǫ. We first discuss the annotations in the initialization portion. The annotations of high-level functional properties, namely the convergence property from theorems 1 and 2 is discussed in the ensuing section on the while loop.

In the first part of the initialization process, the constants of the input problem are defined. These constants need to satisfy certain regularity conditions such as symmetry or positive-definiteness. For example, in line 2, after we assign the matrix 1.0 0 0.0 0.1 to F0, a correct post-condition is that F0 is positive-definite.

The symmetry of a matrix is expressed using the Matlab transpose function. This function has its usual meaning. We do not explicitly define it here in this paper. The function smat used in the annotation on line 9 of figure 5 is the inverse of the function svec, where svec is similar in every aspect to the function vecs but with the factor √ 2 replaced by 2. For example the code smat(b) returns the matrix

0.4 -0.1 -0.1 0.2 . (23
)
The correctness of the Hoare triples at lines 1, 3, 5, 7, 9 from figure 5 proven as the validity of each of the post-conditions are needed to ensure that the input optimization problem is well-posed. For example, if one of the F i is not symmetrical, then the solution ∆Z to the third equation of (17) is not necessarily symmetrical. The next part of the initialization process computes the sizes of the problem. In our example, m denotes the number of equality constraints in the dual formulation and n denotes the dimensions of the semi-definite variables X and Z. In figure 6, the post-conditions are the requirement that the problem sizes should be at least one. The next section of the initialization process computes feasible initial conditions for the states Z, X, and p. A feasible Z is computed from solving a system of linear equations formulated using the m affine constraints from the dual problem. The variable X on the other hand can be initialized to any positive-definite matrix. In our running example, the variable is initialized to a value that satisfies the property

XZ -µI F ≤ 0.3105µ. (24
)
This property is one of the inductive invariants discussed later in this paper.

Remark 1. The property in (24) is a constraint on the set of points belonging to the interior of the positive semi-definite cone in which X can be initialized to. Essentially, it guarantees that X is initialized to within a neighborhood of the central path i.e. not initialized too close to the boundary of the semi-definite cone, which for some optimization problems, means a large enough convergence time to present trouble in a real-time optimization setting. Efficient methods exist in the interior point method literature (see [START_REF] Mcgovern | Computational Analysis of Real-Time Convex Optimization for Control Systems[END_REF]) to guarantee initialization within a certain small neighborhood of the central path. For the sake of brevity, the details are skipped here.

Using this initial X, we can compute an initial p that satisfies the feasible set defined by the matrix equality constraint F 0 +

m i p i F i + X = 0 from the primal
problem. An important property of the variables X and Z is their positive- The last portion of the initialization code is shown in figure 8. The code assigns the desired optimality 1×10 -8 to the variable epsilon, and computes the initial normalized duality gap mu and the initial potential phi. By using the skip rule from (13), we can propagate forward the invariants X ≻ 0 and X ≻ 0 from figure 7 to the end of the code in figure 8. By using the consequent rule from [START_REF] Monteiro | A unified analysis for a class of long-step primaldual path-following interior-point algorithms for semidefinite programming[END_REF], and the fact that X ≻ 0∧Z ≻ 0 =⇒ Tr (XZ) ≥ 0 =⇒ ∃c > 0, Tr (XZ) ≤ c, we get the pre-conditions in line 3 of figure 8. Since line 5 is a statement that assigns the expression Tr (XZ) to the variable φ, we can apply the backward substitution rule from [START_REF] Nesterov | Self-Concordant functions and polynomial time methods in convex programming[END_REF] here. We get the post-conditions phi<=c and phi>=0, which are epsilon =1 e -8; sigma =0.75; % r e q u i r e s e x i s t s c>0 && t r a c e (XZ)<=c && t r a c e (XZ) >=0; % e n s u r e s phi<=c && phi >=0; phi = trace (X * Z) ; 8. The positive constant c remains symbolic in our annotated example. In a more realistically annotated code, a numerical value maybe assigned to c. Now we are ready to examine the while loop portion of the optimization code.

Annotations for the while loop

The post-condition 0

≤ φ ≤ c (25)
in line 4 of figure 8 is precisely the inductive invariant from (20) obtained using theorem 3. Invoking the while axiom from Hoare logic, we insert phi<=c and phi>=0 as both a pre and post-conditions for the while loop. They are displayed in figure 9.

We also have the pre-conditions X ≻ 0 and Z ≻ 0 that is propagated, using the skip rule, from the annotated code in figure 7. We claim that these two are also inductive invariants for the while loop, which is to be proven later. They appear in figure 9 as both pre and post-conditions of the while loop. For now we assume that X ≻ 0 and Z ≻ 0 are true, which implies that phi>=0 is true. This ends the proof for the inductive invariant phi>=0. Now we move on to provide % r e q u i r e s phi<=c && c>0 && phi >=0 && X>0 && Z>0; % e n s u r e s phi<=c && c>0 && phi >=0 && X>0 && Z>0; We begin the proof by propagating forward the invariant Tr (XZ) ≤ c from line 3 of figure 8 using the skip rule. This results in the pre-condition trace(X*Z)<=c in line 1 of figure 10. Using the backward substitution rules through lines 2 to 5, we obtain the pre-condition trace(Xm*Zm)<=c on line 5 of figure 10. The next line of code assigns the expression Tr (X -Z -) to the variable φ -. Apply the substitution rule again, we obtain the post-condition phim<=c displayed in line 6 of figure 10. Since the variable phim is not changed by any line of code after line 5, by applying the skip rule, we obtain the post-condition phim<= c in line 11 of 10. Now to show that phi<=c is also valid post-condition for the while loop, we insert a predicate

φ -φ -< 0 (26)
for the code in line 15 of figure 10. This is displayed in line 13 of figure 10. It is clear that phim<=c and phi-phim<0 implies phi<=c. If the predicate in (26) holds true, then by consequent rule from [START_REF] Monteiro | A unified analysis for a class of long-step primaldual path-following interior-point algorithms for semidefinite programming[END_REF], the post-condition phi<=c is correct. Note that the condition in (26) is equivalent to the condition in [START_REF] Roux | A generic ellipsoid abstract domain for linear time invariant systems[END_REF]. Now it is only necessary to show that phi -phim < 0 holds true.

% r e q u i r e s t r a c e (X * Z)<=c ; Reduction in the Duality Gap To prove that the quantity Tr (XZ) is decreasing i.e. phi-phim<0, we start with the simple fact that if X, Z -σ X -, Z -= 0, with σ ∈ (0, 1), then X, Z -X -, Z -< 0. We also assume for now that Tr (XZ) -0.75 Tr (X -Z -) = 0 holds as a postcondition for line 20 of figure 11. We also have Tr (X -Z -) = φ -, which holds true because of line 7 of figure 10. This means we have Tr (XZ) -0.75 Tr (X -Z -) = 0 ∧ Tr (X -Z -) = φ -=⇒ Tr (XZ) -φ -< 0. By the consequent rule, we obtain the pre-condition trace(X*Z)-phim<0, which is displayed in line 21 of figure 11. We move forward to the next line of code, which is Line 25 figure 11. It is the assignment statement and by applying the backward substitution rule on the inserted post-condition phi-phim<0, we get exactly the pre-condition trace(X*Z)-phim<0. However this does not complete the proof, since we still need to show that the post-condition in line 20 of figure 11 is true. For that we start at the first line of code of figure 11, which is an statement that assigns the ∆p -i F i + ∆X -= 0, then ∆X -, ∆Z -is also zero.

To see that lemma 1 holds, note that ∆X -, ∆Z -= -

m i p i-F i , ∆Z -= - m i ∆p i-F i , ∆Z -= 0.
Now we show the post-condition from (28) is also true. We already know lines 11 and 12 figure 11 computes ∆Z -and ∆X -that satisfies the equation

1 2 (T (Z -∆X -+ ∆Z -X -) T inv + T inv (∆X -Z -+ X -∆Z -) T) = σµI -T inv X -T inv . (29)
Taking the trace of both sides of (29), we obtain the following equation

X -, ∆Z -+ Z -, ∆X -= Tr σµI -Z 1 2 -X -Z 1 2 - (30)
With (30), we can state that Tr (X -∆Z -)+Tr (Z -∆X -) is equivalent to Tr σµI -Z

1 2 -X -Z 1 2 - =σnµ -X -, Z -.
We now move forward to lines 17 to 20 of the annotated code in figure 11. This next block of code updates the states X, Z, p with the computed Newton steps. For this block of code, we start with the pre-condition

X -, Z -+ X -, ∆Z -+ Z -, ∆X -+ ∆X -, ∆Z -= σnµ, (31)
which is obtained from summing the post-conditions in (27) and (28) with the term X -, Z -. Note that the post-condition nµ = Tr (X -Z -) from line 2 of figure 11 still holds true at line 17, so we have X -+ ∆X -, Z -+ ∆Z -= σnµ =⇒ X -+ ∆X -, Z -+ ∆Z --σ X -, Z -= 0. By the consequent rule and since σ = 0.75 by line 2 of figure 8, we get the post-condition X -+ ∆X -, Z -+ ∆Z --0.75 < X -, Z ->= 0, which is displayed as pre-condition for line 16 of figure 11. Next we apply the backward substitution rule on the post-condition X, Z -0.75 < X -, Z ->= 0 in line 19 of figure 11, we get the desired pre-condition from line 16. We now have finished the analysis of the inductive invariant phi<=c.

Before we move on to the next section, note that the post-condition X, Z -0.75 < X -, Z ->= 0 also implies that Tr (XZ) < 0.76φ -, which is another valid pre-condition for line 25 of figure 11. Using the substitution rule on Tr (XZ) < 0.76φ -, we get the post-condition φ < 0.76φ -, which is displayed in line 24 of figure 11. This invariant, in conjunction with the while loop's termination condition φ <= ǫ, can be used to prove termination of the while loop within the bounded time specified in theorem 1.

Positive-Definiteness of X and Z To show that X ≻ 0 and Z ≻ 0 are valid inductive invariants, we use some results from [START_REF] Monteiro | Primal-dual path-following algorithms for semidefinite programming[END_REF]. Note that some of these results are posted throughout this section without proof for the sake of brevity. First, we have a norm bound on the distance of XZ from the central path expressed using the invariant

XZ -µI F ≤ 0.3105µ, (32)
As discussed in the previous section, the variable X is initialized to a value such that the condition in (32) is satisfied. Assume that (32) is true, we have the pre and post-condition norm(X*Z-mu*eye(2,2),'fro')<=0.3105*mu for the while loop. They are displayed respectively on line 1 and 2 of figure 12. We also of course To prove the inductive invariants in figure 12, we examine the body of the while loop which is displayed in figure 13. We first insert the post-conditions X -≻ 0 and Z -≻ 0 respectively for lines 2 and 4 of figure 13. Note that by using the backward substitution rule twice, those post-conditions becomes the pre-conditions X ≻ 0 and Z ≻ 0, which precisely match with the ones inserted at the beginning of the while loop. Additionally, the invariant from (32) is also transformed into the post-condition

X -Z --µI F ≤ 0.3105µ, (33)
which is displayed in line 7 of figure 13. The post-condition in (33) is important as it implies several more conditions that are vital to proving the correctness of Z ≻ 0 and X ≻ 0. The next part of the code computes the Newton directions. For the code in line 17 of figure 13, we insert the post-condition

Z -0.5 - ∆Z -Z -0.5 - F ≤ 0.7. (34
)
The post-condition in (34) is generated from the post-condition in (33). The value 0.7 is obtained from an over-approximation of the expression n (1 -σ) 2 + 0.3105 2 1 -0.3105 .

The proof for this result is skipped here and can be found in [START_REF] Monteiro | Primal-dual path-following algorithms for semidefinite programming[END_REF]. We move on to the next line of code, which computes the Newton search direction ∆X -. Here we insert the post-condition

Z -0.5 - ∆X -∆Z -Z 0.5 -F ≤ 0.3105σµ, (35)
which is also generated from the post-condition in (33). Next we insert the postcondition

Z -0.5 - (∆Z -X -+ Z -∆X -) Z 0.5 -+ Z 0.5 -(X -∆Z -+ ∆X -Z -) Z -0.5 - = 2 σµI -Z 0.5 -X -Z 0.5 - . (36)
for line 21 of figure 13, which is displayed in line 20. Note that for the invariants in (34), (35), and (36), we have implicitly assumed that the variable Zh is equal to Z 0.5 -and the variable Zhi is equal to Z -0.5 -. This is true because of the assignment statements in lines 9 and 10 figure 13. As discussed before, ∆X - and ∆Z -is assumed to exactly satisfy the equation in (29). The correctness of post-condition in (36) is verified by multiplying (29) by 2.

The next line of code, which is line 24 of figure 13, updates the state X with the computed Newton step ∆X -. Using consequent rule, we can insert the pre-condition

1 2 Z -0.5 - ((Z -+ ∆Z -) (X -+ ∆X -) -σµI) Z 0.5 -+ Z 0.5 -((X -+ ∆X -) (Z -+ ∆Z -) -σµI) Z -0.5 - F ≤ 0.3105σµ, (37)
which is generated from the post-condition in (36), for line 24 of 13. The proof for this is as follows. First note that

Z -0.5 - ((Z -+ ∆Z -) (X -+ ∆X -) -σµI) Z 0.5 -+ Z 0.5 -((X -+ ∆X -) (Z -+ ∆Z -) -σµI) Z -0.5 - = Z -0.5 - (∆Z -X -+ Z -∆X -) Z 0.5 -+ Z 0.5 -(X -∆Z -+ ∆X -Z -) Z -0.5 - + 2 Z 0.5 -X -Z 0.5 --σµI + Z -0.5 - (∆Z -∆X -) Z 0.5 -+ Z 0.5 -(∆X -∆Z -) Z -0.5 - . (38)
Second, by using the post-condition in (36), we can simplify (38) further to

Z -0.5 - (∆Z -∆X -) Z 0.5 -+ Z 0.5 -(∆X -∆Z -) Z -0.5 - . (39)
Taking the Frobenius norm of (39) and using the post-condition in (35), we get the pre-condition in (37). This ends the proof to show that (36) implies (37). Lines 24 and 28 updates the states X and Z. We now apply the substitution rule to the weakest pre-condition in (37), and obtain the post-condition

1 2 Z -0.5 - (ZX -σµI) Z 0.5 -+ Z 0.5 -(XZ -σµI) Z -0.5 - F ≤ 0.3105σµ, (40)
which is displayed in line 26 of figure 13. For the code in line 28 of figure 13, we insert a pre-condition

Z -+ ∆Z -≻ 0, (41)
which is generated from the post-condition in (34). To see that (41) is a correct pre-condition, we use the post-condition from (34), which implies that Z -0.

which combined with (42) implies Z -+ ∆Z -≻ 0. By backward substitution, we can obtain the weakest pre-condition in (41) from the post-condition Z ≻ 0. This completes the proof for Z ≻ 0 being an inductive invariant. Next we show that X ≻ 0 is also a valid post-condition for the loop body. For line 30 of figure 13, we introduce the invariant

that holds true for any Z ≻ 0, Z -≻ 0, and symmetric X.

Finally we move to examine the code in line 36, we see that the variable mu is updated with the expression Tr (XZ) n . From the previous section, we know X, Z -σ X -, Z -= 0 is an invariant. This combined with the fact that the condition nµ = Tr (X -Z -) still holds true before the execution of line 36 implies that X, Z = nσµ (45) is a valid pre-condition for line 36 of 13. Using the invariants from (40), (44), the pre-condition in (45), and apply the backward substitution rule, we deduct a necessary post-condition of Z 0.5 XZ 0.5 -µI F ≤ 0.3105µ (46)

for lines 36 of figure 13. The post-condition in (46) implies both XZ -µI F ≤ 0.3105µ and Z 0.5 XZ 0.5 ≻ 0. The former concludes the proof for the inductive invariant XZ -µI F ≤ 0.3105µ. The latter in conjunction with Z ≻ 0, which is already proven, implies that X ≻ 0. This concludes the proof for the inductive invariant X ≻ 0. These post-conditions are displayed in lines 34 and 35 of figure 13.

Future Work

In this paper, we introduce an approach to communicate high-level functional properties of convex optimization algorithms and their proofs down to the code level. Now we want to discuss several possible directions of interest that one can explore in the future. On the more theoretical front, we can look at the possibility that there might exist linear approximations to the potential function used in the construction of the invariant. Having linear approximations would possibly allow us to construct efficient automatic decision procedures to verify the annotations on the code level. On the more practical front, we also need to demonstrate the expression of the interior point semantics on an implementationlevel language like C rather than the high-level computational language used in this paper. Related to that is the construction of a prototype tool that is capable of autocoding a variety of convex optimization programs along with their proofs down to the code level. There is also a need to explore the verification of those proof annotations on the code level. It is clear that none of the Hoare triple annotations shown in the previous section, even expressed in a more realistic annotation language, can be handled by existing verification tools. Finally, we also need to be able to reason about the invariants introduced in this paper in the presence of the numerical errors due to floating-point computations.

Conclusions

This paper proposes the transformation of high-level functional properties of interior point method algorithms down to implementation level for certification purpose. The approach is taken from a previous work done for control systems.

We give an example of a primal-dual interior point algorithms and its convergence property. We show that the high-level proofs can be used as annotations for the verification of an online optimization program.

11 Appendix

Vectorization Functions

The function vecs is similar to the standard vectorization function but specialized for symmetric matrices. It is defined as, for 1 ≤ i < j ≤ n and M ∈ S n , vecs M = M 11 , . . . , √ 2M ij , . . . , M nn T .

(47)

The factor √ 2 ensures the function vecs preserves the distance defined by the respective inner products of S n and R n(n+1) 2

. The function mats is the inverse of vecs. The function krons, denoted by the symbol ⊗ sym , is similar to the standard Kronecker product but specialized for symmetric matrix equations. It has the property

(Q 1 ⊗ sym Q 2) vecs (M) = vecs 1 2 Q 1 M Q T 2 + Q 2 M Q T 1 . (48)

Fig. 1 .

 1 Fig. 1. Visualization of autocoding and verification process For Optimization Algorithms

 and a, b ∈ R n be two column vectors. Tr (A) = n i=1 a i,i denotes the trace of matrix A. •, • denotes an inner product, defined in R n×n × R n×n as A, B := Tr B T A and in R n × R n as a, b := a T b. The Frobenius norm of A is defined as A F = A, A . The symbol S n denotes the space of symmetric matrices of size n × n. The space of n × n symmetric positive-definite matrices is denoted as S n+ = S ∈ S n |∀x ∈ R n \ {0}, x T Sx > 0 . If A and B are symmetric, A ≺ B (respectively A ≻ B) denotes the positive (respectively negative)-definiteness of matrix B-A. The symbol I denotes an identity matrix of appropriate dimension.

 {P } SKIP {P } (13) {P [e/x]} x := expr {P } (14) {P } x := expr {∃x0 (x = expr [x0/x]) ∧ P [x0/x] } (15) Table

Fig. 5 .

 5 Fig. 5. Input Problem Data

% e n s u r e s n>=1;Fig. 6 .

 6 Fig. 6. Input Problem Sizes

Fig. 7 .

 7 Fig. 7. Initialization of the Optimization Variables

Fig. 8 .

 8 Fig. 8. Duality Gap and the Initial Potential

Fig. 9 .

 9 Fig. 9. Invariants for the Main Loop

Fig. 10 .

 10 Fig. 10. Loop Body

Lemma 1 .

 1 Z -to the variable µ. We insert an appropriate post-condition nµ = Tr (X -Z -). This corresponds to the annotation n*mu==trace(Xm*Zm) shown in line 2 of figure11. This post-condition remains true for the rest of the loop body.We move on to the next block of the code in figure11. By examining the lines 4 to 15 of the code, we can determine that this part of the program compute the search directions ∆X -, ∆Z -and ∆p -by solving the linear equations listed in 17. We have the post-conditions∆X -, ∆Z -= 0 (27) and Tr (X -∆Z -) + Tr (Z -∆X -) = σnµ -Tr (X -Z -)(28)that holds true for the block of code from lines 4 and 15. They are displayed as annotations in lines 13 and 14 of figure 11. To show that the post-condition ∆X -, ∆Z -= 0 is true, we have the following theorem. If ∆Z -satisfies the equation F i , ∆Z -= 0, and ∆X -satisfies the equation m i

% r e qFig. 12 .

 12 Fig. 12. Positive-Definiteness of X and Z as Inductive Invariants

5 -∆Z -Z -0. 5 -F < 1 5 - 5 -F 5 - 5 - 5 - 5 -= Z -0. 5 -

 5515555555 ∆Z -Z -0.< 1 =⇒ I + Z -0.∆Z -Z -0.also have the fact thatI + Z -0.∆Z -Z -0.(Z -+ ∆Z -) Z -0.5 -,

Z 0. 5

 5 XZ 0.5 -σµI F ≤

Acknowledgements

The authors would like to acknowledge support from the Vérification de l'Optimisation Rapide Appliquée à la Commande Embarquée (VORACE) project, the NSF Grant CNS -1135955 "CPS: Medium: Collaborative Research: Credible Autocoding and Verification of Embedded Software (CrAVES)" and Army Research Office's MURI Award W911NF-11-1-0046

% r e q u i r e s t r a c e (X * Z)-phim <0;

% r e q u i r e s t r a c e (X * Z) < 0 . Let Q 1 = T Z and Q 2 = T inv and M = ∆X, we get

Additionally, let Q 1 = T , Q 2 = XT inv , and M = ∆Z, we get

Combining (49) and (50), we get exactly the left hand side of the third equation in [START_REF] Richter | Certification aspects of the fast gradient method for solving the dual of parametric convex programs[END_REF]. Given a ∆Z, we can compute ∆X by solving Ax = b for x where while (phi > epsilon)

% r e q u i r e s t r a c e (X * Z)<=c ;

% r e q u i r e s n * mu==t r a c e (X * Z) ; % r e q u i r e s X>0; % e n s u r e s Xm>0;