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UNSUPERVISED LIP SEGMENTATION UNDER NATURAL CONDITIONS

   

Unsupervised lip segmentation under natural conditions

INTRODUCTION

It is commonly observed that visual information provides a precious help to the listener under degraded acoustical conditions [START_REF] Benoît | A set of french visemes for visual speech synthesis[END_REF]. The motivation of the present work is to extract visual information for automatic speech recognition (ASR), videoconferencing and speaker's face synthesis under natural lighting conditions with few assumptions. Some approaches proposed in this area are based on gray level analysis (e.g. Luettin in [START_REF] Stork | Speechreading by Humans and Machines[END_REF]). Others use color analysis but need to determine optimal values of some parameters (e.g. Coianiz in [START_REF] Stork | Speechreading by Humans and Machines[END_REF]). Strong assumptions are required on the skin hue parameters and the mouth location [START_REF] Wark | A synthetic approach to automatic lip feature extraction for speaker identification[END_REF], therefore the skin hue region is often determined manually beforehand.

The previous work [START_REF] Liévin | Lip features automatic extraction[END_REF] used a segmentation to locate the mouth before estimating lip geometrical features, some of the segmentation parameters were determined beforehand.

Here, an algorithm is proposed for unsupervised lip shape extraction and mouth location under natural conditions, the requirement being that a micro-camera is mounted on a light helmet worn by the speaker so that it is fixed w.r.t. the head.

The RGB video sequence (8 bits/color/pixel) contains the region of the face spanning from chin to nostrils. The purpose of the process is to obtain the mouth shape using red hue label fields and motion information. The processing is divided into three stages:

1: Logarithmic color-space transform, RGB to HI. 2: of sequence dependant parameters:

Computation of the mean value of the lip hue H lip .

Estimation of the noise on the motion information. 3: Spatiotemporal segmentation of the lip and ROI estimation.

PARAMETER ESTIMATION

Logarithmic color transform

Color-based approaches often use color angles methods (HSI) for illuminant-invariant recognition. Color shifts can be well categorized with angles if camera sensors are sufficiently narrowband. But, in our application, we deal with a mono-CCD camera which gives poor results with angular transforms (noisy conditions). Moreover, G and B channels seem to be correlated in the red region (where R is preponderant). From the RGB color space, we use only two dimensions R and G under the assumption that red prevails in face areas and specially in lip areas. We define the chro- To obtain a robust hue observation to the lighting conditions, we compute the hue in a mathematical framework based on a logarithmic image processing model [START_REF] Jourlin | Image dynamic range enhancement and stabilization in the context of the logarithmic image processing model[END_REF]. The intensity I of an image is represented by its associated gray tone function i (Eq. 1). This model satisfies the saturation characteristics of the human visual system and is justified from a physical point of view. Specific algebraic and functional operations are redefined in a vectorial structure, like and as respectively the addition and the opposite of a gray tone function. The difference between g and f, respectively logarithmic tone of the intensity G and F ,isgivenEq.

2. i = M 1 , I I 0 (1) f g = M f , g M , g (2) h = g r = M 1 , G R (3)
Considering the illuminance I 0 close to the maximum value of white M , the logarithmic transform becomes i = M ,I.

We define h as the logarithmic hue tone of H, difference of g and r, logarithmic color tone of G and R (Eq. 3). The logarithmic difference becomes a ratio between R and G components H = M G R . Finally, from the RGB color space, a HI logarithmic color space (Fig. 2) is defined considering M =256and the intensity I as the mean value of the R,G and B components (Eq. 4). the corresponding hue sequence.

H =256 G R and I = R + G + B 3 (4) 

Observations

To detect lip regions, motion information is combined with red hue. From the HI color space, two kinds of observations o are derived, defined to be in the same range 0 255 as the image quantification (8 bits). First, a hue observation hs consists in filtering the hue value Hs at pixel s with a parabola centered on the mean value of lip hue H lip with a standard deviation of the hue value H (Eq. 5). H 16 (5) The notation 1 condition denotes a binary function which takes the value 1 is the condition is true, 0 otherwise.

Second, a temporal observation fds is defined as unsigned difference between the luminance of two consecutive images (Eq. 6). Is represents the intensity (or luminance) at pixel s. fds=jI t s , I t,1 sj (6)

Hue and motion estimation

The hue segmentation needs three estimated parameters to be unsupervised : H lip , H , h . Due to the chosen expression of hs, the tresholded hue field is defined by Eq. 7, expressing the link between H and h . hs h ,jHs , H lip j H p 256 , h (7)

The hue histogram fp i;h ;i 2 0 255 g is an useful representation of the hue distribution over the image. We can detect two modes, one for the face, the second for the lip. But, in natural conditions (no make-up), the two modes are mixed (Fig. 3). In order to estimate H lip accurately, a spe- cific hue H h f ace;lip is defined in Eq. 8. H lip is defined by the Eq. 9.

H h S = cardS h X i2 h p i;h S i (8)

H lip = H h lip S s (9) 
h corresponds to the appropriate interval and S s represents the image S after face segmentation. The processing respects the following steps:

1: Estimate H face using fp i;h ;i 2 0 255 g computed over the hue image. 2: Segment the first hue image with a basic spatial MRF segmentation via the hue transform observation The algorithm requires an appropriate threshold fd to suppress the camera noise without cutting significant temporal changes. In the previous work [START_REF] Liévin | Lip features automatic extraction[END_REF], this threshold was determined before segmentation by hand. We compute here the entropy E fd S over an image difference (Eq. 11). This gives the level of noise from which we can deduce the value of fd (Eq. 12). The thresholded motion field is then defined by fd fd . The thresholded fields appear non homogeneous and noisy (Fig. 4). Therefore, we need a statistical relaxation to segment more accurately the lip. 

THE SEGMENTATION ALGORITHM

The spatiotemporal MRF framework

From these two thresholded observations, four initial labels (a 0 ,a 1 ,b 0 ,b 1 ) are derived, for coding four pixel classes: pixels with ( 1 ) (resp. without ( 0 )) motion, belonging (a) (resp. not belonging (b)) to red hue areas. This label field is supposed to follow the main MRF (Markov Random Field) property related to a spatiotemporal neighborhood structure, i.e. the label l s of the current pixell s depends only on the labels of its spatiotemporal neighbors n.

Maximizing the A Posteriori probability (MAP criterion) of the label field is equivalent to minimizing a global energy function [START_REF] Geman | Stochastic relaxation, gibbs distributions and the bayesian restoration of images[END_REF]:

W S= X o2ffd;hg U o S+ :U m S (13)
where U o and U m represent respectively the attachment energies (expressing the link between labels and observations, Eq. 14) and the model energy (corresponding to spatial and temporal a priori constraints) (Eq. 15) over the image S, is a weighting coefficient between the two energies.

U o S= X s2S o s , o l s 2 2 2 o ( 14 
)
where o is an attachment function, mean value of the observation o over S and 2 o is the corresponding variance.

Both are estimated on line.

The apri orimodel energy is defined as a sum of interaction potential functions over the neighborhood:

U m S= X s2S h X n2s V st l n ;l s i (15)
The spatiotemporal potential function V st is defined as the inverse of the Euclidian distance between two neighbors.

The distance integrates two elementary potentials s and t as scale factors (Eq. 16).

V st l n ;l s = s l n ;l s t l n ;l s q t l n ;l s 2 , where ,,,! s; n= x ; y ; t and 2f,1; 0; 1g

The elementary potentials s and t are defined to con- strain the model respectively to spatial homogeneity of labels and temporal homogeneity of hue when no motion is detected (details in [START_REF] Liévin | Lip features automatic extraction[END_REF]).

The relaxation algorithm

The iterative deterministic algorithm ICM (Iterated Conditional Modes) is implemented to compute the minimum energy at each site (Eq. 13 with typ. =20), starting from the thresholded fields as initial label configuration. After a few iterations on the field (less than 10 to respect the stopping criterion for convergence WS=WS 0:05 %), convergence is achieved. One obtains homogeneous red hue and lip motion fields (Fig. 5). 

ROI estimation

From lip red hue relevant labels, the ROI is evaluated on line by maximising a cost function ,S on each image (Eq. 10 in [START_REF] Liévin | Lip features automatic extraction[END_REF]) after each step of the relaxation. One each image, the last estimated ROI is increased with a scale factor and used to initialize the current one. The ROI estimation reduces the relaxation time by surrounding the mouth precisely. Moreover, it increases the accuracy of parameter's estimation.

LIP SHAPE EXTRACTION

Different sequences have been tested, some with natural red make-up (To p in Fig. 6), others with poor lighting conditions without any make-up (Bottom in Fig. 6). These results show the robustness of the unsupervised algorithm to the variability of natural conditions. The unsupervised parameter estimation method gives a one pixel mean difference with ground truth measures for the vertical height and the horizontal width of the internal lip opening (Fig. 7). The external shape is unfortunately more elusive but accurate enough to initiate a simple deformable geometrical model. 

CONCLUSION

An unsupervised lip segmentation have been successfully applied to several sequences in natural conditions (natural Bunsup: as unsupervised parameter estimation measure; B g:truth as ground truth measure)

images of speaker's face without any particular make-up or lighting). First, the choice of a logarithmic transformation close to the characteristic of the human visual system enables the algorithm to estimate accurately the mean value of lip hue H lip (the speaker's dependant parameter). This transformation is combined with a noise estimation on the frame difference. Second, the spatiotemporal algorithm integrates hue with motion information, improving the quality of contours often elusive on speaker's lips. Finally, the quality of the segmented fields is similar to those obtained with parameters determined beforehand manually [START_REF] Liévin | Lip features automatic extraction[END_REF]. We need to process more sequences to test the robustness of the parameter estimation with more difficult cases, like faces with beard or colored people faces. The proposed algorithm requires less than 10 iterations until convergence (about 2 sec. on a SunUltra1).
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 1 Figure 1: Left:3 DRGB histogram of a face under natural illumination; Right:2 DRG chromacity histogram. macity histogram (R,G) as the non-normalized projection of the RGB color space. The typical histogram of a face sample is shown Fig. 1. Two regions with a specific angular direction appear.To obtain a robust hue observation to the lighting conditions, we compute the hue in a mathematical framework
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 2 Figure 2: Top: 5 typical images of luminance sequence; Bottom:

Figure 3 :

 3 Figure 3: Left: histogram of hue image;Right: unsupervised segmentation of hue face.

  p i;o S represents the probability of level i in the observation o over image S.

Figure 4 :

 4 Figure 4: From top to bottom: sequence of temporal observation fd; sequence of red predominance observation h with unsupervised parameter estimation (H lip = 130 ; H = 6); sequence of temporal observation thresholded with unsupervised parameter estimation ( fd =9); sequence of red prevailing observation thresholded ( h =192).

Figure 5 :

 5 Figure 5: From top to bottom: initial labels; label fields after relaxation, The 4 labels are shown in grey levels (from white to black: b1, a1, b0, a0); red hue relevant label images (a0 and a1) superposed with luminance.

Figure 6 :

 6 Figure 6: Top: Sequence of final red hue fields with ROI superposed on the luminance with soft red make-up; Bottom: Sequence of final red hue fields with ROI superposed on the luminance with no lighting supply and no make-up.

Figure 7 :

 7 Figure 7: Internal lip measurement on the sequence partially shown Fig. 5 (B manual as manual parameter setting measure;

3 :

 3 Evaluate H lip using fp i;h ;i 2 0 255 g computed over the segmented hue image. lip and h face, camera dependant parameters, are independant from the speaker and the lighting conditions. They can be estimated by camera calibration. Currently, the range of h is the result of the statistical distribution of manually estimate over caracteristic natural conditions. The selected range for h face;lip is 100 200 and for h lip, 100 150 . This range corresponds to the red predominant region. The equation 7 is then respected with h =192and H =6.
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