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We study the universal thermodynamic properties of systems consisting of many coupled oscil-
lators operating in the vicinity of a homogeneous oscillating instability. In the thermodynamic
limit, the Hopf bifurcation is a dynamic critical point far from equilibrium described by a statistical
field theory. We perform a perturbative renormalization group study, and show that at the critical
point a generic relation between correlation and response functions appears. At the same time, the
fluctuation-dissipation relation is strongly violated.
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The collective behavior of many interacting elements
generally leads to transitions and critical points in the
large-scale and long-time properties of complex systems.
This is well understood in the study of systems at ther-
modynamic equilibrium [1–3]. Non-equilibrium critical
behaviors have been studied in a number of systems [4–
6] but remain a serious challenge. An important example
for criticality far from thermodynamic equilibrium is the
behavior of coupled oscillators in the vicinity of a con-
tinuous homogeneous oscillatory instability or supercrit-
ical Hopf bifurcation. Such instabilities are important in
many physical, chemical and biological systems [7, 8].

In this Letter, we apply concepts of the theory of
dynamic critical points to study the generic properties
of systems of coupled oscillators in the thermodynamic
limit. In particular, we discuss linear response and two-
point correlation functions defined for the oscillator en-
semble. Since the system is far from a thermodynamic
equilibrium, the fluctuation-dissipation (FD) relation be-
tween correlation and response functions in equilibrium
systems is broken. We show that a Hopf bifurcation rep-
resents a non-equilibrium critical point and study the
universal behaviors characterizing its approach from the
nonoscillating state. We apply field theoretic renormal-
ization group (RG) methods and develop an RG proce-
dure which is appropriate for the case of a spontaneously
oscillating system. This RG is performed in an oscil-
lating reference frame with a scale-dependent oscillation
frequency. The RG fixed points characterize the univer-
sal critical properties of locally coupled oscillators. We
find that at the critical point of a Hopf bifurcation, an
FD relation is formally satisfied if the system is described
within the oscillating reference frame. In terms of phys-
ical variables, the FD relation is strongly broken but a
relationship between correlation and response functions
appears. Even though our calculations are performed in
a d = 4− ε dimensional space, we suggest that the main
features of our results apply to Hopf bifurcations in gen-
eral.

The generic behavior of an oscillator in the vicinity of
a supercritical Hopf bifurcation can be described by a
dynamic equation for a complex variable Z, which char-
acterizes the phase and amplitude of the oscillations [7].
This variable can be chosen such that its real part is, to
linear order, related to a physical observable, e.g., the
displacement X(t) generated by a mechanical oscillator:
X(t) = Re(Z(t)) + nonlinear terms. In the presence of a
periodic stimulus force F (t) = F̃ e−iωt with a frequency
ω close to the oscillation frequency at the bifurcation ω0,
the generic dynamics obeys [9]

∂tZ = −(r+ iω0)Z− (u+ iua) |Z|2 Z+ Λ−1eiθF (t). (1)

For F = 0 and r > 0, the static state Z = 0 is sta-
ble. The system undergoes a Hopf bifurcation at r = 0
and exhibits spontaneous oscillations for r < 0. The
nonlinear term characterized by the coefficients u and
ua stabilizes the oscillation amplitude for u > 0. The
external stimulus appears linearly in this equation and
couples in general with a phase shift θ. In the case of
a mechanical oscillator, the coefficient Λ has units of a
friction. From the point of view of statistical physics,
the Hopf bifurcation is a critical point and Eq. (1) char-
acterizes the corresponding mean field theory. Indeed,
at r = 0 and ω = ω0 and in terms of the amplitude X̃
of the limit cycle Z(t) = X̃e−iωt, the system exhibits
a power-law response |X̃| ' |F̃ |1/δ where δ = 3 is a
mean field critical exponent. For frequency differences
|ω−ω0| � Λ−2/3|F̃ |2/3|u+iua|1/3, the response becomes
linear with |X̃| ' Λ−1|F̃ |/|ω − ω0|.

In the presence of fluctuations, the critical point of
an individual oscillator is concealed in the same way as
finite-size effects destroy a phase transition in equilibrium
thermodynamics. However, a true critical point can ex-
ist in a thermodynamic limit where many oscillators, dis-
tributed on a lattice in a d-dimensional space, are coupled
by nearest-neighbor interactions. The combined system
undergoes a dynamic phase transition at which all oscil-
lators synchronize and an order parameter, which char-
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acterizes the global phase and amplitude of oscillators,
becomes nonzero. Since at the critical point the correla-
tion length diverges and oscillators become synchronized
over large distances, a discrete model can on large scales
be described by a continuum field theory which charac-
terizes the universal features of the critical point [1, 10].
In the case of locally coupled oscillators, this field theory
is given by the complex Ginzburg-Landau equation [11]
with fluctuations

∂tZ = −(r + iω0)Z + (c+ ica)∆Z − (u+ iua) |Z|2 Z
+Λ−1eiθF + η. (2)

Here, Z(x, t) becomes a complex field defined at po-
sitions x in a d-dimensional space and ∆ denotes the
Laplace operator. The coefficients c and ca character-
ize the local coupling of oscillators and the effects of
fluctuations are described via a complex random forc-
ing term η(x, t). For a vanishing external field F (x, t)
and in the absence of fluctuations, Eq. (2) is invari-
ant with respect to phase changes of the oscillations
Z → Zeiφ. As far as long-time and long-wavelength
properties are concerned, η can be chosen Gaussian and
white with the correlations 〈η(x, t)η(x′, t′)〉 = 0 and
〈η(x, t)η∗(x′, t′)〉 = 4Dδd(x − x′)δ(t − t′), which respect
phase invariance.

The linear response function χαβ and the two-point au-
tocorrelation function Cαβ of this field theory are defined
by 〈ψα(x, t)〉 =

∫
ddx′ dt′ χαβ(x − x′, t − t′)Fβ(x′, t′) +

O(|F |2) and Cαβ(x − x′, t − t′) = 〈ψα(x, t)ψβ(x′, t′)〉c.
Here we have expressed Z = ψ1+iψ2 and F = F1+iF2 by
their real and imaginary parts, and 〈...〉c denotes a con-
nected correlation function. Because of phase invariance,
these functions obey symmetry relations, e.g., C11 = C22,
C21 = −C12. In the following, we focus for simplicity on
the elements C ≡ C11 and χ ≡ χ11, which characterize
the correlation and response of the observable X.

It is convenient to eliminate the frequency ω0 from
Eq. (2) by a time-dependent variable transformation Y ≡
eiω0tZ, H ≡ eiω0tΛ−1eiθF and ζ ≡ eiω0tη. This leads to
the amplitude equation

∂tY = −rY +(c+ica)∆Y −(u+iua) |Y |2 Y +H+ζ, (3)

where the noise ζ has the same correlators as η. For the
particular case ca = 0 and ua = 0, Eq. (3) becomes iden-
tical to the model A dynamics of a real Ginzburg-Landau
field theory with an O(2) symmetry of the order parame-
ter [3]. The critical behavior of this theory at thermody-
namic equilibrium has been extensively studied [12]. This
leads, in this particular case, to a formal analogy between
an equilibrium phase transition and a Hopf bifurcation.
The correlation and response functions Cαβ and χαβ can
here be obtained from those of the equilibrium field the-
ory by using the time-dependent variable transformation
given above. Since the theory at thermodynamic equi-
librium obeys an FD relation, a generic relation between

the correlation and response functions Cαβ and χαβ ap-
pears. This special case provides a further example of
an equilibrium universality class found in a nonequilib-
rium dynamics with nonconserved order parameter [6].
It is the case, e.g., for the model A dynamics of the real
Ginzburg-Landau theory with a Z2 symmetry [13], even
when the symmetry is broken by the nonequilibrium per-
turbations [14], and for some of its generalizations to the
O(n) symmetry [15].

This raises the question to know whether the equilib-
rium universality class also characterizes the general case
where ua and ca are finite. Dimensional analysis reveals
that for d > 4 mean field theory applies. In this case,

χmf(q, ω) =
1

2Λ

[
eiθ

R− i(ω − Ω0)
+

e−iθ

R− i(ω + Ω0)

]
Cmf(q, ω) =

D

R2 + (ω − Ω0)2
+

D

R2 + (ω + Ω0)2
, (4)

where R = r + cq2, Ω0 = ω0 + caq
2 and where q and ω

are wave vector and angular frequency, respectively.
For d < 4, mean field theory breaks down. We apply

RG methods using an ε expansion near the upper critical
dimension (d = 4− ε) [16]. Defining two real fields φα by
Y = φ1 + iφ2, Eq. (3) reads

∂tφα = −Rαβφβ − Uαβφβφγφγ +Hα + ζα, (5)

where H = H1 + iH2, Rαβ = (r− c∆)δαβ− ca∆ εαβ , and
Uαβ = uδαβ + uaεαβ , with ε21 = −ε12 = 1 and εij = 0
for i = j. We introduce the Martin-Siggia-Rose response
field φ̃α [17] and apply the Janssen-De Dominicis formal-
ism [18] to write a generating functional with action

S
[
φ̃α, φα

]
=

∫
ddx dt

{
Dφ̃αφ̃α − φ̃α [∂tφα +Rαβφβ ]

−Uαβφ̃αφβφγφγ
}
. (6)

Using a Callan-Symanzik RG scheme [1, 2], we define
the renormalized theory such that its effective action is of
the form (6). This requires to introduce a phase shift δθ
and a frequency shift δω0 between the bare fields (φ0

α, φ̃
0
α)

and the renormalized fields (φα, φ̃α):

φ0
α(x, t0) = Ωαβ(−δω0t)Z

1/2
φ Zω φβ(x, t)

φ̃0
α(x, t0) = Ωαβ(−δθ − δω0t)Z

1/2

φ̃
Zω φ̃β(x, t). (7)

Here we have introduced Z-factors for the renormal-
ization of the fields and the time (t0 = Z−1

ω t), and
Ωαβ(θ) denotes the rotation matrix by an angle θ in
two dimensions. We furthermore introduce dimension-
less coupling constants g and ga and a scale factor µ
by u = µε(4π)−ε/2g and ua = µε(4π)−ε/2ga. The bare
and renormalized quantities are now related depending
on µ [25]. We define the correlation and response func-
tions Gαβ = 〈φαφβ〉c and γαβ = 〈φαφ̃β〉c. They are
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related to the physical observables Cαβ and χαβ via [26]

χαβ(x, t0) = Λ−1 Ωασ (θ − ω0 t) (ZφZφ̃)1/2Z2
ω γσβ(x, t)

Cαβ(x, t0) = Ωασ (−ω0 t)ZφZ
2
ω Gσβ(x, t). (8)

The dependence of the renormalized parameters g, ga and
ca on µ defines three β functions. Writing ~g = (g, ga, ca),

we have ~β (~g, ε) = µ(∂µ~g)0, where ~β = (β, βa, βc) and
(∂µ)0 denotes differentiation with fixed u0, u0

a and c0a.
To one-loop order in perturbation theory (see Fig. 1

for examples of Feynman diagrams of the theory), only
ω0, r, g, and ga are renormalized. The two nontrivial β

(a)

(b)

α

α

α

β

β γ

β

δ

= G
αβ

=
αβ
γ = U

αβ γδδ-

FIG. 1: (a) Graphic representation of the propagators Gαβ
and γαβ and of the vertex Uαβδγδ. (b) Examples of Feynman
diagrams of the theory to one- and two-loop orders.

functions are given by:

βa ' −εga −D
[

ca
1 + c2a

(g2 − g2
a + 2ggaca)− 6gga

]
β ' −εg −D

[
g2
a − g2 − 2ggaca

1 + c2a
− 4g2

]
, (9)

where D = 4D/(4π)2. The RG fixed point corresponds
to the values ~g∗ of the parameters ~g for which the three
β functions are simultaneously zero. Since βc = 0 to one-
loop order, one condition is lacking to fully determine ~g∗.
Choosing ca as a parameter, we obtain g∗ ' ε/5D and
g∗a ' ca ε/5D. In order to determine completely the fixed
point ~g∗, we need to go to two-loop order in perturbation
theory. To this order, all parameters (apart from c and
D), the fields and the time are renormalized and explicit
expressions for all the Wilson’s functions and Z factors
of the theory can be obtained.

Only one fixed point exists that describes the universal-
ity class of Hopf bifurcations. It obeys c∗a = 0, g∗a = 0 and
is infrared-stable. This fixed point is formally equivalent
to the one of the real Ginzburg-Landau theory with O(2)
symmetry. As a consequence, we find ν ' 1/2 + ε/10,
η ' ε2/50 and z ' 2 + ε2 (6 ln(4/3)− 1) /50, which are
the corresponding equilibrium critical exponents. Here,
ν denotes the exponent characterizing the divergence of
the correlation length ξ, z is the dynamic exponent and
η denotes the exponent characterizing the field renormal-
ization [1, 3].

The RG flow in the vicinity of the fixed point, however,
is defined here in a larger parameter space as the one cor-
responding to the O(2) dynamic model. Furthermore,

the effective theory discussed here is expressed in an os-
cillating reference frame with scale-dependent frequency
and phase. Therefore the correlation and response func-
tions Cαβ and χαβ differ from those of the equilibrium
model and additional universal exponents appear. We
can derive generic expressions for these functions using
the RG flow of all parameters in the vicinity of the criti-
cal point and employing a matching procedure [20]. For
example, we find for qξ � 1 and for stimulation at the
effective oscillation frequency ωeff

0 :

χ(q, ω = ωeff
0 ) ' 1

q2−η
1

2Λeff

[
eiθ(q)

1 + iγ(q)

]
, (10)

where we have introduced the functions θ(q) ' θeff +
αeffq

ω1 + βeffq
ω2 and γ(q) ' γeffq

ω2 , and nonuniversal
effective quantities denoted by the index “eff”. The uni-
versal exponents ω1 ' ε/5 and ω2 ' ε2/50 here are char-
acteristic for a Hopf bifurcation. Similarly, we find ex-
pressions for the correlation function:

C(q, ω = ωeff
0 ) ' 1

qz+2−η
Deff

1 + γ(q)2
, (11)

and for the frequency dependence of the homogeneous
mode q = 0 in the regime (ω − ωeff

0 )ξz � 1[19].
Because of the formal analogy of the RG fixed point

discussed here with the one of an equilibrium field theory,
an FD relation appears exactly at the critical point and
relates the functions Gαβ and γαβ . Since the physical
correlation and response functions Cαβ and χαβ can be
determined from Gαβ and γαβ using the scale-dependent
variable transformations of Eq. (8), a relation between
correlation and response functions appears:

cos θeffχ
′′
11 − sin θeffχ

′′
12 =

1

2ΛeffDeff

(
ωC11 + iωeff

0 C12

)
cos θeffχ

′
12 + sin θeffχ

′
11 =

1

2ΛeffDeff

(
ωeff

0 C11 + iωC12

)
.

(12)

Here, χαβ = χ′αβ + iχ′′αβ has been separated in its real
and imaginary parts. The relation (12) is asymptotically
satisfied in the long-time and wavelength limits at the
critical point.

The physical correlation and response functions Cαβ
and χαβ , however, do not obey the equilibrium FD re-
lation. The degree of this violation can be characterized
by a frequency-dependent effective temperature Teff :

Teff(ω)

T
=

ω

2kBT

C11(ω, q = 0)

χ′′11(ω, q = 0)
. (13)

Here, kB denotes the Boltzmann constant and T is the
temperature of the system. We find that Teff/T ∼
(ω − ωeff

0 )−σ diverges at the critical point with a uni-
versal exponent σ. For the particular case ca = 0 and
ua = 0, σ = 1, while otherwise σ ' 1 − ε/5 to first
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order in ε. The power-law divergence of Teff as a func-
tion of frequency reveals a violent breaking of the FD
relation. This divergence at the oscillation frequency has
been experimentally observed on a single active oscillat-
ing system [21].

We have shown that the critical point in d = 4− ε di-
mensions of locally coupled oscillators is formally related
to the equilibrium phase transition in the XY model.
From this analogy it follows that on the oscillating side
of the Hopf bifurcation, the system of coupled oscillators
exhibits long range phase order and coherent oscillations
for d > 2. We can speculate how our results are modified
in lower dimensions d. In analogy with the equilibrium
XY model, we expect the phase order of the oscillations
to vanish for d < 2, and to be quasi-long range exactly at
the lower critical dimension d = 2. In the last case, spec-
tral peaks on the oscillating side of the Hopf bifurcation
are expected to exhibit power-law tails with nonuniver-
sal exponents. If the formal analogy with the equilibrium
critical point found here in d = 4−ε persists in d = 2, we
would expect to see features of the Kosterlitz-Thouless
universality class [22] in systems of coupled oscillators in
this dimension.

Critical oscillators are ideally suited for nonlinear sig-
nal detection and amplification. Indeed, close to the
critical frequency, the linear response function exhibits
divergent behaviors, indicative of a high sensitivity of
the system. It has been suggested that the ear of verte-
brates uses critical oscillations of mechanosensitive hair
cells for the detection of weak sounds and that the prop-
erties of the critical point provide the basis to explain the
observed compressive nonlinear response to mechanical
stimuli and to frequency selectivity in the ear [9, 23]. The
correlation and response functions of single mechanosen-
sory hair bundles have been determined experimentally
[21]. These single cell experiments detected vibrations at
the scale of tens of nanometers. There, the Hopf bifurca-
tion was concealed by finite-size effects but its signature
could be observed. In the cochlea of mammals, power-
law responses over several orders of magnitude have been
seen [24]. This suggests that in such systems a large num-
ber of oscillating degrees of freedom operate collectively
and bring the system closer to true criticality.

The critical oscillations discussed here can in principle
be realized in artificial systems. Nanotechnology aims to
build functional units on the submicrometer scale. Large
arrays of nanorotators or oscillators on patterned sub-
strates coupled to their neighbors by elastic or viscous
effects would provide a two-dimensional realization of our
field theory. This could permit in the future experimental
studies of the critical phenomena discussed here.

We thank Edouard Brézin, Erwin Frey and Kay Wiese
for useful discussions.
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[20] J. Rudnick and D. R. Nelson, Phys. Rev. B 13, 2208

(1976).
[21] P. Martin, A. J. Hudspeth, and F. Jülicher,
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