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Hamilton-Jacobi equations on networks as limits of singularly

perturbed problems in optimal control: dimension reduction

Yves Achdou ∗, Nicoletta Tchou †

March 19, 2014

Abstract

We consider a family of open star-shaped domains Ωε of R2. Roughly speaking, Ωε is
made of a finite number of non intersecting semi-infinite strips of thickness ε and of a central
region whose diameter is of the order of ε, that may be called the junction. When the
thickness ε tends to 0, the domains Ωε tend to a union of half-lines sharing an endpoint O.
This set is termed network. We study infinite horizon optimal control problems in which
the state is constrained to remain in Ωε. In the above mentioned strips the running cost
may have a fast variation w.r.t. the transverse coordinate. We pass to the limit as the
parameter ε tends to zero, and prove that the value function tends to the solution of a
Hamilton-Jacobi equation on the network, which may also be related to an optimal control
problem. One difficulty is to find the transmission condition at the junction node O in the
limit problem. For passing to the limit, we use the method of the perturbed test-functions
of Evans, which requires constructing suitable correctors. This is another difficulty since the
domain is unbounded.

1 Introduction

A network (or a graph) is a set of items, referred to as vertices or nodes, with connections between
them referred to as edges, see the right part of Figure 1 for an example. In the recent years
there has been an increasing interest in the investigation of dynamical system and differential
equation on networks, in particular in connection with problem of data transmission and traffic
management (see for example Garavello-Piccoli [19], Engel et al [16]).

Nevertheless, the literature on continuous-state and continuous-time control on networks is
still scarce: there is the recent article [1], where the authors (including those of the present pa-
per) consider control problems whose dynamics is constrained to a network and related Bellman
equations. They introduce a definition of viscosity solution which reduces to the usual one if
the network is only composed of two parallel segments entering in a node: while in the interior
of an edge one can test the equation with a smooth test-function, the main difficulties arise at
the junctions where the network does not have a regular differential structure; at a vertex, a
notion of derivative similar to that of Dini’s derivative (see for example [9]) is proposed, hence
admissible test-functions are the ones which admit derivatives in the directions of the edges
sharing the node. With this definition, the intrinsic geodesic distance, fixed one argument, is
an admissible test-function with respect to the other argument. The above mentioned notion
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of viscosity solutions is equivalent to the one introduced independently by Imbert, Monneau
and Zidani [21] for studying a Hamilton-Jacobi approach to junction problems and traffic flows.
This was proved by Camilli and Marchi in [15]. There is also the work by Schieborn and Camilli
[25], in which the authors focus on eikonal equations and on a less general notion of viscosity
solution.
Both [1] and [21] contain the first comparison and uniqueness results, but in these works the
assumptions are somewhat restrictive. More general comparison results have been proved in two
very recent papers [2] and [20], which both handle more general transmission conditions at the
crosspoints than in [1] and [21]. The paper by Imbert-Monneau [20] contains the most general
comparison and uniqueness results: the proof, rather involved, is completely based on partial
differential equations arguments and works for bimonotone Hamiltonians (not necessarily con-
vex). In the more particular context of Hamilton-Jacobi equations coming from optimal control
problems on networks, a short proof of a general comparison result is proposed in [2], whose
authors use arguments from optimal control theory, adapting original ideas that Barles, Briani
and Chasseigne, see [12, 11], have used for control problems with discontinuous dynamics and
costs. In what follows, we shall use the comparison results of [20], which are summarized and
adapted to the present context in § 4.2 below.
The aim of this paper is to study the asymptotic behavior of the value function of an optimal
control problem in which the dynamics is constrained to remain in the closure of a bidimen-
sional thin open set Ωε converging to a network as the width parameter ε tends to 0. We restrict
ourselves to the case of a single junction, i.e. the network has only one crosspoint: the set Ωε

may be divided into a finite number of strips (which may be called the roads) and a junction

zone, see the left part of Figure 1. Precise assumptions on the class of domains Ωε will be made
in § 1.1 below. In the roads (whose width is of the order of ε), the running cost may have fast
variations in the transverse direction but not in the longitudinal direction. Similarly, in the
roads, the state constraints involve only the (fast) transverse variable. This is why the problem
may be termed a singularly perturbed problem.
In the case when there is no junction, singularly perturbed problems in optimal control have
been studied by many authors, see for example Bensoussan [14], Artstein and Gaitsgory [7],
Gaitsgory and Leizarowitz [18], Bagagiolo and Bardi [8], Alvarez and Bardi [3, 4], Terrone [26],
Alvarez-Bardi-Marchi [6, 5]. The reference [3] is of special interest here since the authors focus on
Hamilton-Jacobi equations and use viscosity solutions arguments in order to study the asymp-
totic behavior of the value function: the method for proving the convergence to the dimension
reduced effective problem is based on the perturbed test-function method of Evans [17], which
implies the construction of correctors. The correctors are viscosity solution to some first order
partial differential equation in the fast variable with state constrained boundary conditions.
The aim of the present paper is to perform the same kind of analysis for the family of the do-
mains Ωε displayed on the left of Figure 1 as the width parameter ε tends to 0. The method uses
viscosity solutions arguments and is reminiscent of that proposed in [3]. The effective equation
far away from a junction is found in a straightforward manner by using the results contained in
[3]. The main difficulty consists of finding the transmission conditions at the junction. Naturally,
the latter depend on the dynamics and running cost in the junction zone. The convergence of
the value function will be proved by using the comparison principle stated in [20]. The main
technical point lies in the construction of junction-correctors and in their use in the perturbed
test function method. The strategy for the construction of the junction-correctors is reminiscent
of the one used by Ishii in [22]. An important difficulty comes from the unboundedness of the
domain in which the correctors are defined: indeed, for obtaining bounded correctors, we will
have to work in suitable unbounded subdomains obtained by truncating the original one. In
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turn, since the correctors are defined in subdomains, the method of the perturbed test functions
of Evans will have to be suitably modified.

1.1 The setting

1.1.1 The geometry

For simplicity, let us focus on the model case of a star-shaped network with N straight edges,
N > 1. Let (ei)i=1,...,N be a set of unit vectors in R

2 s.t. ej 6= ek if j 6= k. Note that ej = −ek is
possible. We assume that there is at least a pair (j, k), j 6= k s.t. ej is not aligned with ek. For
any i = 1, . . . , N , let e⊥i be a unit vector perpendicular to ei. A given point z ∈ R

2 is written
z = ziei + z⊥i e

⊥
i . The open half-line R+ei is denoted Gi, and the star shaped network G (see

Figure 1 ) is defined by

G = {O} ∪
N⋃

i=1

Gi,

where O is the origin O = (0, 0).
For a radius ρ > 0, let the convex polygonal domain Wρ be defined by

Wρ = {z ∈ R
2 : ∀i = 1, . . . , N, z · ei < ρ}. (1.1)

Let Ω be a connected open subset of R2 with the following properties, see Figure 1:

• Ω contains the origin O and is star-shaped with respect to O

• Ω has a smooth boundary

• There exists a positive radius r0 such that

Ω\W r0 = ∪N
i=1Zi,

where Wρ is given by (1.1) and Zi is the half-strip

Zi = {z = ziei + z⊥i e
⊥
i ; −1 < z⊥i < 1; zi > r0}. (1.2)

In other words, outside the regionW r0 , Ω coincides with the union of theN non intersecting
semi-infinite strips of width 2 and aligned with the vectors ei, i = 1, . . . , N .

Let K̃0 be the subset of Ω defined by

K̃0 = Ω ∩Wr0 (1.3)

where Wρ is given by (1.1).
The control problems will take place in the set Ωε = εΩ, which can be viewed as a thick version
of G. The thickness parameter ε > 0 is bound to tend to zero.

1.1.2 The control problem in Ωε

Let A be a compact subset of R2 and ℓε : Ωε ×A→ R be a continuous function.
For a given positive number λ and any z0 ∈ Ωε, we consider the infinite horizon control problem
consisting of minimizing the cost functional

Jε(z0, α) =

∫ ∞

0
ℓε(zε(t; z0, α), α(t))e

−λtdt
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Figure 1: The set Ω and the network G (N = 5)

on the trajectories of the system

żε(t; z0, α) = α(t), t > 0, zε(0; z0, α) = z0,

where the control function α : R+ → A is measurable and such that the corresponding trajectory
satisfies the state constraint zε(t) ∈ Ωε for all t ≥ 0. We start by making some assumptions on
the structure of the problem.

Assumption 1.1. There exists a positive constant r such that A contains the ball B(0, r).

Assumption 1.2. • The function ℓε is continuous

• It has the following structure: there exist N bounded and continuous functions ℓi : [0,+∞)×

[−1, 1]×A→ R, i = 1, . . . , N , and a function ℓ0 : K̃0 ×A→ R such that

ℓε(z, a) = ℓi(zi − εr0,
z⊥i
ε
, a) in εZi,

ℓε(z, a) = ℓ0(
z

ε
, a) in εK̃0.

(1.4)

The functions ℓi are uniformly continuous in [0,+∞) × [−1, 1] uniformly w.r.t. a ∈ A.

The function ℓ0 is uniformly continuous in K̃0 uniformly w.r.t. a ∈ A.

Assumption 1.3. Since the function ℓ0 is bounded, it is not restrictive to assume that ℓ0 takes
nonnegative values (just add a constant to ℓ0 if necessary).

Assumption 1.1 is on the controllability of the system. The most important part of Assump-
tion 1.2 says that away from the junction, i.e. for z belonging to the strip [εr0,+∞)ei×[−ε, ε]e⊥i ,
1 ≤ i ≤ N , the running cost has a fast dependence w.r.t. the transverse coordinate z⊥i and a
slow dependence w.r.t. the tangential coordinate zi.

With Assumptions 1.1 and 1.2, it is well known, see e.g. [9] that the value function uε of the
control problem described above is bounded uniformly with respect to ε, continuous, and is the
unique viscosity solution of

λuε(z) +Hε(z,Duε) ≥ 0 in Ωε, (1.5)

λuε(z) +Hε(z,Duε) ≤ 0 in Ωε, (1.6)
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where for z ∈ Ωε, p ∈ R
2, the Hamiltonian Hε(z, p) is

Hε(z, p) = max
a∈A

(
−p · a− ℓε(z, a)

)
. (1.7)

Here p · a denotes the scalar product of p by a.

1.2 Organization of the paper

Here, we propose an informal overview of the main result and of the notions that it requires.
Since this paragraph is only meant to help the reader find her/his way in the paper, we do not
mean to give full details, and rather refer to the places where the definitions are thoroughly
written.
The main result is Theorem 4.2. Its statement is the following: under Assumptions 1.1-1.3
and the further Assumption 2.1, the sequence uε converges locally uniformly to the bounded
viscosity solution u : G → R of the Hamilton-Jacobi equation on G,





λu(x) +H i(xi,
du
dxi

(x)) = 0 x = xiei ∈ Gi,

λu(O) + max
(
E,H(O, du

dx1
(0), . . . , du

dxN
(0))

)
= 0.

Let us list the necessary notions for this theorem and the places where they are defined:

1. The effective Hamiltonian H i corresponding to the edge Gi is defined in § 2:

H i(xi, pi) = sup
µ∈Zi

(∫

[−1,1]×A

(
−piai − ℓi(xi, y, a)

)
dµ(y, a)

)
,

where Zi is a compact and convex set of Radon probability measures on [−1, 1]×A. This
set may be viewed as a set of limiting relaxed controls. A technical assumption, useful for
the construction of the junction-correctors, is introduced in § 2.3.

2. The constant E can be viewed as the opposite of an effective cost at the junction: it is
defined in § 3. It strongly depends on ℓ0.

3. The Hamiltonian H(O, du
dx1

(0), . . . , du
dxN

(0)) appearing in the effective transmission condi-

tion at the junction is defined in § 4.1 : H(O, ·) : RN → R is given by

H(O, p1, . . . , pN ) ≡ max
i=1,...,N

H
+
i (0, pi),

where

H
+
i (0, pi) = sup

µ∈Z+

i

(∫

[−1,1]×A

(
−piai − ℓi(0, y, a)

)
dµ(y, a)

)
,

and

Z+
i =

{
µ ∈ Zi s.t.

∫

[−1,1]×A

aidµ(y, a) ≥ 0

}
.

The Hamiltonian H(O, ·) is thus constructed by considering only the controls for which
the relaxed dynamics starting from O point in one of the edges of G (or stay at O).
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4. The notion of viscosity solution of the above Hamilton-Jacobi equation has been defined
in [1], and comparison results have been proved in [2] and [20]. These notions are reviewed
in § 4.2.

The main difficulties for proving Theorem 4.2 are the following:

• to identify the effective constant E: in § 3.1, E is constructed as the limit of a sequence
of ergodic constants related to larger and larger bounded subdomains of Ω with running
cost ℓ0.

• to construct correctors that will be used in the perturbed test-function argument of Evans,
see [17]. The difficulty lies in the fact that the correctors need to be bounded functions
defined in unbounded domains, ideally the whole domain Ω. In general, it will not be
possible to define these correctors in the full domain Ω, and we will have to restrict
ourselves to suitable unbounded subdomains of Ω; The construction of correctors is done
in §5. The proof of convergence is given in § 6.

2 The effective Hamiltonian in the edges

The first step in understanding the asymptotic behavior of the value function uε as ε→ 0 is to
look at what happens far from the region εK̃0, i.e. far from the junction. For that, it is possible
to rely on existing results. In the whole Section 2, i is an index in {1, . . . , N}.

2.1 Known facts

Singular perturbations in deterministic control have been studied by many authors from the
viewpoint of either control theory or viscosity solutions. In particular, state constrained control
problems in thin domains obtained by thickening a smooth manifold have been much studied.
The results of Alvarez-Bardi [3] and Terrone [26] are going to be used in the present particular
setting.
For any y0 ∈ [−1, 1], let Ai,y0 be the set of measurable functions α : R+ → A such that the
function y : R+ → R given by

y(t) ≡ y0 +

∫ t

0
α⊥
i (s)ds (2.1)

satisfies the state constraint y(s) ∈ [−1, 1] for s ∈ R+. To summarize,

Ai,y0 = {α : R+ → A, measurable, such that y(s) ∈ [−1, 1] ∀s ≥ 0} , (2.2)

where y(·) is given by (2.1).
It is possible to define the effective Hamiltonians relative to the edges: let Hi : [0,+∞]×[−1, 1]×
R
2 → R be defined by

Hi(x, y, p) = max
a∈A

(−p · a− ℓi(x, y, a)).

Theorem 2.1 (Alvarez-Bardi [3]). For any number xi ≥ 0 and for any pi ∈ R, there exists a
unique real number H i(xi, pi) such that the problem

Hi(xi, y, piei +Dyχi(y)e
⊥
i ) ≥ H i(xi, pi) y ∈ [−1, 1], (2.3)

Hi(xi, y, piei +Dyχi(y))e
⊥
i ≤ H i(xi, pi) y ∈ (−1, 1) (2.4)
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has a Lipschitz continuous viscosity solution χi : [−1, 1] → R.
Moreover, for any y0 ∈ [−1, 1],

H i(xi, pi) = lim
ρ→0+

ρwρ,xi,pi(y0), (2.5)

where

wρ,xi,pi(y0) = sup
Ai,y0

∫ ∞

0
e−ρs (−piαi(s)− ℓi(xi, y(s), α(s))) ds,

and Ai,y0 and y are defined in (2.2) and (2.1). The limit in (2.5) is uniform w.r.t. y0.

In [3], it is proved that for y(s) and Ai,y0 as in (2.2), H i(xi, pi) may be characterized with
long time limits:

H i(xi, pi) = sup
Ai,y0

lim sup
t→∞

1

t

∫ t

0
(−piαi(s)− ℓi(xi, y(s), α(s))) ds, (2.6)

for all y0 ∈ [−1, 1].
In the same article [3], the following characterization of H i(xi, pi) is given, as a rescaled limit of
the value function of a finite horizon problem:

H i(xi, pi) = lim
t→∞

sup
Ai,y0

1

t

∫ t

0
(−piαi(s)− ℓi(xi, y(s), α(s))) ds, (2.7)

for all y0 ∈ [−1, 1]. For the latter, Alvarez and Bardi consider the value function

vi(xi, pi, y0, t) = inf
α∈Ai,y0

{∫ t

0
(piαi(s) + ℓi(xi, y(s), α(s))) ds

}
(2.8)

and prove that there exists a constant C independent of y0 and t (but which may depend on xi
and pi) such that

|vi(xi, pi, y0, t) + tH i(xi, pi)| ≤ C. (2.9)

Limiting relaxed controls and limit control problem It is possible to construct an op-
timal control problem whose Hamiltonian is H i.
Let ([−1, 1] × A)r be the set of Radon probability measures on [−1, 1] × A. For a function
f : R× [−1, 1]×A→ R, let f r be defined by f r(x, µ) =

∫
[−1,1]×A

f(x, y, a)dµ(y, a), for all x ∈ R

and µ ∈ ([−1, 1]×A)r.
A sequence of Radon probability measures µn on [−1, 1]×A is said to converge weak-∗ to µ if for
any continuous function ψ on [−1, 1]×A, limn→∞

∫
[−1,1]×A

ψ(y, a)dµn(y, a) =
∫
[−1,1]×A

ψ(y, a)dµ(y, a).

The Prokhorov distance π(·, ·) is defined for any pair (µ1, µ2) of probability measures on [−1, 1]×
A by

π(µ1, µ2) = inf{ε > 0 : µ1(Q) ≤ µ2(Q+ εB) + ε for any measurable Q},

where B is the unit ball in R
3. It is well known that this distance has the following property:

any sequence µn of Radon probability measures on [−1, 1]×A converges weak-∗ to µ if and only
if limn→∞ π(µn, µ) = 0. The set ([−1, 1]×A)r equipped with the distance π is a compact metric
space.
If P is a subset of ([−1, 1]×A)r and µ is an element of ([−1, 1]×A)r, then we define the distance
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π(µ,P) as the infimum of {π(µ, ν), ν ∈ P}. For two subsets P1 and P2 of ([−1, 1] × A)r, the
Hausdorff distance πH(P1,P2) is defined as

πH(P1,P2) = max

(
sup
µ∈P1

π(µ,P2), sup
µ∈P2

π(µ,P1)

)
.

For any control law α ∈ Ai,y0 , let y(t) be given by (2.1). For s > 0, the occupational measure

µs generated by (y(t), α(t)) is the Radon probability measure defined on the Borel σ-algebra of
R×A by

µs =
1

s

∫ s

0
δ(y(t),α(t))dt

where δ(y(t),α(t)) is the Dirac mass concentrated at (y(t), α(t)).
For s > 0, let Z(s; i, y0) be the set of the occupational measures generated by the trajectories
(y(t), α(t)) up to time s where α belongs to Ai,y0 and y(s) is given by (2.1). It has been proved
in [18] that there exists a subset Z(i, y0) of ([−1, 1]×A)r such that

lim
s→∞

πH(Z(s; i, y0),Z(i, y0)) = 0. (2.10)

The set Z(i, y0) is convex and compact in the weak-∗ topology. Moreover, under Assumption
1.1, the set Z(i, y0) does not depend on y0 ∈ [−1, 1]. This set is called the limit occupational

measure set and will be noted Zi.
It has been proved by Terrone[26] that Zi coincides with the set of limiting relaxed controls,
i.e. the set of the probability Radon measures µ on [−1, 1]× A such that there exists a control
law α ∈ Ai,y0 and a sequence tn → +∞ such that the corresponding sequence of occupational
measures µtn generated by (2.1) converges to µ weak-∗.
Then using the results in [3], we see that

Zi ⊂

{
µ ∈ ([−1, 1]×A)r,

∫

[−1,1]×A

a⊥i dµ(y, a) = 0

}
.

It is proved in [3] that

H i(xi, pi) = sup
µ∈Zi

(
−pi

∫

[−1,1]×A

aidµ(y, a)− ℓri (xi, µ)

)
.

It is clear that H i is continuous, convex with respect to the second variable, and that for all xi,
limpi→∞H i(xi, pi) = +∞. The infinite horizon control problem associated with the Hamiltonian
H i is the minimization of

J i(x, µ) =

∫ ∞

0
e−λtℓri (x(t), µt)dt

for the system

ẋ(t) =

∫

[−1,1]×A

aidµt(y, a), µt ∈ Zi, x(0) = x.

The affine-convex case It is proved in [3] that if A is convex and ℓi is convex with respect
to its last two variables (y⊥i , a), then H i(xi, pi) is characterized by

H i(xi, pi) = max
a∈A,a⊥i =0,y∈[−1,1]

(
−piai − ℓi(xi, y, a)

)
. (2.11)
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If furthermore, ℓi does not depend on y, then

H i(xi, pi) = max
a∈A,a⊥i =0

(
−piai − ℓi(xi, a)

)
. (2.12)

The case of an asymptotically stable optimal trajectory The characterization ofH i(xi, pi)
by (2.11) can be obtained in other situations than the affine-convex case: here, following Ex-
ample 7.4 in [7], we assume that for all xi, pi, there exists some y0 ∈ [−1, 1] and some control
α∗ ∈ Ai,y0 such that

∫ t

0
(piα

∗
i (s) + ℓi(xi, y

∗(s), α∗(s))) ds = vi(xi, pi, y0, t), ∀t > 0,

where ẏ∗(s) = α∗,⊥
i (s) and y∗(0) = y0, and that

lim
t→∞

α∗(t) = a∗ and lim
t→∞

y∗(t) = y∗.

Then a∗,⊥i = 0 and limt→∞
1
t

∫ t

0 (piα
∗
i (s) + ℓi(xi, y

∗(s), α∗(s))) ds = pia
∗
i + ℓi(xi, y

∗, a∗). This
implies (2.11), see [3].

2.2 The minimal value of H i(0, ·)

Define Λ0
i by

Λ0
i = min

p∈R
H i(0, p). (2.13)

Since lim|p|→∞H i(0, p) = +∞ and H i(0, ·) is convex, the set argminHi(0, ·) is a nonempty
bounded interval, see Figure 4 for an example: let p

i
≥ pi be the endpoints of argminHi(0, ·):

argminHi(0, ·) = {p ∈ R, H i(0, p) = Λ0
i } =

[
p
i
, pi

]
. (2.14)

Let us denote by Z0
i and Z+

i the following convex and compact subsets of Zi:

Z0
i =

{
µ ∈ Zi s.t.

∫
[−1,1]×A

aidµ(y, a) = 0
}
, (2.15)

Z+
i =

{
µ ∈ Zi s.t.

∫
[−1,1]×A

aidµ(y, a) ≥ 0
}
. (2.16)

These sets are non empty from Assumption 1.1.

Lemma 2.1. 1. p0i ∈ argminHi(0, ·) if and only if there exists µ∗ ∈ Z0
i such that

H i(0, p
0
i ) = −ℓri (0, µ

∗)

2.
Λ0
i = − min

µ∈Z0
i

ℓri (0, µ) (2.17)

3. If p ≥ p
i
, then

max
µ∈Z+

i

∫

[−1,1]×A

(−pai − ℓi(0, y, a))dµ(y, a) = Λ0
i .
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Proof. The Hamiltonian H i(0, ·) reaches its minimum at p0i if and only if 0 ∈ ∂H i(0, p
0
i ). The

subdifferential of H i(0, ·) at p
0
i is characterized by

∂H i(0, p
0
i ) = co

{
−

∫

[−1,1]×A

aidµ(y, a);µ ∈ Zi s.t. H i(0, p
0
i ) = −p0i

∫

[−1,1]×A

aidµ(y, a)− ℓri (0, µ)

}
,

see [27]. But the set
{
µ ∈ Zi s.t. H i(0, p

0
i ) = −p0i

∫

[−1,1]×A

aidµ(y, a)− ℓri (0, µ)

}

is compact and convex. Hence,

∂H i(0, p
0
i ) =

{
−

∫

[−1,1]×A

aidµ(y, a);µ ∈ Zi s.t. H i(0, p
0
i ) = −p0i

∫

[−1,1]×A

aidµ(y, a)− ℓri (0, µ)

}
.

Therefore, 0 ∈ ∂H i(0, p
0
i ) if and only if there exists µ∗ ∈ Zi such that

∫
[−1,1]×A

aidµ
∗(y, a) = 0

and H i(0, p
0
i ) = −ℓri (0, µ

∗). We have proved point 1.
Point 2 is a direct consequence of point 1.
If p ≥ p

i
, then

max
µ∈Z+

i

(
−p

∫

[−1,1]×A

aidµ(y, a)− ℓri (0, µ)

)
≤ max

µ∈Z+

i

(
−p

i

∫

[−1,1]×A

aidµ(y, a)− ℓri (0, µ)

)
= H i(0, pi)

where the last identity comes from point 1.
On the other hand,

max
µ∈Z+

i

(
−p

∫

[−1,1]×A

aidµ(y, a)− ℓri (0, µ)

)
≥ − min

µ∈Z0
i

ℓri (0, µ).

Point 3 is obtained by combining the two previous observations and point 2. ⊓⊔

Remark 2.1. From Assumption 1.3 and Lemma 2.1, we see that Λ0
i is non positive.

2.3 A further assumption on ℓi(0, ·, ·)

Assumption 2.1 below will turn useful for studying the asymptotics of uε near the junction;
roughly speaking, it says that for any real number pi < p

i
(which implies H i(0, pi) > Λ0

i ),
for all t, it is possible to construct an admissible control law α̃ whose related cost remains
at a given distance of the optimal value vi(0, pi, y0, t), and for which the i coordinate, namely
s ∈ [0, t] 7→

∫ s

0 α̃i(θ)dθ remains bounded from below by a fixed constant. Assumption 2.1 will
be used in § 5 for constructing the correctors near the junction.
Proposition 2.1 and 2.2 below supply examples when Assumption 2.1 holds.

Assumption 2.1. 1. For any real number pi such that pi < p
i
, there exist two constants

Li ≥ 0 and Ci > 0 such that for all y0 ∈ [−1, 1], for all t > 0, there exists a control law
α̃ ∈ Ai,y0 such that

∫ s

0
α̃i(τ)dτ ≥ −Li, ∀0 ≤ s ≤ t, (2.18)

∫ t

0
(piα̃i(s) + ℓi(0, ỹ(s), α̃(s))) ds ≤ vi(0, pi, y0, t) + Ci, (2.19)
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where ỹ(t) = y0 +
∫ t

0 α̃
⊥
i (s)ds.

2. For pi such that p
i
≤ pi ≤ pi, (hence H i(0, pi) = Λ0

i ), there exist two constants Li ≥ 0 and
Ci > 0 such that for all y0 ∈ [−1, 1], for all t > 0, there exists a control law α̃ ∈ Ai,y0 such
that

−Li ≤

∫ s

0
α̃i(τ)dτ ≤ Li, ∀0 ≤ s ≤ t, (2.20)

∫ t

0
ℓi(0, ỹ(s), α̃(s))ds ≤ vi(0, pi, y0, t) + Ci, (2.21)

where ỹ(t) = y0 +
∫ t

0 α̃
⊥
i (s)ds.

Remark 2.2. Note that from (2.9), (2.19) is equivalent to

∫ t

0
(piα̃i(s) + ℓi(0, ỹ(s), α̃(s))) ds ≤ −tH i(0, pi) + Ci,2, (2.22)

for a constant Ci,2, and that (2.20)(2.21) imply (2.22).

Proposition 2.1. Under Assumptions 1.1, 1.2 and 1.3, if the set A is convex and the function
ℓi(0, ·, ·) is convex on [−1, 1]×A, then Assumption 2.1 holds.

Proof. The proof is given in the appendix. ⊓⊔

Remark 2.3. The conclusion of Proposition 2.1 holds when there is an asymptotically stable
optimal trajectory, see the paragraph at the end of § 2.1.

Proposition 2.2. Under Assumptions 1.1, 1.2 and 1.3, if there exist two positive constants
ci ≤ ci and an exponent νi > 1 such that for all y ∈ [−1, 1] and a ∈ A,

−Λ0
i + ci|a|

νi ≤ ℓi(0, y, a) ≤ −Λ0
i + ci|a|

νi , (2.23)

where Λ0
i is defined in (2.13), then Assumption 2.1 holds.

Proof. The proof is given in the appendix. ⊓⊔

3 A scalar quantity that will appear in the effective equation at

the junction

In what follows, we will make a blow-up near the junction point O: this leads us to extend the
function ℓ0 to the whole domain Ω by setting for any a ∈ A

ℓ0(z, a) = ℓi(0, z
⊥
i , a), if zi ≥ r0, |z

⊥
i | ≤ 1. (3.1)

3.1 Ergodic constants for state constraint problems in bounded subdomains

For any real number R such that R > r0, let the bounded and connected open set ΩR be defined
by

ΩR = Ω ∩WR, (3.2)

where WR is given by (1.1). Consider the infinite horizon control problem

wR
ρ (z0) = inf

AR
z0

∫ ∞

0
e−ρsℓ0(z(s), α(s))ds, (3.3)

11



where

AR
z0

=

{
α : R+ → A, measurable, such that z(s) ≡ z0 +

∫ s

0
α(θ)dθ ∈ Ω

R
, ∀s ≥ 0

}
. (3.4)

It is easy to prove that wR
ρ is the unique viscosity solution of the following problem:

ρwR
ρ +H0(·, Dw

R
ρ ) ≥ 0 in Ω

R
, (3.5)

ρwR
ρ +H0(·, Dw

R
ρ ) ≤ 0 in ΩR, (3.6)

where for z ∈ Ω
R
, p ∈ R

2, the Hamiltonian H0(z, p) is

H0(z, p) = max
a∈A

(
−p · a− ℓ0(z, a)

)
. (3.7)

Using the hypotheses on controllability, continuity and boundedness of the data, it is now
standard (see [24]) to obtain the existence of a unique ergodic constant ER and of a bounded
Lipschitz corrector wR such that

H0(·, Dw
R) ≥ ER in Ω

R
, (3.8)

H0(·, Dw
R) ≤ ER in ΩR, (3.9)

where (up to a subsequence) wR(z) = lim
ρ→0

wR
ρ (z)− < wR

ρ > and ER = − lim
ρ→0

ρwR
ρ (z).

The ergodic constant ER is bounded uniformly w.r.t. R and there exists a constant CL inde-
pendent of R such that |DwR(z)| ≤ CL. Furthermore, if R ≤ R′, the inclusion AR

z ⊂ AR′

z yields
that wR

ρ (z) ≥ wR′

ρ (z). This implies that if R ≤ R′, then ER ≤ ER′
.

3.2 Passing to the limit as R → +∞: the constant E

The boundedness and the monotony of the application R 7→ ER make it possible to pass to the
limit and define a limit ergodic constant

E ≡ lim
R→∞

ER. (3.10)

The constant E will play an important role in the effective equation at the junction.

Example 3.1. It is easy to see that if there exists z0 ∈ K̃0 such that ℓ0(z0, 0) = 0, then E = 0.

Remark 3.1. In what follows, we shall use the fact that, for any ε > 0, there exists R(ε) > 0
such that ∀r > R(ε), wr is a viscosity supersolution of

H0(·, Dw
r) ≥ E − ε, in Ω

r
. (3.11)

Remark 3.2. Using the uniform coercivity of H0, there exists q such that H0(z, p) ≥ E + 2 for
any z ∈ Ω, p ∈ R

2 with |p| ≥ q.
Let R be any fixed real number such that R > r0. For any M ≥ q, consider the continuous
extension w̃R of wR, defined for z = ziei + z⊥i e

⊥
i , zi ∈ (R,+∞), z⊥i ∈ [−1, 1] by

w̃R(z) := wR(zR) +M(z − zR), with zR = Rei + z⊥i e
⊥
i . (3.12)

It is clear that w̃R is a continuous extension of wR to Ω.
Moreover, for R > R(ε) as in Remark 3.1, it is easy to see that w̃R is a viscosity supersolution
of

H0(·, Dw̃
R) ≥ E − ε in Ω. (3.13)
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3.3 Estimates for some trajectories which start in K̃0 and return there after

some time

For z0 ∈ Ω, let Az0 be the set

Az0 =

{
α : R+ → A, measurable, such that ∀s ≥ 0, z(s) ≡ z0 +

∫ s

0
α(θ)dθ ∈ Ω

}
.

Lemma 3.1. There exists a constant C such that for all z0 ∈ K̃0, (see (1.3) for the definition
of K̃0), for all α ∈ Az0 and T0 > 0 such that z(T0) ∈ K̃0, (recall that z(s) ≡ z0 +

∫ s

0 α(θ)),

∫ T0

0
ℓ0(z(s), α(s))ds ≥ −ET0 − C.

Proof. There exists a time τ ≥ 0 (which can be bounded by a constant depending only on the
controllability and bounds in our hypotheses (on ℓ and A)) and a control law α̃(·) such that
z(T0) +

∫ t

0 α̃(s)ds ∈ K̃0 for any t ∈ [0, τ ] and z(T0) +
∫ τ

0 α̃(s)ds = z0. The following control law

α∗(t) =

{
α(t) if t ∈ [0, T0],
α̃(t− T0) if t ∈ (T0, T0 + τ ],

can be extended by periodicity to R
+ (the period is T0 + τ) to yield an admissible periodic

trajectory z∗(t) ≡ z0 +
∫ t

0 α
∗(s)ds. Then,

∫ ∞

0
e−ρsℓ0(z

∗(s), α∗(s))ds =
∞∑

k=0

∫ (k+1)(T0+τ)

k(T0+τ)
e−ρsℓ0(z

∗(s), α∗(s))ds,

and

∞∑

k=0

e−kρ(T0+τ)

(∫ T0+τ

0
e−ρsℓ0(z

∗(s), α∗(s))ds

)
=

1

1− e−ρ(T0+τ)

∫ T0+τ

0
e−ρsℓ0(z

∗(s), α∗(s))ds.

This implies that

lim
ρ→0

ρ

∫ ∞

0
e−ρsℓ0(z

∗(s), α∗(s))ds =
1

T0 + τ

∫ T0+τ

0
ℓ0(z

∗(s), α∗(s))ds. (3.14)

Moreover, it is possible to choose R large enough such that z∗(t) ∈ ΩR for all t ∈ [0, T0 + τ ].
Therefore, up to a subsequence,

lim
ρ→0

ρ

∫ ∞

0
e−ρs (ℓ0(z

∗(s), α∗(s))) ds ≥ lim
ρ→0

ρwR
ρ (z0) = ER ≥ −E,

and this implies thanks to (3.14) that

1

T0 + τ

∫ T0+τ

0
ℓ0(z

∗(s), α∗(s))ds ≥ −E.

Therefore,

∫ T0

0
ℓ0(z(s), α(s))ds ≥ −E(T0 + τ)−

∫ T0+τ

T0

ℓ0(z
∗(s), α∗(s))ds ≥ −ET0 − C.

⊓⊔
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3.4 Generalization of the previous results

Let R0 be a fixed real number such that R0 > r0. It will prove useful to define the following
open sets, see Figure 2:

Ki = Zi ∩ {x : xi > R0}, i = 1, . . . , N, (3.15)

K̃i = Zi ∩ {x : r0 < xi < R0}, i = 1, . . . , N, (3.16)

ω = Ω ∩ {x : xi < R0, ∀i = 1, . . . , N}, (3.17)

with Zi defined in (1.2). Note that ω = ∪N
i=0K̃i and that Ω = ω ∪

⋃N
i=1Ki.

Ω

K2

K5

K̃2

K̃3

K4
K̃4

K1K̃1

K̃5

K̃0

K3

Figure 2: The set Ω is partitioned into different zones

Consider a subdomain Ω̃ of Ω obtained as follows: call I a subset of {1, . . . , N} and define
Ω̃ by

Ω̃ = K̃0 ∪
⋃

i∈I

K̃i ∪
⋃

i∈I

Ki,

see Figure 3.

Ωp

K4

K1K̃1

K̃0

K3

K̃3

K̃4

Figure 3: The set Ω̃ in the case when I = {1, 3, 4}

Let Ω̃R = Ω̃ ∩WR. As in § 3.1, it is possible to obtain the existence of a unique ergodic
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constant ER
Ω̃

and of a bounded Lipschitz corrector wR
Ω̃
such that

H0(·, Dw
R
Ω̃
) ≥ ER

Ω̃
in Ω̃R,

H0(·, Dw
R
Ω̃
) ≤ ER

Ω̃
in Ω̃R,

and ER
Ω̃
≤ ER ≤ E since Ω̃R ⊂ ΩR.

Remark 3.3. Remarks 3.1 and 3.2 hold with the obvious changes consisting of replacing Ω,
(resp. Ωr, ΩR, wR, w̃R) with Ω̃, (resp. Ω̃r, Ω̃R, wR

Ω̃
, w̃R

Ω̃
).

For z0 ∈ Ω̃, let AΩ̃
z0

be the set

AΩ̃
z0

=

{
α : R+ → A, measurable, such that ∀s ≥ 0, z(s) ≡ z0 +

∫ s

0
α(θ)dθ ∈ Ω̃

}
.

The following lemma is proved exactly as Lemma 3.1:

Lemma 3.2. There exists a constant C such that for all z0 ∈ K̃0, (see (1.3) for the definition

of K̃0), for all α ∈ AΩ̃
z0

and T0 > 0 such that z(T0) ∈ K̃0, (recall that z(s) ≡ z0 +
∫ s

0 α(θ)dθ),

∫ T0

0
ℓ0(z(s), α(s))ds ≥ −ET0 − C.

4 The main result: the effective problem and the convergence

theorem

The aim is first to introduce an effective Hamiltonian at the junction, noted H(O, ·) below and
to define the effective problem. Then we will briefly summarize the results of Imbert-Monneau
[20] on Hamilton-Jacobi equations on G. Finally we will state the main convergence result.

4.1 The effective Hamiltonian at the junction

Let H
+
i (xi, pi) be defined by

H
+
i (xi, pi) = sup

µ∈Z+

i

(
−pi

∫

[−1,1]×A

aidµ(y, a)− ℓri (x, µ)

)
(4.1)

where Z+
i is defined by (2.16).

Remark 4.1. In the affine-convex case, H+
i is characterized by

H
+
i (xi, pi) = max

a∈A,ai≥0,a⊥i =0,y⊥i ∈[−1,1]

(
−piai − ℓi(xi, y

⊥
i , a)

)
. (4.2)

Let the function H(O, ·) : RN → R be defined by

H(O, q) = max
i=1,...,N

H
+
i (0, qi), ∀q ∈ R

N , (4.3)

and the set of indices I(q) be defined by

I(q) = {i : 1 ≤ i ≤ N, H
+
i (0, qi) = H(O, q)}. (4.4)
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We also define what may be called the tangential Hamiltonian at the junction (see [2]) by

Λ = max
i=1,...,N

Λ0
i , (4.5)

where Λ0
i = min

p∈R
H i(0, p).

Remark 4.2. From Lemma 2.1, we see that

H
+
i (0, pi) =

{
H i(0, pi) > Λ0

i if pi < p
i
,

Λ0
i if pi ≥ p

i
,

(4.6)

then, it is clear that ∀q ∈ R
N ,

H(O, q) ≥ Λ. (4.7)

In Figure 4, we give an example for the graphs of p 7→ H i(0, p) and of p 7→ H
+
i (0, p). The

constant Λ0
i is the minimal value of both H i(0, ·) and H

+
i (0, ·).

Figure 4: The graphs of the Hamiltonian p 7→ H i(0, p) and of p 7→ H
+
i (0, p) coincide for p ≤ p̄i,

and H
+
i (0, p) = Λ0

i for p ≥ p
i
. In the example, p

i
= 0 and p̄i = 2.

Lemma 4.1. Under Assumptions 1.1- 1.3 and 2.1, Λ defined in (4.5) and E defined in (3.10)
satisfy

Λ ≤ E. (4.8)

Proof. For any i = 1, . . . , N , choose pi ∈ argminH i(0, ·), and Li as in Assumption 2.1. Take
z0,i > 2r0 + Li, z0 = z0,iei + z⊥0,ie

⊥
i ∈ Ω and any R > zi + Li. From Assumption 2.1 and

Remark 2.2, we know that for all t > 0, there exists a control law α ∈ Az0 such that for all

s ∈ [0, t], z(s) = z0 +
∫ s

0 α(θ)dθ belongs to the set {x : xi ∈ [r0, z0,i + Li], x
⊥
i ∈ [−1, 1]} ⊂ Ω

R

and ∫ t

0
ℓ0(z(s), α(s))ds ≤ −tH i(0, pi) + C, (4.9)

for a constant C independent of t.
From Assumption 1.1, there exists a finite time τ > 0 (which is bounded uniformly w.r.t. t) and
a ∈ A such that z(t) + aτ = z0. The following control law

α∗(s) =

{
α(s) if s ∈ [0, t],
a if s ∈ (t, t+ τ ],
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can be extended by periodicity to R
+ (the period is t+ τ) to yield a periodic trajectory z∗(s) ≡

z0 +
∫ s

0 α
∗(θ)dθ, which stays in Ω

R
. The arguments contained in the proof of Lemma 3.1 can

then be repeated to obtain that

1

t+ τ

∫ t+τ

0
ℓ0(z

∗(s), α∗(s))ds ≥ −E,

and that ∫ t

0
ℓ0(z(s), α(s))ds ≥ −Et− C̃

for another constant C̃. Combining this with (4.9) yields that −Et − C̃ ≤ −tH i(0, pi) + C =
−tΛ0

i +C. Since t can be chosen as large as desired, we get that Λ0
i ≤ E, and since the argument

above can be repeated for all i = 1, . . . , N , we obtain (4.8). ⊓⊔

4.2 The effective problem on G

Here we introduce the effective problem on the network G and define its viscosity solution. We
also recall some of the results obtained by Imbert and Monneau [20], in a presentation adapted
to the context.
The effective Hamilton-Jacobi equation on G is:

λu(x) +H i(xi, Du(x)) = 0 x = xiei ∈ Gi, (4.10)

λu(O) + max(E,H(O,Du(O))) = 0 x = O, (4.11)

where H(O, ·) is defined in (4.3), E is defined in (3.10) and

Du(x) =

{
du
dxi

(x) if x ∈ Gi,

( du
dx1

(O), . . . , du
dxN

(O)) if x = O.
(4.12)

4.2.1 Test functions

For the definition of viscosity solutions on the irregular set G, it is necessary to first define a
class of the admissible test functions

Definition 4.1. A function ϕ : G → R is an admissible test function if

• ϕ is continuous in G and C1 in G \ {O}

• for any j, j = 1, . . . , N , ϕ|Ḡj
∈ C1(Ḡj).

The set of admissible test function is noted R(G). If ϕ ∈ R(G) and ζ ∈ R, let Dϕ(x, ζei) be
defined by Dϕ(x, ζei) = ζ dϕ

dxi
(x) if x ∈ Gi\{O} and Dϕ(O, ζei) = ζ limh→0+

dϕ
dxi

(hei).

Property 4.1. If ϕ = g ◦ ψ with g ∈ C1 and ψ ∈ R(G), then ϕ ∈ R(G) and

Dϕ(O, ζ) = g′(ψ(O))Dψ(O, ζ).
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4.2.2 Definition of viscosity solutions

Definition 4.2. • An upper semi-continuous function u : G → R is a viscosity subsolution
of (4.10-4.11) in G if for any x ∈ G, any ϕ ∈ R(G) s.t. u− ϕ has a local maximum point
at x, then

λu(x) +H i(x,
dϕ
dxi

(x)) ≤ 0 if x ∈ Gi,

λu(O) + max(E,H(O, dϕ
dx1

(O), . . . , dϕ
dxN

(O))) ≤ 0.
(4.13)

• A lower semi-continuous function u : G → R is a viscosity supersolution of (4.10-4.11) if
for any x ∈ G, any ϕ ∈ R(G) s.t. u− ϕ has a local minimum point at x, then

λu(x) +H i(x,
dϕ
dxi

(x)) ≥ 0 if x ∈ Gi,

λu(O) + max(E,H(O, dϕ
dx1

(O), . . . , dϕ
dxN

(O))) ≥ 0.
(4.14)

• We say that u is a viscosity solution of (4.10-4.11) in G if it is both a viscosity subsolution
and supersolution of (4.10-4.11).

4.2.3 Comparison principle

The following result is a consequence of the general comparison results proved in [20]:

Theorem 4.1. Under the Assumptions 1.1- 1.3, for all viscosity subsolution u and all superso-
lution v of (4.10-4.11) satisfying

u(x) ≤ C(1 + |x|) and v(x) ≥ −C(1 + |x|)

for some positive number C, we have

u ≤ v in G. (4.15)

4.3 The convergence result

We are ready to the state the main result of the paper:

Theorem 4.2 (Convergence). Under Assumptions 1.1-1.3 and 2.1, as ε → 0+, the functions
uε converge locally uniformly to the unique viscosity solution u of (4.10)-(4.11).

The proof of this Theorem is given in Section 6. It is based on the perturbed test-function
method of Evans. The perturbed test-functions involve suitable correctors which are constructed
in Section 5.

5 Correctors at the junction when H(O, p) > E

The aim here is to construct correctors (in unbounded domains) which will be used in § 6 in
the perturbed test-function method of Evans, [17]. The strategy for constructing the correc-
tors is reminiscent of the one used by Ishii in [22], although a new difficulty arises from the
unboundedness of the domains in which the correctors will be defined.
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Remark 5.1. The question of the correctors in unbounded domains has very recently been
addressed by P-L. Lions in his lectures at Collège de France, [23], precisely in january and
february 2014 (therefore after the completion of the present work): the lectures dealt with recent
and still unpublished results obtained in collaboration with T. Souganidis on the asymptotic
behavior of solutions of Hamilton-Jacobi equations in a periodic framework with some localized
defects. In this context, P-L. Lions addressed similar phenomena as those mentioned below,
namely the possible nonexistence of correctors.

Let p ∈ R
N be such that H(O, p) > Λ. Then from (4.6), we see that for any index i ∈ I(p),

pi < p
i
and H(O, p) = H

+
i (0, pi) = H i(0, pi).

Take R0 > r0 as in § 3.4 and let ψp be a smooth function on Ω such that

ψp(z) = pizi ∀z ∈ Ki,

ψp(z) = piΨ(zi) ∀z ∈ K̃i,

ψp(z) = 0 ∀z ∈ K̃0,

(5.1)

where Ψ is a smooth non decreasing function defined on [r0, R0] such that Ψ = 0 in a neighbor-
hood of r0, Ψ(r) = r in a neighborhood of R0, and Ψ(r) ≤ r for all r ∈ [r0, R0].
Let the open connected set Ωp be defined by

Ωp = K̃0 ∪
⋃

i∈I(p)

K̃i ∪
⋃

i∈I(p)

Ki. (5.2)

where K̃0, K̃i and Ki are defined respectively in (1.3), (3.16) and (3.15), see Figure 5. Note that
Ωp corresponds to a set Ω̃ defined in § 3.4.

Below, a corrector associated to p will be defined in Ωp. Its existence will be stated in
Theorem 5.1. Lemmas 5.1, 5.2 and 5.3 below are the main steps for proving Theorem 5.1.

Remark 5.2. The idea of truncating the domain and use Ωp instead of Ω comes from the fact
that we need a bounded corrector, and constructing a bounded corrector does not seem possible in
the full domain Ω. Since the correctors are defined in subdomains, the method of the perturbed
test functions of Evans will have to be suitably modified, see § 6.

Ωp

K4

K1K̃1

K̃0

K3

K̃3

K̃4

Figure 5: The set Ωp in the case when I(p) = {1, 3, 4}

For z0 ∈ Ωp and t ≥ 0, let u(z0, t) be defined by

u(z0, t) = inf
α∈Ap

y

J(z0, t, α), (5.3)
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where

J(z0, t, α) =

∫ t

0
(Dψp(z(s)) · α(s) + ℓ0(z(s), α(s))) ds, (5.4)

and

ż(s) = α(s), s > 0, z(0) = z0,

Ap
z0

= {α : α(s) ∈ A for a.a. s ; z(s) ∈ Ωp for all s}.

It is well known, see [9], that u is a Lipschitz continuous viscosity solution of

∂u

∂t
(z, t) +H0(z,Dψp +Du) ≥ 0 in Ωp × R+, (5.5)

∂u

∂t
(z, t) +H0(z,Dψp +Du) ≤ 0 in Ωp × R+, (5.6)

where
H0(z, q) = max

a∈A
(−q · a− ℓ0(z, a)) . (5.7)

Lemma 5.1. Let p ∈ R
N be such that H(O, p) > Λ. Under Assumptions 1.1-1.3 and 2.1, there

exists a constant C such that for all z ∈ Ωp and t ≥ 0,

u(z, t) ≤ −tH(O, p) + C. (5.8)

Proof. Consider z0 ∈ Ωp. We make out several cases:

Case 1 There exists i in I(p) such that z0 ∈ Ki and z0,i > Li + R0 where Li is the constant
(possibly depending on pi) appearing in Assumption 2.1. Consider the control law α̃
described in Assumption 2.1 with y0 = z⊥0,i. This control law is such that the corresponding

trajectory z̃(s) = z0 +
∫ s

0 α̃(θ)dθ remains in Ki for all s ∈ [0, t]. Moreover,

J(z0, t, α̃) =

∫ t

0
piα̃i(s) + ℓi(0, z̃

⊥
i (s), α̃(s))ds ≤ −tH(O, p) + Ci,2,

from (2.22). Hence
u(z0, t) ≤ −tH(O, p) + Ci,2. (5.9)

Case 2 In the opposite case, there exists a constant L̃ (depending on p) such that |z0| ≤ L̃.
Let i0 be an index i0 ∈ I(p) minimizing distance(z0 − Ljej ,Kj). From the controllability
assumption 1.1, it is possible to find T > 0 such that for all z0 in Case 2, there exists a
control law ᾱ such that z̄(τ) = z0 +

∫ τ

0 ᾱ(s)ds ∈ Ki0 , z̄i0(τ) > Li0 + R0 for some τ ≤ T
and z̄(s) ∈ Ωp for all s ∈ [0, τ ].
It is possible to extend ᾱ by s 7→ α̃(s−τ) for t−τ > s > τ where α̃ is the control described
in Assumption 2.1 for i = i0, t = t− τ and y0 = z̄⊥0,i(τ).

It is easy to see that the related trajectory remains in Ωp and that there exists a constant
C independent of z0 in Case 2 such that

J(z0, t, ᾱ) =

∫ t

0
Dψp(z̄(s)) · ᾱ(s) + ℓ0(z̄(s), ᾱ(s))ds ≤ −tH(O, p) + C,

which achieves the proof.
⊓⊔
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Lemma 5.2. Let p ∈ R
N be such that H(O, p) > Λ. There exists a constant c ≥ 0 such that

for all z0 ∈ Ωp and t ≥ 0,
u(z0, t) ≥ −tmax(E,H(O, p))− c. (5.10)

Proof. For any ε > 0, we consider α ∈ Ap
z0 such that J(z0, t, α) ≤ u(z0, t) + ε. Call z(s) =

z0 +
∫ s

0 α(θ)dθ. In what follows, c is a positive constant possibly depending on p that may
change from line to line.

• Assume first that z0 ∈ K̃0. We make out two cases:

– If z(t) ∈ K̃0, it is possible to modify the control law as in the Lemma 3.2 and Lemma
3.1 to obtain a t + τ -periodic trajectory z∗(·). Then s 7→ ψp(z

∗((s)) is a function

belonging to W 1,∞
0 (0, t+ τ), whose weak derivative coincides almost everywhere with

s 7→ Dψp(z
∗(s)) · α∗(s). Therefore

∫ t+τ

0 Dψp(z
∗(s)) · α∗(s)ds = ψp(z

∗(t + τ)) −
ψp(z

∗(0)) = 0, then

J(z0, t+ τ, α∗) =

∫ t+τ

0
ℓ0(z

∗(s), α∗(s))ds ≥ −Et− c.

Thus,
J(z0, t+ τ, α∗) = J(z0, t, α) + J(z(t), τ, α∗(·+ t)

and J(z(t), τ, α∗(· + t) is bounded by a constant thanks to the definition of ψp for

trajectories lying in K̃0.
Therefore,

J(z0, t, α) = J(z0, t+ τ, α∗)− J(z(t), τ, α∗(·+ t) ≥ −Et− c.

– z(t) ∈ (Ki ∪ K̃i)\K̃0 for some i ∈ I(p). Let t̄ be the supremum of all entry times in

Ki ∪ K̃i smaller than t. Then z(t̄) ∈ K̃0 and we can repeat the argument above to
prove that

J(z0, t̄, α) ≥ −Et̄− c.

There only remains to study
∫ t

t̄
(Dψp(z(s)) · α(s) + ℓ0(z(s), α(s))) ds. For s ∈ [t̄, t],

ℓ0(z(s), α(s)) = ℓi(0, z
⊥
i (s), α(s)). Moreover,

∣∣∣
∫ t

t̄
Dψp(z(s)) · α(s)ds− pi(zi(t)− zi(t̄))

∣∣∣ ≤
c. Hence,
∣∣∣∣
∫ t

t̄

(Dψp(z(s)) · α(s) + ℓ0(z(s), α(s))) ds−

∫ t

t̄

(
piαi(s) + ℓi(0, z

⊥
i (s), α(s))

)
ds

∣∣∣∣ ≤ c.

But ∫ t

t̄

(
piαi(s) + ℓi(0, z

⊥
i (s), α(s))

)
ds ≥ vi(0, pi, z

⊥
i (t̄), t− t̄)

where vi is defined in (2.8). From (2.9),
∫ t

t̄

(
piαi(s) + ℓi(0, z

⊥
i (s), α(s))

)
ds ≥ −(t− t̄)H i(0, pi)− c. (5.11)

Summing all the contributions, we get that

J(z0, t, α) ≥ (t− t̄)(−H i(0, pi))− Et̄− c.

But H i(0, pi) = H(O, p) since i ∈ I(p). Hence

J(z0, t, α) ≥ (t− t̄)(−H(O, p))− Et̄− c ≥ min(−H(O, p),−E)t− c.
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• Assume now that z0 ∈ Ki ∪ K̃i for some i ∈ I(p). We make out two cases:

– If the trajectory stays in Ki ∪ K̃i, then

J(z0, t, α) = ψp(z(t))− ψp(z0) +

∫ t

0
ℓi(0, z

⊥
i (s), α(s))ds

≥ pi(zi(t)− z0,i)− c+

∫ t

0
ℓi(0, z

⊥
i (s), α(s))ds.

Therefore, J(z0, t, α) ≥ vi(0, z
⊥
0,i, t)− c ≥ −tH(0, p)− c.

– The trajectory z leaves Ki ∪ K̃i. Let θ be the smallest time such that z(θ) ∈ K̃0.
Then

J(z0, t, α) = J(z0, θ, α) + J(z(θ), t− θ, α̃),

where α̃(s) = α(s − θ). We have just seen that J(z0, θ, α) ≥ −θH(O, p) − c. From
the previous case (when z0 ∈ K̃0), J(z(θ), t− θ, α̃) ≥ (t− θ)min(−H(O, p),−E)− c.
Thus, J(z0, t, α) ≥ tmin(−H(O, p),−E)− c.

The result follows letting ε→ 0. ⊓⊔

As a consequence of Lemmas 5.1 and 5.2, and using also that E ≥ Λ from Lemma 4.1, we
obtain the following:

Lemma 5.3. Let p ∈ R
N be such that H(O, p) > E. Under Assumptions 1.1-1.3 and 2.1, the

function v: (z, t) 7→ u(z, t) + tH(O, p) is bounded and Lipschitz continuous on Ωp × R+. It is a
viscosity solution of

∂v

∂t
(z, t) +H0(z,Dψp +Dv)−H(O, p) ≥ 0 in Ωp × R+, (5.12)

∂v

∂t
(z, t) +H0(z,Dψp +Dv)−H(O, p) ≤ 0 in Ωp × R+. (5.13)

Define the function w by
w(z, t) = inf

r>0
v(z, t+ r).

It is easy to check that the function w is bounded and Lipschitz continuous. It can also be seen
that w is a non decreasing function of time. From e.g. [9], Proposition 2.11, page 302, or [22],
Proposition 1.10, page 125, w is a viscosity supersolution of

∂w

∂t
(z, t) +H0(z,Dψp +Dw)−H(O, p) ≥ 0 in Ωp × R+.

From the convexity of H0(z, ·), we get the following Lemma

Lemma 5.4. w is a viscosity subsolution of

∂w

∂t
(z, t) +H0(z,Dψp +Dw)−H(O, p) ≤ 0 in Ωp × R+.

Proof. See [22] Lemma 5.11. Two possible arguments may be used, the first one from Barron
and Jensen[13] , and the second one from Barles[10]. ⊓⊔
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Let χp(z) be defined by χp(z) = limt→∞w(z, t) = suptw(z, t). It is obvious that χp is
bounded. The convergence of w(z, t) to χp(z) is uniform on the bounded subsets of Ωp. Therefore
χp is a Lipschitz function on Ωp. Hence, χp as a function of z and t is a viscosity solution of
(5.12) and (5.13). Since it does not depend on t, χp is a bounded and Lipschitz solution of

H0(z,Dψp +Dχp)−H(O, p) ≥ 0 in Ωp, (5.14)

H0(z,Dψp +Dχp)−H(O, p) ≤ 0 in Ωp. (5.15)

Therefore, the following theorem has been obtained:

Theorem 5.1. Let p ∈ R
N be such that H(O, p) > E. Under Assumptions 1.1-1.3 and 2.1,

there exists a bounded and Lipschitz function χp defined on Ωp which is a viscosity solution of
(5.14)-(5.15).

6 Convergence

The aim is to study the asymptotic behavior of the sequence of functions (uε) as ε→ 0+ where
uε is the unique viscosity solution of (1.5) (1.6).
A sequence of continuous functions (vε) defined on Ωε is said to converge locally uniformly to a
continuous function v defined on G if for all M > 0,

lim
ε→0

sup
x∈G,y∈Ωε∩B(O,M),|y−x|≤ε

|v(x)− vε(y)| = 0.

Theorem 6.1. Under Assumptions 1.1-1.3 and 2.1, consider the weak limits in the viscosity
sense, or relaxed semilimits, of uε, as ε→ 0+: for all x ∈ G,

u(x) = lim inf
ε→0+,x′→x,x′∈Ωε

uε(x
′); u(x) = lim sup

ε→0+,x′→x,x′∈Ωε

uε(x
′).

Then, u is a bounded supersolution of

λu(x) +H(x,Du(x)) ≥ 0, if x ∈ G\{O},

λu(O) + max(E,H(O,Du(O))) ≥ 0, if x = O,
(6.1)

and u is a bounded subsolution of

λu(x) +H(x,Du(x)) ≤ 0, if x ∈ G\{O},

λu(O) + max(E,H(O,Du(O))) ≤ 0, if x = O.
(6.2)

Proof. Recall that uε is bounded by a constant M independent of ε from the assumptions on
ℓε. Therefore u and u are bounded. We first prove that u is a subsolution of (6.2).

u is a subsolution of (6.2) To prove that u is a subsolution of (6.2), we consider a strict
maximum x̄ of u − ϕ, where ϕ is a regular test-function for (6.1)-(6.2). We may assume that
ϕ(x̄) = u(x̄).
We want to show that

λϕ(x̄) +H(x̄, Dϕ(x̄)) ≤ 0, if x̄ ∈ G\{O},

λϕ(O) + max(E,H(O,Dϕ(O))) ≤ 0, if x̄ = O.
(6.3)
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We just have to focus on the case when x̄ = O, because if x̄ 6= O, (6.3) is proved in [3]. Suppose
by contradiction that

λϕ(O) + max(E,H(O,Dϕ(O))) = γ > 0. (6.4)

Let p ∈ R
N be defined by p = (Dϕ(O, e1), . . . , Dϕ(O, eN )). We make out two cases:

First case: H(O, p) > E. In this case (6.4) becomes:

λϕ(O) +H(O,Dϕ(O)) = γ > 0.

For Ωp defined in (5.2), let the auxiliary function ξε be defined in εΩp by

ξε(x) = ϕ(xiei)− ϕ(O) ∀x ∈ εKi, i ∈ I(p),

ξε(x) = ε
xi
(ϕ(xiei)− ϕ(O))Ψ(x

ε
) ∀x ∈ εK̃i, i ∈ I(p),

ξε(x) = 0 ∀x ∈ εK̃0,

(6.5)

where Ψ is the same function as the one used in (5.1). Note that the function x 7→
ξε(x)− εψp(

x
ε
) is a C1 function which vanishes in εK̃0 and that

lim
ρ→0

sup
0<ε< ρ

R0

‖Dξε(x)−Dzψp(
x

ε
)‖L∞(εΩp∩Bρ(O)) = 0, (6.6)

where R0 is the number fixed at the beginning of § 5. Indeed,

Dξε(x) = dϕ
dxi

(xiei)ei = piei + o(1) = Dzψp(
x
ε
) + o(1) ∀x ∈ εKi,

Dξε(x) = ϕ(xiei)−ϕ(O)
xi

∂Ψ
∂zi

(x
ε
)ei −

ε
xi

(
ϕ(xiei)−ϕ(O)

xi
− dϕ

dxi
(xiei)

)
Ψ(x

ε
)ei

= (pi + o(1)) ∂Ψ
∂zi

(x
ε
)ei +

ε
xi
Ψ(x

ε
)o(1)ei

= Dzψp(
x
ε
) + o(1) ∀x ∈ εK̃i,

Dξε(x) = 0 ∀x ∈ εK̃0,

where o(1) means a family of functions (fε)ε defined in εΩp such that

lim
ρ→0

sup
0<ε< ρ

R0

‖fε‖L∞(εΩp∩Bρ(O)) = 0.

Define the perturbed test-function

ϕε(x) = ϕ(O) + ξε(x) + εχp(
x

ε
)

in εΩp, where χp is constructed at the end of § 5 and is a bounded viscosity solution of
(5.14), (5.15).
We claim that for some ρ > 0, ϕε is a viscosity supersolution of

λϕε(x) +Hε(x,Dϕε(x)) ≥ 0 x ∈ εΩp ∩Bρ(O), (6.7)

for all ε such that ε < ρ/R0.
Consider a smooth function ζ such that ϕε − ζ attains its minimum in εΩp ∩ Bρ(O) at
x̃ and ϕε(x̃) = ζ(x̃). Then the function z 7→ χp(z) + ψp(z) −

(
ψp(z)−

1
ε
ξε(εz) +

1
ε
ζ(εz)

)

attains its minimum at z̃ = x̃
ε
. From the definition of χp we get

H0

(
z̃, Dζ(x̃)−Dξε(x̃) +Dzψp(

x̃

ε
)

)
≥ H(O, p)
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and therefore,

λϕ(O) +H0

(
z̃, Dζ(x̃)−Dξε(x̃) +Dzψp(

x̃

ε
)

)
≥ λϕ(O) +H(O, p) = γ > 0.

But

ζ(x̃)− ϕ(O) = ξε(x̃) + εχp

(
x̃

ε

)
.

From (6.5) and (6.6), it is possible to choose ρ small enough such that

1. λ sup0<ε< ρ
R0

maxx∈εΩp∩Bρ(O) |ξε(x)| ≤
γ
6

2. λ sup0<ε< ρ
R0

maxx∈εΩp∩Bρ(O) |εχp

(
x
ε

)
| ≤ γ

6

3. sup0<ε< ρ
R0

maxx∈εΩp∩Bρ(O)

∣∣H0

(
x
ε
, Dζ(x)−Dξε(x) +Dzψp(

x
ε
)
)
−H0

(
x
ε
, Dζ(x)

)∣∣ ≤ γ
6

We get that

λζ(x̃) +H0(z̃, Dζ(x̃)) ≥
γ

2
.

Moreover, from the definition of ℓε, the continuity of the functions ℓi and the compactness
of the set [−1, 1]×A, we see that

lim
ρ→0

sup
0<ε< ρ

R0

‖H0(
x

ε
, p)−Hε(x, p)‖L∞(εΩp∩Bρ(O)) = 0. (6.8)

Therefore, for ρ small enough,

λζ(x̃) +Hε(x̃, Dζ(x̃)) ≥
γ

4
,

which proves the claim.
From (1.5) and (6.7), we deduce that

sup
εΩp∩Bρ(O)

uε − ϕε ≤ sup
εΩp∩∂Bρ(O)

uε − ϕε.

Passing to the limit when ε→ 0, we obtain

0 = ū(O)− ϕ(O) ≤ ū(ρei)− ϕ(ρei), ∀i ∈ I(p).

Since we can choose ρ as small as we like, we reach a contradiction because O is a strict
maximum of ū− ϕ.

Second case: H(O, p) ≤ E. In this case (6.4) becomes:

λϕ(O) + E = γ > 0.

Let us modify ϕ by taking ϕ̃(x) = ϕ(O) +M |x|. We choose M large enough such that

• M ≥ q where q is defined in Remark 3.2

• the function ϕ̃ is still an admissible test-function such that ū − ϕ̃ has a strict local
maximum at O and H(O,Dϕ̃(O)) ≤ H(O, p), so

max(E,H(O,Dϕ̃(O))) ≤ max(E,H(O, p)) = E.

Therefore, (6.4) holds for ϕ̃.
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For simplicity, we agree to write ϕ = ϕ̃.
Thanks to Remark 3.2, there exists R∗ such that the function w̃R∗

(z) defined in (3.12)
(recall that M ≥ q) is a viscosity supersolution of

H0(z,Dw̃
R∗

(z)) ≥ E −
γ

4
for any z ∈ Ω̄.

Note that, with zR
∗
defined in (3.12), if z ∈ Ω̄\Ω̄R∗

then w̃R∗
(z) − ϕ(z) = w̃R∗

(zR
∗
) −

ϕ(O)−MR∗.
Let us call ϕ∗

ε the function defined in εΩ by ϕ∗
ε(x) = ϕ(O) + εw̃R∗

(x
ε
),

then if x
ε
∈ Ω̄\Ω̄R∗

ϕ∗
ε(x)− ϕ(x) = ε

(
w̃R∗

(
x

ε
)−M

|x|

ε

)
= O(ε).

For ρ > 0 smaller than a constant independent of ε, we claim that ϕ∗
ε is a viscosity

supersolution of
λϕ∗

ε(x) +Hε(x,Dϕ
∗
ε(x)) ≥ O x ∈ εΩ ∩Bρ(O),

for all ε > 0. Let ζ a regular function and x∗ ∈ εΩ ∩Bρ(O) be such that

ϕ∗
ε(x)− ζ(x) ≥ ϕ∗

ε(x
∗)− ζ(x∗) = 0, x ∈ εΩ ∩Bρ(O),

This implies that, changing the variable z = x
ε
and z∗ = x∗

ε

w̃R∗

(z)−
1

ε
ζ(εz) ≥ w̃R∗

(z∗)−
1

ε
ζ(εz∗)

It is possible to use the equation satisfied by wR∗
:

H0(
x∗

ε
,Dζ(x∗)) ≥ E −

γ

4
.

If z∗ = x∗

ε
∈ Ω

R∗

λϕ∗
ε(x

∗)+Hε(x
∗, Dζ(x∗)) = λϕ∗

ε(x
∗)+Hε(x

∗, Dζ(x∗))−H0(
x∗

ε
,Dζ(x∗))+H0(

x∗

ε
,Dζ(x∗))

≥ λϕ(0)− C(R∗)ε+Hε(x
∗, Dζ(x∗))−H0(

x∗

ε
,Dζ(x∗)) +H0(

x∗

ε
,Dζ(x∗))

≥ −E + γ + (E −
γ

4
)− C(R∗)ε+Hε(x

∗, Dζ(x∗))−H0(
x∗

ε
,Dζ(x∗))

=
3

4
γ +O(ε) +Hε(x

∗, Dζ(x∗))−H0(
x∗

ε
,Dζ(x∗))

=
1

2
γ +Hε(x

∗, Dζ(x∗))−H0(
x∗

ε
,Dζ(x∗)) (6.9)

If z∗ = x∗

ε
∈ Ω\Ω

R∗

λϕ∗
ε(x

∗) +Hε(x
∗, Dζ(x∗)) ≥ −Cρ+

1

2
γ +Hε(x

∗, Dζ(x∗))−H0(
x∗

ε
,Dζ(x∗)) (6.10)

Using an argument similar to that used to prove (6.8) for ρ small enough we can deduce
from (6.9) and (6.10)

λϕ∗
ε(x

∗) +Hε(x
∗, Dζ(x∗)) ≥ 0. (6.11)

We deduce from this that

sup
εΩ∩Bρ(O)

uε − ϕ∗
ε ≤ sup

εΩ∩∂Bρ(O)
uε − ϕ∗

ε

which leads to a contradiction as above.
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u is a supersolution of (6.1) We are left with proving that u is a supersolution of (6.1). We
consider a strict minimum x̄ of u− ϕ̃, such that u(x̄) = ϕ̃(x̄), where ϕ̃ is a regular test-function
for (6.2)-(6.1). In the case when x̄ 6= O, the desired result is proved in [3]. Thus, we may focus
on the case when x̄ = O.
We want to show that

λϕ̃(O) + max(E,H(O,Dϕ̃(O))) ≥ 0. (6.12)

We suppose by contradiction that

λϕ̃(O) + max(E,H(O,Dϕ̃(O))) = γ̃ < 0.

Let p̃ ∈ RN be defined by p̃ = (Dϕ̃(O, e1), . . . , Dϕ̃(O, eN ))

First case IfH(O, p̃) > E and I(p̃) = {1, . . . , N}, i.e. for all i ∈ {1, . . . , N},H
+
i (O,Dϕ̃(0, ei)) =

H(O, p̃), then we choose ϕ = ϕ̃, and p = p̃.

Second case On the contrary, i.e. if either H(O, p̃) ≤ E or H(O, p̃) > E and I(p̃) 6=
{1, . . . , N}, it is possible to add a piecewise linear nonpositive function vanishing at O
to ϕ̃ and obtain a new function ϕ such that

• O is a strict minimum of u− ϕ, and u(O) = ϕ(O)

• if p = (Dϕ(O, e1), . . . , Dϕ(O, eN )), then λϕ(O) +H(O, p) = γ < 0

• H(O, p) > E and I(p) = {1, . . . , N}, i.e. for all i ∈ {1, . . . , N}, H
+
i (O, pi) = H(O, p).

We then consider ψp as in (5.1), χp defined at the end of §5 with Ωp = Ω, and ξε as above. The
perturbed test function is defined in εΩ by

ϕε(x) = ϕ(O) + ξε(x) + εχp(
x

ε
).

We claim that for some ρ > 0, ϕε is a viscosity subsolution of

λϕε(x) +Hε(x,Dϕε(x)) ≤ 0 x ∈ εΩ ∩Bρ(O), (6.13)

for all ε such that R0ε < ρ. The proof of the claim is essentially the same as for (6.7).
The comparison principle implies that

inf
εΩ∩Bρ(O)

uε − ϕε ≥ inf
εΩ∩∂Bρ(O)

uε − ϕε.

and then
0 = u(O)− ϕ(O) ≥ inf

G∩∂Bρ(O)
u− ϕ.

Since we can choose ρ as small as we like, we reach a contradiction because O is a strict minimum
of u− ϕ. ⊓⊔

Proof of Theorem 4.2. From Theorem 6.1, the relaxed semilimits ū and u are respectively bounded
viscosity subsolution and supersolution of (4.10)-(4.11). By comparison (Theorem 4.1), this im-
plies that ū = u = u and the local uniform convergence of uε to u. ⊓⊔
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A Proofs of Propositions 2.1 and 2.2

Proof of Proposition 2.1 Let us prove that Assumption 2.1 holds with Li = 0.
Consider first the case when pi < p

i
: from the convexity assumptions, there exists ā ∈ A and

ȳ ∈ [−1, 1] such that ā⊥i = 0 and

H i(0, pi) = −piāi − ℓi(0, ȳ, ā).

Since H i(0, pi) > Λ0
i , we know that āi ≥ 0. With the constant r appearing in Assumption 1.1,

if t̃ = |ȳ−y0|
r

, the control law α̃ defined by

α̃(s) = r sign(ȳ − y0)e
⊥
i if 0 < s < t̃,

α̃(s) = ā if t̃ < s,

belongs to Ai,y0 . Moreover
∫ t

0 α̃i(s)ds = āi(t− t̃)+ ≥ 0. It is clear that if t ≥ 2/r, then t ≥ t̃ and

∫ t

0
(piα̃i(s) + ℓi(0, ỹ(s), α̃(s))) ds ≤ −(t− t̃)H i(0, pi) +

2

r
max

(y,a)∈[−1,1]×A
ℓi(0, y, a)

≤ −tH i(0, pi) + c,

for a constant c possibly depending on pi and ỹ(t) = y0 +
∫ t

0 α̃
⊥
i (s)ds. With C as in (2.9), we

deduce that ∫ t

0
(piα̃i(s) + ℓi(0, ỹ(s), α̃(s))) ds ≤ vi(0, pi, y0, t) + C + c.

It is always possible to choose Ci ≥ C + c such that for all 0 ≤ t ≤ 2/r, there is an admissible
control law such that

∫ s

0 α̃i(τ)dτ ≥ 0, ∀0 ≤ s ≤ t and (2.19) holds.

We are left with the case when pi ∈ argminH i(0, ·): in that case, there exists ȳ ∈ [−1, 1]
such that

H i(0, pi) = −ℓi(0, ȳ, 0).

We can repeat the arguments above with ā = 0 and prove the claim.

Proof of Proposition 2.2 For brevity, we only discuss the case when pi < p
i
, because the

case pi ∈ [p
i
, pi] is handled in the same manner.

By adding the constant Λ0
i to ℓi, it is always possible to assume that Λ0

i = 0 and

ci|a|
νi ≤ ℓi(0, y, a) ≤ ci|a|

νi . (A.1)

Thus, 0 ∈ [p
i
, pi].

Step 1 Consider y0 ∈ [−1, 1], and (α, T ) ∈ Ai,y0 × R+ such that min0≤θ≤T

∫ θ

0 αi(s)ds ≤ −Li.

Let θ be such that
∫ θ

0 αi(s)ds ≤ −Li. Hölder’s inequality yields

Li ≤

∫ θ

0
α−
i (s)ds ≤ θ

1− 1

νi

(∫ θ

0
|α(s)|νids

) 1

νi

,

thus ∫ θ

0
|α(s)|νids ≥ Lνi

i θ
1−νi .
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Hence, any α such that

∫ T

0
αi(s)ds = 0, (A.2)

min
0≤θ≤T

∫ θ

0
αi(s)ds ≤ −Li (A.3)

satisfies ∫ T

0
ℓi(0, y(s), α(s))ds ≥ ciL

νi
i T

1−νi , (A.4)

with

y(s) = y0 +

∫ s

0
α⊥
i (τ)dτ.

Moreover, if Li >
2maxA a−i

r
, where r is the constant in Assumption 1.1, then (A.3) implies that

T > 2
r
. Therefore, from Assumption 1.1, the control

ᾱ = ᾱ⊥
i e

⊥
i =

y(T )− y0
T

e⊥i =
1

T

∫ T

0
α(τ)dτ (A.5)

belongs to A.
On the other hand, with ᾱ defined by (A.5), (2.23) implies that

∫ T

0
ℓi(0, y0 + ᾱ⊥

i s, ᾱ)ds ≤ ci2
νiT 1−νi . (A.6)

Hence, from (A.4) and (A.6), it is possible to choose Li large enough, namely larger than

max

(
2maxA a−i

r
, 2
(
c̄i
ci

) 1

νi

)
, such that for all (T, α) satisfying (A.2) (A.3), ᾱ defined by (A.5) is

an admissible control in [0, T ] and the following inequality holds

∫ T

0
ℓi(0, y(s), α(s))ds ≥

∫ T

0
ℓi(0, y0 + ᾱ⊥

i s, ᾱ)ds. (A.7)

Step 2 Take Li as in the conclusion of Step 1 and pi such that pi < p
i
. Therefore pi < 0. Since

Λ0
i = 0, we also have that H i(0, pi) > 0. Take C as in (2.9): for t > 2C

Hi(0,pi)
, vi(0, pi, y0, t) < −C.

There exists a control law α ∈ Ai,y0 such that

∫ t

0
(piαi(s) + ℓi(0, y(s), α(s))) ds ≤ vi(0, pi, y0, t) + C < 0,

where y is given by (2.1). Then,
∫ t

0 αi(s)ds > 0. If min0≤s≤t

∫ s

0 αi(τ)dτ ≤ −Li, we see from Step
1 that it is possible to replace α by a control α̃ satisfying (2.18) and such that

∫ t

0
(piα̃i(s) + ℓi(0, ỹ(s), α̃(s))) ds ≤

∫ t

0
(piαi(s) + ℓi(0, y(s), α(s))) ds,

hence (2.19) with Ci = C, and ỹ(t) = y0 +
∫ t

0 α̃
⊥
i (s)ds.

It is always possible to choose Ci ≥ C such that for all t ≤ 2C
Hi(0,pi)

, there exists an admissible

control law such that (2.18) and (2.19) hold.
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