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Abstract. This paper is about modeling perception-action loops and, more precisely, the study of
the influence of motor knowledge during perception tasks. We use the Bayesian Action-Perception
(BAP) model, which deals with the sensorimotor loop involved in reading and writing cursive
isolated letters and includes an internal simulation of movement loop. By using this probabilistic
model we simulate letter recognition, both with and without internal motor simulation. Comparison
of their performance yields an experimental prediction, which we set forth.
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INTRODUCTION

Some people enjoy watching sport events, while others do not. The reason, the “why”, is

probably irrelevant to scientific curiosity; tastes differ, personalities and temperaments

also. However, the manner, the “how” of these differences, is worthy of attention. Indeed,

the general principles underlying the numerous and complicated processes involved in

perception and (in this case) in perception of actions, are yet to be understood.

Recent observations suggest that perception of performed actions is based not only

on sensory cues, but also on internal simulation of actions [1, 2], especially if the action

performed is part of the perceiving subject’s action repertoire [3].

Instead of sport actions, which usually involve complicated articulated systems, we

study here the perception-action loop involved in handwriting and reading. In the case

of this simpler system, too, one finds evidence that the motor system is involved in letter

recognition. Behavioral [4, 5, 6, 7] and neuro-imaging studies [8, 9] both support this

idea.

For instance, Longcamp et al. have studied the activation of motor areas of the brain

during writing and reading tasks [8]. They observed that a part of the motor cortex is

significantly activated during both tasks. This is surprising for the reading task: although

the subjects remain still, a motor area was activated. Another class of stimuli was
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presented: pseudo-letters, which are visually as complex as letters, but for which the

subjects have no previous experience in writing. When such pseudo-letters were visually

presented, the same motor area was not activated.

A much discussed interpretation of these observations is that perceiving a letter would

entail a motor simulation of movements associated with the writing of that letter. This

mechanism would, it is supposed, improve perceptual recognition.

The Bayesian Action-Perception (BAP) model is a model of the entire perception

action loop involved in reading and writing cursive, isolated letters [10]. It is composed

of perception, action and internal representation components, and also includes a model

of internal simulation of movements, in the form of a feedback loop. This loop starts

from the letter representation, goes to generated trajectories and back to the letter

representation: it it both simulated action and simulated perception.

In this paper, we first show how this proposed mechanism for internal simulation

is defined mathematically. We then use it to compare perception processes with and

without internal simulation of movements. The analysis of recognition performance

indicates that, in easy situations, the internal simulation does not improve performance,

whereas, in difficult situations, it helps in retrieving some of the missing information.

This observation is the basis for an experimental prediction, which we detail.

BAP MODEL: ASSUMPTIONS AND MODEL ARCHITECTURE

We briefly here summarize the main components of the BAP model. Its global architec-

ture is shown Fig. 1.

The model is articulated around internal representations CLV and CLP of letters, one

for each considered letter L and writer W . These act as a pivot between the perception

model and the action model.

Letter representation models are based on two main hypotheses. First, letters are en-

coded in the Cartesian reference frame (the workspace). This is an effector-independent

representation and ensures motor equivalence, which is the fact that writing can be per-

formed with any effector without preliminary learning and with recognizable resulting

writing style [11]. Second, letters are not encoded as complete trajectories, but are sum-

marized as sequences of via-points along the trajectory. These via-points are placed at

the starting position, the ending position, at cusps and points of the trajectory where ei-

ther the vertical or horizontal velocity is zero (in other words, where the tangent is either

vertical or horizontal). At each of these via-points, probability distributions about the

X ,Y positions and velocities are memorized.

The perception model relates the input (visual) trajectory V to the letter representation

model, using a probabilistic term P(CLV |V ) that describes how via-points are extracted.

The action model is composed of two parts. The first is a trajectory generation phase,

which relates the letter representation to a complete prepared trajectory. It is centered

on a P(P | CLP) term, which uses the acceleration-minimization algorithm to provide

intermediary trajectories between given via-points. The second part of the action model

is an effector model P(E | P), which describes the geometric and kinematic models of

the effector, in order to translate the generated trajectory P to effector commands.

The BAP model is translated, in the Bayesian Programming framework, into a joint
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FIGURE 1. Left: architecture of the BAP model. Right: corresponding acyclic graph for defining the

joint decomposition, including λ variables used as probabilistic switches.

probability distribution. However, the schema of Fig. 1 cannot be directly encoded as

a probabilistic dependency structure. Indeed, the feedback loop does not correspond to

any valid application of Bayes’ rule. We circumvent this problem with duplication of

nodes: the motor model is coupled with a simulated perception model. In other words,

the generated trajectory is copied, with P(S | P), as an input to a simulated perception

model P(CS | S).
The other technicality is that we include, in the model, λ coherence variables [12].

These serve as probabilistic switches, allowing us to deactivate sub-models explicitly

during inference. For instance, this is used to compare perception with internal simu-

lation (the whole model is activated) with perception without internal simulation (the

action model and simulated perception are deactivated). The technical overhead is a du-

plication of nodes around the λ variables. For instance, CLP is duplicated into CLP and

CP, and the P(P | CLP) term described above becomes P(P | CP), etc.

The resulting joint decomposition is as follows (see Fig. 1, right):

P(L W CLV CV CLP CP CLS CS V P E λL λV λP λS)

= P(L)P(W )

P(CLV | L W )P(CLP | L W )P(CLS | L W )

P(CV | V )P(V )P(P | CP)P(CP)P(E | P)P(S | P)P(CS | S)

P(λV | CLV CV )P(λP | CLP CP)P(λS | CLS CS)P(λL | CLV CLP) .

Each term of the form P(CL | L W ) is itself structured, because a sequence of N via-

points is actually represented using a series of N variables CL =C0:N
L . Furthermore, each



Cn
L is itself the conjunction of position Cn

Lx,C
n
Ly variables and velocity Cn

Lẋ,C
n
Lẏ variables.

This yields the following decomposition:

P(C0:N
L | L W )

= P(C0
Lx | L W )P(C0

Ly | L W )P(C0
Lẋ | L W )P(C0

Lẏ | L W )

N

∏
n=1

P(Cn
Lx | Cn−1

Lx L W )P(Cn
Ly | Cn−1

Ly L W )P(Cn
Lẋ | Cn−1

Lẋ L W )P(Cn
Lẏ | Cn−1

Lẏ L W ) .

For full mathematical definitions of the terms in this model, the reader should refer to

Gilet’s PhD thesis [10].

BAP MODEL SIMULATION EXPERIMENTS

We now present experimental results using the BAP model: we simulate recognition

tasks both with and without internal simulation of movements.

Experimental environment and parameter identification

We first set the parameters of the internal representation of letters, by a data collection

procedure and learning phase. Using a Wacom Intuos 3 pen tablet, we asked 4 adults to

write 40 sample trajectories for each of 22 letters, providing a complete database of

3,520 trajectories. We considered only letters without pen-up: we removed is, js, ts and

xs (as in [13]).

For each letter L, writer W and via-point position Cn−1
Lx , Cn−1

Ly and velocity Cn−1
Lẋ , Cn−1

Lẏ ,

we obtain the number of observations pi of each via-point position and velocity (at index

N). These are then used to compute the parameters of Laplace succession laws for the

terms of the form P(Cn
Lx | Cn−1

Lx L W ) in letter representation models.

With all the parameters of the model defined, Bayesian inference is used to automati-

cally compute any probabilistic term of interest. A general-purpose probabilistic engine

(ProBT© of ProBayes) is used for all of the following inferences.

Reading letters without internal simulation of movement

The cognitive task of letter recognition comprises identifying an input trajectory. In

other words, the question is: “given a trajectory produced by a known writer, what is the

letter?” Based on Bayesian inference in the BAP model, with only the perception and

letter representation models activated, this amounts to:

P(L | [V 0:M
x = v0:M

x ][V 0:M
y = v0:M

y ][W = w][λV = 1])

∝ P([CLV = f (v0:M
x ,v0:M

y )] | L [W = w]) ,

where V 0:M
x ,V 0:M

y is the input trajectory, w is the specified writer and f is the via-point

extraction function.
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FIGURE 2. X and Y position profiles (left and center), and the resulting input trajectory (an l), with

extracted via-points shown as vectors (right).

This probabilistic equation can be explained by an algorithmic equivalent. Indeed,

the computation proceeds as if the via-points extracted from the input trajectory were

matched to the representations learned. For each via-point and each possible letter, both

positions and velocities are compared, using the memorized probability distributions:

“if the letter was an a, what would be the probabilities of observing the positions and

velocities of the first observed via-point?”, etc.

When presented with input trajectories, the model computes the probability distribu-

tion over letters; it is usually very close to a delta (Dirac) probability distribution. Fig. 2

shows an example where the model correctly classifies the input trajectory as an l.

We ran a systematic experiment over our database of sample trajectories: out of our

40 trajectories, 35 were used for learning parameters and 5 were used for testing. We

repeated this procedure using a classical K-fold cross-validation method. The result

was a complete confusion matrix (which we do not detail here for lack of space).

However, aggregating the correct classifications yields a performance indicator: overall,

we obtained a satisfying correct recognition rate of 93.4%. Misclassifications arose due

to the geometric similitude of some letters.

Reading letters with internal simulation of movements

We reproduced the same experiment as above in a different setting: we allowed the

entire BAP model to function during the perception task. This is done by setting all λ

variables to one and computing:

P(L | [V 0:M
x = v0:M

x ][V 0:M
y = v0:M

y ][W = w][λV = 1][λL = 1][λP = 1][λS = 1])

∝ P([CLV = f (v0:M
x ,v0:M

y )] | L [W = w])P([CLS = h(g(CLV ))] | L [W = w]) .

The result of this inference is the product of two terms: the first term is the same

as previously, when the internal simulation of movements was deactivated. The second

term is the result of the simulation loop: given the via-points extracted from the input

trajectory, a trajectory is generated internally by the action model (function g), which is

then analyzed by simulated perception (function h).

In the same setting as before, with our 40-trajectory database, we obtain a correct

recognition rate of 90.2%. An analysis of the confusion matrices of both experiments

(not shown) indicates that specific errors differ: some letters which were misclassified in



FIGURE 3. Examples of incomplete trajectories presented to the perception algorithm, and extracted

via-points (boxes). The motor simulation produces a complete trajectory (smooth trajectories superposed

to the initial, incomplete trajectories), which is then analyzed by simulated perception.

the reading task without simulated perception were recognized correctly using simulated

perception, and vice versa. Overall, the misclassification rates are of the same magnitude

in both conditions (90 vs. 93%).

Reading truncated letters

We also designed another experiment with a more difficult scenario. Instead of pre-

senting complete trajectories as input, we designed truncated versions of trajectories,

that is to say, trajectories where we erased a set of consecutive points.

In this context, we found several cases where reading without motor simulation would

fail to recognize the input trajectory, whereas reading with motor simulation would

succeed. We show in Fig. 3 some examples of truncated letters.

Consider for instance the letter g shown on the left of Fig. 3. Without internal simula-

tion, the perception algorithm incorrectly classifies the input trajectory as a q. However,

when internal simulation is activated, the motor model “fills the gap” by generating a

complete trajectory joining the via-points; the resulting complete trajectory is analyzed

back by simulated perception. This added information causes the perception algorithm

to recognize the letter correctly as a g.

EXPERIMENTAL PREDICTION

We summarize our observations as follows: in the BAP model, in the easy case of com-

plete letters, internal simulation of movements does not improve performance. In the

harder case of truncated letters, however, internal simulation helps to correct misclassi-

fications.

This is a hypothesis that we now pursue experimentally, in two directions. First, it

would be fruitful to make this prediction more precise by quantifying the difference in

performance in the case of truncated letters. This would require a more complete (or a

reference) learning database, which is as yet unavailable.



FIGURE 4. Experimental prediction of recognition performance as a function of stimulus difficulty

(complete vs. truncated letters) and use of motor simulation (control vs. concurrent motor task).

Second, we have designed a preliminary psychology experiment in which participants

have to recognize letters in various difficulty settings. The protocol is as follows. Letters

are shown to the participant in a manner similar to the way trajectories are given to the

model: since the model is given both sequence and velocity information, the participants

see a moving point that follows the trajectory (contrary to just seeing the resulting

trace, which would be a more natural task). The trajectory is either a complete letter

or a truncated letter. In order to minimize the impact of particularities of the presented

trajectories, we asked an elementary school teacher to provide reference trajectories to

be used as stimuli (assuming that letters used to teach children are canonical in some

way).

The truncated versions of trajectories have been designed by removing 25% of their

points, either in the first or the second half of the trajectory, with a random starting

position for deletion (protecting the first and last 5%, however). Deletions are treated as

pen-ups: instead of showing a white dot on a black background, the dot turns black for

the truncated portion, so that it is invisible. This guarantees that temporal properties of

the trajectories are not affected.

The task is letter recognition, under two conditions: a control condition, and a con-

dition in which a concurrent motor task is performed. Indeed, it has been demonstrated

that a simple task like squeezing a ball tightly would be sufficient to affect, and possibly

prevent, the use of internal motor simulation [14]. It is also known that motor interfer-

ence influences letter recognition [7]. The expected observation is an interaction effect

between condition and difficulty of the stimulus, as shown in Fig. 4.

CONCLUSION

We have presented some features of the BAP model, which is a model of the perception-

action loop involved in recognition and production of handwritten characters. More

precisely, we have focused on the internal simulation of movement loop. This is used

to simulate and compare two cognitive tasks of letter recognition, depending on whether



this loop is activated or not. Experimental results show that internal motor simulation

does not improve performance for easy stimuli, whereas it does for difficult stimuli such

as truncated trajectories. This finding generates a prediction, which is the basis of a

psychology experimental protocol that is currently underway.

In conclusion, we wish to highlight another issue that could benefit from our modeling

of the internal simulation of movements. This concerns what is called “online” and

“offline” character recognition. Online character recognition is the situation we have

treated so far: the input includes velocity and sequence information. This corresponds to

tasks in which the observer sees the letter as it is being traced. It is arguably less natural

than offline recognition, where the input is the resulting static trace.

Offline recognition can be tackled in two ways. On the one hand, it can be treated as a

problem of a different nature than online recognition, with approaches such as common

optical character recognition methods (OCR). On the other hand, offline recognition can

be reduced to online recognition, after a first step that finds the time sequence of the

trajectory, given the input static image. To illustrate this, consider the simpler problem

of finding the starting point of the trajectory, given a sequence of pixels. We believe

that motor knowledge could play a crucial role, by ruling out most points that would be

perceptual candidates, but would not be associated with typical motor programs.
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