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A fictitious domain method for frictionless contact
problems in elasticity using Nitsche’s method

Mathieu Fabre * Jérome Pousin', Yves Renard?

Abstract: In this paper, we develop and analyze a finite element fictitious domain approach
based on Nitsche’s method for the approximation of frictionless contact problems of two de-
formable elastic bodies. In the proposed method, the geometry of the bodies and the boundary
conditions, including the contact condition between the two bodies, are described independently
of the mesh of the fictitious domain. We prove that the optimal convergence is preserved. Nu-
merical experiments are provided which confirm the correct behavior of the proposed method.

1 Introduction

In the vast majority of finite element software, the contact conditions between deformable solids
are taken into account through the introduction of Lagrange multipliers and/or penalization
terms. The multipliers, which generally approximate the contact stresses, represent some addi-
tional unknowns. The approximated problem is then solved in a coupled way or iteratively on
the multiplier using Uzawa’s algorithm (see e.g. [27]). Recently in [5, 6], it has been proposed an
extension to the contact conditions of Nitsche’s method [24, 11, 17] which was originally dedicated
to Dirichlet’s condition. This method combines the advantages of both the penalty and Lagrange
multiplier methods since it remains consistent, optimal and avoid the use of multipliers.

In a fictitious domain framework, this paper aims to adapt Nitsche’s method to the case
of frictionless contact of two elastic solids with the small deformations hypothesis. Frictionless
contact is considered to keep the presentation as simpler as possible. However, the analysis
extends without additional difficulties to the case of Tresca friction, in a similar way as in [7].
One of the advantages of the fictitious domain approach comes from the possibility to work
with structured meshes regardless of the complexity of the geometry of the bodies and of the
potential contact zone. This approach is particularly advantageous in the case of free boundary
problems such as shape optimization and fluid-structure interaction. In that case, it prevents
the consecutive remeshing which can be very costly, in particular for three-dimensional problems,
and which may also generates some instabilities. More generally, a fictitious domain method may
be used in the presence of complex or moving geometries to avoid meshing them.

The fictitious domain approach we consider in this work is the one using “cut elements” which
is currently a subject of growing interest and is closely related to XFem approach introduced in
[21] and widely studied since then (see for instance [20, 16, 26, 4, 23]). The case of a body with a
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Dirichlet (or transmission) condition with the use of cut-elements is studied in [16] when Lagrange
multipliers and a Barbosa-Hughes stabilization are used, and in [14, 4, 1] when Nitsche’s method
and an additional interior penalty stabilization are considered. This fictitious domain method is
to be compared with more classical strategies (see [19, 13, 12, 25, 2] and the references therein)
where the elements are not cut. These more classical strategies offer the possibility to leave
unchanged the stiffness matrix of the problem. The boundary conditions are then prescribed via
additional penalty and Lagrange multiplier terms. However, in classical strategies, it is often
quite difficult to obtain an optimal method regarding the convergence order which easily takes
into account both Dirichlet and Neumann conditions. The Fictitious domain method with cut
elements allows to consider both Dirichlet and Neumann conditions in a rather standard way.
The main price to pay is the adaptation of integration methods on cut elements.

In that context of cut elements, our study is focused on the case of two bodies with Nitsche’s
method for both the Dirichlet condition and the frictionless contact condition.

The outline of the paper is the following. In Section 2, we introduce the contact problem and
the fictitious domain situation. Then, in Section 3, the finite element approximation with the
use of Nitsche’s method is built. In particular, a specific, parameter free stabilization technique
is introduced which is necessary to guarantee the optimal rate of convergence. The properties
of the approximated problem are described in Section 4 including the existence and uniqueness
of a solution to the discrete problem, the consistency and the a priori error analysis. Finally,
in Section 5, some two and three-dimensional Hertz-type numerical experiments are presented
which illustrate the optimality regarding the convergence of the method.

2 The unilateral contact problem in a fictitious domain frame-
work

An example of fictitious domain situation is illustrated in Figure 1. Let €©;, 1 < ¢ < 2, be two
possibly overlapping domains with piecewise €' boundaries included in R?, d = 2 or 3, repre-
senting the reference configurations of two elastics bodies. Let €2 be a simple shaped polygonal
fictitious domain (typically allowing the use of a structured mesh) containing both ; and Qs.
The boundary I'y of Qp (respectively I'y of 23) is divided into three non overlapping parts: I'1 ¢
the slave potential zone of contact with meas(I'y ¢) > 0 (respectively I's ¢ with meas(I'g,c’) > 0);
I'y n the Neumann part (respectively I's 5) and I'; p the Dirichlet part with meas(I'y p) > 0
(respectively I's p with meas(I's p) > 0).

The two elastic bodies are subjected to volume forces f = (fi, f2) on €5 x Qq, to surface
loads ¢ = (¢1,02) on I'y y x 'y y and satisfy non homogeneous boundary Dirichlet conditions
on I'y p x I'g p, the displacement being prescribed to the given value up = (u1,p,u2,p). We
assume small elastic deformation for the two bodies. The linearized strain tensor field is given

1
by (v) = E(Vv + Vo) and the stress tensor field o = (0y;)1<;j<2 is given by a(v) = Ae(v)
where A is the fourth order symmetric elasticity tensor satisfying the usual uniform ellipticity

and boundedness properties. Consequently, the displacement (u1,u2) on Q1 x Q9 has to satisfy
the following set of equations, apart for the contact condition which will be described later:

Find u = (uy, ug) satisfying

—divo (u;) = fi in  Q,
o(u;) = Ae(uy) in (1)

U; = Ui D on I';p,

J(uz)nz = EZ on Fi,N~
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Figure 1: Example of fictitious domain situation for a contact problem between two elastics bodies
with an example of structured mesh.

Now, concerning the contact conditions, let us define II the orthogonal projection from the slave
boundary I'; ¢ on the master boundary I's ¢:

e — TIc

I x — I(x). @)

In order to simplify the mathematical analysis, the operator II is assumed to be a ¢! one to one
correspondence on II(I'y ¢) (this hypothesis is satisfied, for instance, when I'; ¢ are convex and
¢! for i € {1,2}). The outward unit normal vector n for the contact condition is chosen to be
the one of I'y ¢

e — R?

x = no(II(x)).

The initial gap g between I'y ¢ and I's ¢ is defined to be the following distance function:

FI,C — R
x = (z—I(z)) - n.

For (v1,v2) a displacement field defined on €; x 9, the normal jump is defined on the slave
boundary I'y for the normal displacement as follows:

[v-n] = (vyoll—wp)-n.
Concerning the normal stress, we define
o(vi)ny = —on(vi)n + o (v1) with o, (v1) = —o(v1)n1 - n
and

o(vg o Il)ng o IT = oy (v o I)n + o4 (vg o IT) with o, (v o IT) = o(vg 0 )ng o I - m.



This allows to define the normal stress jump as
[o(u)n] = o(ui)ng + o(uz o M)ng o I |det(Jry)|,

with Jp the Jacobian matrix of II. This latter expression is derived accordingly with Newton’s
second law (action-reaction principle) which is expressed on arbitrary elementary surfaces (see
Figure 2):
Yw C Fl,C’; / U(ul)nl dI’ = —/ (T(’u,g)ngdr = — / 0(’[1,2 o H)n2 oll ]det(JH)| dr'.
w II(w) w

These jumps being defined, the unilateral frictionless contact conditions can be expressed on the

Figure 2: An example illustrating the action-reaction principle between the two bodies.

slave boundary I'1 ¢ as follows:

[u-n]<g (4),
on(u1) <0 (i),
on(u1)([u-n]—g)=0 (1), (3)
[o(u)n] =0 (iv),
or(ur) =0 (v).

Now, let us introduce the Hilbert space V and the convex cone K of admissible displacements:
V= HY ()% x HY(Q9)?,

K={v=(v,n)eV|vu=uponTipandvy=usponTyp|Jv-n]—g<0onT;c}

We assume that f belongs to L2(1)? x L2(93)%, ¢ belongs to L?(Ty n)¢ x L?(T'y y)? and up
belongs to H%(FLD)d X H%(ng)d. We define the bilinear and the linear forms a(.,.) and L(.)

by
a(u,v) Z/ o(u;) :e(v;) dQ,  L(v Z/flvldQ+Z/ liv; dT.

=1,2 1=1,2 i=1,2



The weak formulation of Problem (1)-(3) as a variational inequality (see [10, 15, 18, 28]), reads:

Find v € K such that (4)
a(u,v —u) > L(v—u) Vv e K.

Stampacchia’s Theorem ensures that Problem (4) admits a unique solution.

3 A Nitsche-based finite element approximation

3.1 Nitsche’s formulation

In this section, we assume that both the solution u and the test functions v are sufficiently regular
(for instance, (u,v) € (H3/2t7(Q)% x H3/21V(Q5)%)?2 for v > 0). From the equilibrium equations
and Green’s formula, we obtain:

a(u,v) Z / o(ui)n; - v; dI' — /FLC on(u1)[v-n] dI" = L(v).

i=1,2

In order to build Nitsche’s formulations for the contact and Dirichlet conditions, the contact
conditions are expressed in an equivalent way by extending to our case the formulation given in
[5, 6]. Denoting z; = max(z,0) and for an arbitrary v > 0, the contact conditions (3) on I'; ¢
can be equivalently rewritten:

oot = —i[uu il — g — yom(un)ls (5)

Let 0 € R be a fixed parameter. This additional parameter for Nitsche’s method determines the
symmetry properties (see remarks (3.2) and [5, 6]). Then by using (5) and [v - n] = (v - n] —
Oyon(v)) 4 O0yon(v)), we obtain:

a(u,v) _/1“ Oyop(ur)op(v1) dI' — Z / o(ug)n; - v; dT
1,C

i=1,2
+/F1 ) i[[[u ‘n] =g = von(u)]+([v - n] — Oyon(v1)) dI' = L(v).

Using contact conditions (3), it holds o, (u1) = op(uz o II) |det(Jip)|. In order to ensure the
stability, we introduce a stabilized formulation for elements having a small contribution [14, 4, 16].
We replace o, (u1) by a convex combination of o, (u1) and o, (ugoIl) |det(Ji)|. Namely, we define

on(u) = top(ug o IT) |det(J)| + (1 — t)op(ur), (6)

for a parameter t € [0, 1] which may be different for an element to an other for the finite element
approximation. Note that a similar approach has been developed in [1] where an optimal choice
of the fixed parameter t € [0, 1] is proposed. We obtain:

a(u,v)—/r Oyop(u)oy(v) AT — Z/ u)n; - v; dI
1,C

1=1,2
+/1"1 e} i/[[[u . TL]] —g— ’YUTL(U)]-F([[U : TL]] - 970n(v)) dl’ = L(U)'



We did not treat yet the Dirichlet conditions. In order to be coherent with the fictitious domain
approach, we also describe the Dirichlet conditions thanks to Nitsche’s method [14, 4, 17]. Then,
writing v; = (v; — Oyo(vi)n;) + Ovyo(v;)n; as in the formulation for the contact conditions, we
deduce:

—/ O’(U,Z)nz * Vs dr
I'ip

= / l(uz —u;,p — yo(ui)n;) - (v; —ybo(vi)n;) dI' — / Ovo(ui)n; - o(vi)n; dI.
Tip Y Iip

(7)

We obtain the following weak formulation:

a(u,v) + / i[[[u 1] = g = on(W)]4 ([ - n] - 090m(v)) T

1
+ Z / —(ui —ui,p — yo(ui)n;) - (v — 0o (v;)n;) dI (8)
=127/ 0 7
—/ Oyon(u)op(v) AT’ — Z / Oyo(ui)n; - o(vi)n; dI' = L(v) Yv € V.
e i=1,27 14D

Finally, defining the bilinear form

Agy(u,v) = a(u,v) —/ Oyon(u)op(v) dI' — Z /1“ Oyo(ui)ni - o(vi)n; dT,

ISNej i=1,2

our Nitsche-based method reads:

Ay (u, v) +/F i[ﬂu 1] = g = yon(w)+([v - n] = fyon(v)) AT
Lo )
+izl;2 /1“1 D ;(ul —ui,p — Yo (ui)n;) - (v; — o (vi)n;) dI' = L(v) Vv € V.

3.2 Discrete Nitsche’s formulation

In what follows, Ciarlet’s notations [8] are used. Let T} be a family of triangulations of the
fictitious domain 2 such that Q = UKeTh K. Let hg be the diameter of K € T}, and h =
maxger, hi. The family of triangulations is assumed to be regular, i.e. it exists C' > 0 such that
h

K < C where pg denotes the radius of the ball inscribed in K. We suppose that the mesh is

PK
quasi uniform in the sense that it exists ¢ > 0 a constant such that VK € T}, hx > ¢ h.
Let K be the fixed reference element (a triangle for d = 2, a tetrahedron for d = 3) and let

Tk be the geometric transformation which satisfies T (K) = K. The family of triangulations is
supposed affine, i.e. Tk reads as

VK €Ty, Tx(2) = Jgi + by, & € K,
where Jg € R%? is the Jacobian matrix of Tk being invertible and by € R?. Thus, we have:

mes( K _
det(i) = 2B <o TR < b
mes(K)




Remark 3.1. The family of triangulations is regular and affine, so it holds:
|det(Ji)| < Ch,  ||Jk| < Chr, 71| < Chit.

We introduce U" ¢ H'(Q) a family of finite element spaces indexed by h coming from some

order k > 1 finite element method defined on Tj. Consequently, we suppose the existence of a

global interpolation operator 7 : €°(Q2) — U" and a local one 77?( on each element K € T}, such

that:
Vue?’(Q),  7'u)lg =7k(wk) and  Vp € Pu(K), mk(p) =p.

We assume that the finite element method satisfies the following classical local interpolation error
estimate for k > 1> 0, u € H'T1(Q):

Hu—ﬂ%uHmK gCth*mlu\lH’K, with 0 < m <<k

Note that, in particular, the classical Py Lagrange finite element method [8] satisfies this estimate.
The approximation spaces for our problem are defined by

V=", » Vo' =U""g, and V'= (V' xVy).
In the same way, we define the global operators
1 M) - vhi={1,2) and II": H**(Q)? x MY Q)Y = v

In order to write a discrete approximation of formulation (9), let us introduce the following
discrete linear operators:

ph. VI'xVE = LA(Tic)
T v = [v-n] —71o,(v),
—=h Vo= L2(Typ)?
P, ’
’ Vi = v — TO'(Ui)’rli.
Then, a finite element approximation of our Nitsche-based method reads as:

Find " € V" such that
1
Ay (o) + [ ZPR) gl PR o) dr
Tic

1 _
£y /F ;(sz(uf) Cuip) Pl AT = L) Wt e Vh.
i=127TiD

In the following, we define v = yhg.

Remark 3.2. The additional parameter 0 is aimed to be chosen in [—1,1]. The following values
of 0 are of particular interest: for 0 = 1, we recover the symmetric method proposed and analyzed
in [5]; for 6 = 0, we recover a non-symmetric version presented in [6] and for @ = —1, we obtain a
skew-symmetric version which has the remarkable property that convergence occurs for any value

of Yo (see [6]).

Remark 3.3. Note that, concerning the Dirichlet conditions, we obtain Nitsche’s classical refor-
mulation since the terms on I'; p in (10) read

1
/ —(ui—uLD)-vi dF—Q/ (ui—uLD)-U(vi)ni dF—/ U(ui)nimi dF.
Tip Y I'ip Iip

Indeed, the first term is a kind of penalty term for the Dirichlet condition, the second one ensure
the symmetry when 6 = 1 and the third one ensure the consistency.



3.3 Consistency

The advantage of Nitsche’s method, compared to penalization, is the consistency of the approxi-
mation in the following sense.

Theorem 3.4. Let u be the solution to Problem (1)-(3). Assume u is sufficiently reqular (typ-
ically, (uy,us) € H*(Q1)? x H*V(Q2)%, for v > 0), then u is also a solution to the discrete
problem (10) replacing u" by u.

Proof. Let u be the solution to (1)-(3) and take v € V. We assume u sufficiently regular such
that oy, (u ) € L*(T1¢) and for i = 1,2, o,(u;) € L3(T;p). As a result, Pélv(u) € L*(T1 ), for
i1=1,2, Pl oy(ui) € L*(T; p) and Ag, (u,v™) makes sense. On the one hand, we use the definition

h *h
Of P@’y’ l@’y’

—h
Mqu+/ L1Ph(w) — g1, P (0" d“+zl/ i) - Pl g(ul) dT
ISR i=1,2 1D7

= afu,v") —/F Oyon(u)o, (v™) dT — Z / Oyo (ui)n; - o(v)n; dT

i=1,27Ti,D

the reformulations (5) and (7) to obtain:

+/1"1 c i[[[u . n]] —g9—- ’Yo'n(u)]-i-([[vh ’ n]] - nyan(vh)) dr

+ Z / —u; p — o (u)ng) - (v — 0o (vl)n;) dT

1=1,2 ZD’Y
=<Ww@—£ 0r0m(w)on (") AT + | L (—yon(w)([" - n] — 0r0m (")) dT

Tic Y
+ Z / —yo (u;)n;) - (th —790(1} n;) dI' — Z / Oyo(ui)n; - o(v Zh)nZ dr

1=1,2 1D7 1=1,2

_ a(u,vh)—/rljcan(u)[ n] dr — Z/ o () - vl T

i=1,2

= a(u,vh)—/ on(u1)v dF—Z/ o(ui)n; - v dT
I'ie

i=1,2

On the other hand, multiplying by v? and integrating (1), it holds:

—Z/dlvauzv dQ) = Z/fzfu de.

1=1,2 i=1,2

Using Green’s formula, we have:

—/ dive (u;) vl dQ :/ o(u;) : e(vl) dQ —/ o(ui)n; - vl dT i=1,2,
Q; Q; r

i

with

—/ o(ug)n;-ot dI' = —/ o (u;)ng -l dI‘—/ o (ug)ni-ol dF—/ o(u)n;-ot dl' i =1,2,
T 1_‘i,D Fi,N Fi,C

—/ o(ug)n; - vl dT = —/ o(ug)ng - vl AT —/ Cwl AT —/ o(u)n; - vl AT i =1,2.
Fz‘ Fi,D Fi,N Fi,C

8



Using the one to one correspondence of the projection, it holds:

/ T / (s 0 Myng o I - ol o 11 |det(Jir)| dT.
FQ’C Fl,C

Hence
—Z/ dive(u)o? A0 — / () : e(oh) dQ+/ o) : e(u]) dQ—/ o(uy)ny - ol dT
=12 Q; Q0 Qo T'ie

—/ o(ug o Mng o I - vl o IT |det(Jy)| dT'
e

- / o(u;)n; - vl dT —/ (ol dr —/ lovl dT.
i=1,2714.p INBY, o N

Using (3), it holds:

- Z / divo(ug)ol dQ = a(u,v") — / o(ui)n - vl dT —/
Q; ; Iip

61’0{1 dr' —/ Egvg dr’
i=1,2 IEWN o N

So
hy— on(u)o" - n] dr — E o(u;)n; - vl dU = L(").
a(u,v") /1“1,0 n(u) I /Fw (ug)n; - v; (v")

i=1,2
Which ends the proof. O

Moreover, formulation (9) is formally equivalent to (1) and (3) in the following sense.

Theorem 3.5. Let u € H?(Q1)? x H?(2:)? be a solution to equation (9) then u is a solution to

(1) and (3).

Proof. For u € H2(Q)% x H?(Q2)¢ a solution to (9) and whatever v € H2(21)? x H?(Qg)4, it
satisfies:

/ (divo(u)+ fi)o A2 =0 oy € H2(Q,)
Q;
ie.
—divo(u;) = f; a.e. in Q;, 1<i<2.
We have, for all v € H2(Q;)% x H2(Qg)%:

1
/ —[[u-n] — g —~yon(uw)]+]v-n] AT + / o(up)ng - vy dI' + / o(ug)ng - v dI' = 0,
Tic I'ic e

1
/ —[[u-n] —g—~von(u)]+(vi —v2 oIl - n) dF/ on(u)n - vy dI'
FI,C Y 1—‘l,C

—i—/ on(ug o)n - vy o I1 |det(Jr)| dI' = 0.
e



Hence
/F (1[[[“ : n]] —9— ’Yo'n(u)]-i- + Un(ul))Ul -ndl'=0V%Yu; € Hz(Ql)

and

/F (fly[[[u 0] = g —you(u)]s — on(ug o II) |det(Ji)| )va o IL- n dT = 0 Voo € H*(Q).

Hence

s n] =g = ol = <oa(w) e on

which is a formulation equivalent to (3). Arguing in the same way as above the Neumann and
Dirichlet conditions are recovered. U

3.4 Stabilization method

A stabilization technique is necessary to control the possible bad quality of o, (u") on elements
having very small intersection with the real domains. The stabilization used is the one proposed
in [16] which consists in using extension of the normal stress on a neighbor element having a
sufficiently large intersection with the real domain. The advantage of this stabilization technique
is the absence of parameter to fit, except the threshold under which an intersection is considered
to be too small. Note that other stabilization techniques are available, such as the so-called ghost
penalty stabilization considered in [4].

For a given small radius 1 > p > 0, let R, (respectively Eﬁ) be an operator of approximation
of the normal stress of displacements o, (u”) (respectively o(ul)) which we define thereafter. For
K € Ty, such that K NIy ¢, we note Sx = {K' € T}, | K'NII(K) # 0}. We note also Ek, the
polynomial extrapolation of an element v» € V" define from K to €.

We distinguish three cases to define the stabilized operator R;. Let K € Tj, and KNT'1 ¢ # 0
then:

e if the intersection between K and €2y is sufficiently large i.e. it exists yx > 0 such that
B(Jk, p) C Ti' (K N Q) (see Figure 3 a)), then Rs(v")| - = 0y (v} ),

e otherwise, if it exists K € Sk intersecting € such that it exists gz > 0 with B(jz,p) C
TIZ(I(K N ) (see Figure 3 b)), then R;(v")|,x = on(Ex(vh) o IT) |det(Jr)|,

e otherwise, we suppose that it exits a neighbor element K’ of K such that it exists gz > 0
with B(fikr, p) C Tt (K' N Q) (see Figure 3 ¢)), then R;(v") |, = on(Ex (v])).

In the same way, we define the operator Eﬁ onI'; p fori=1,2:

Vi — L*Typ)?

R::

_ My ; i ) C T-1
P o Ry(oh) = { o (v )n; 3 9Kk > 0 such that B(jk,p) C T (K N Q)

o(Ex: (vl))n; otherwise.
Let us introduce the stabilized discrete linear operators:

Vhx V] — L*Tic)

h‘1ﬁ .
LEN v = [v-n] —TRs(v),

10



0

I'ic
\/Q oo
QQ QQ K : Qz
a) If Q; N K is sufficiently large b) If JK € Sk such that c¢) Otherwise

QLN K is sufficiently large

Figure 3: The different cases for the definition of ;.

thﬁ. Vih - LZ(Fi,D)d

BT ey — TR, (v;).
We define the discrete form of Ay, (.,.) as follows:
Agv(uh,vh) = a(u", ") —/ OyR,(u")Rs(v") dT — Z / OyR;(ul)Ry(vl) dT.
I i=1,2"71i.D
The stabilized version of our approximation (10) reads:
Find u” € V" such that
Ay o) + [ S[PRA) - gl PP dr

e (11)
+ Z/

1 —np —h,p
- ;(Pi,«f(u?) —Ui,p) - Piﬁpﬁ(vz}’l) dr = L(v") vol e V.
i=1,27TiD

Note that strict consistency of this stabilized discrete problem do not occur. However, we
have the following result.

Theorem 3.6. Let u be the solution to Problem (1)-(3). Assume u is sufficiently reqular (typ-
ically, (u1,us) € H*7(Q1)4 x H>T7(Q2)¢ for v > 0), then u is also a solution to the following
problem:

(

a(w i) = [ oroaR") = 3 [ botun Bylol) ar
I'ie i=1,2 Iip
1 o
[ IPMw) - gl PN (12)
Tic
1 — A
+ > / ;(sz(ui) —w;p)- Pihl) dh = L") e vh
i=1,27Tip

Proof. The proof can be straightforwardly deduced from the one of Theorem 3.4.

4 Analysis of the Nitsche-based approximation

4.1 Existence and uniqueness results

Theorem 4.1. Let v = yohg. It exists a unique solution v" € V" to the discrete problem (11),
for all v > 0 if 8 = —1 and for vo > 0 sufficiently small if 6 # —1.

11



Proof. The proof is adapted from [6]. The main adaptations concern the fictitious domain
framework and in particular the stabilization term, the consideration of two elastic solids and the
semi-coercivity of the bilinear form due to the fact that Dirichlet conditions are taken into account
with Nitsche’s method. We begin by providing some stability and approximation property for
operators R; and Eﬁ in lemmas 4.2, 4.5 and 4.6. Then a coercivity property is proved in Lemma
4.7. Finally, the existence and uniqueness result is deduce from the hemi-continuity of the non-
linear operator which corresponds to (11).

Lemma 4.2. Let v" € V?, there exists a constant C > 0 independent of h such that

2
2, . < 87|

2 2

+Hv§” ) whevh, (13)

1,0 1,00

The proof of this lemma, is detailed in the appendix.

Remark 4.3. The following more general operator R, could be considered:
R,;(uh) =01~ t)an(EK/(ug o II)) |det(Jm)| + tan(EKu(ulf)),

with t € [0,1], the element K' being K itself or a neighbor element such as the intersection
between K' and Qs is large enough and the element K" being K itself or a neighbor element such
as the intersection between K" and Q4 is large enough. Lemma 4.2 can be easily extended to this
operator. When the elastic coefficients in 1 and Qo are equal, a proposed optimum choice is
given by (see [1]):

mes(21 N K)
mes(Q N K) + mes(QNK)’

tk =

Remark 4.4. When the initial gap between the two bodies vanishes, for p sufficiently small either
KNQy or KNy is sufficiently large and thus it is not necessary to consider any neighbor element.

Lemma 4.5. Let u" € V", I'; p be Lipschitz continuous then it exits a constant C' > 0 indepen-
dent of h such that

2
B (0 h —1 |, n
[Roed,, <7 ],

and
2

[Fotwbl,, < o7 o],

The proof of this lemma can be straightforwardly deduced from the one of Lemma 4.2.

Now, Let u", v" € V" and v = hxy and using lemma 4.2, it holds:

1 2 2
‘ fyiR[,(uh — vh)H < Cvy g ’ ui‘ - Uzh ,
0,I'1,¢ ; 1,8,
’ 1=1,2
1 2 2
1 h h H ’ h h
2R;(u; — v < Cyo ||u — v; .
‘ vy p( i z) 0.lip X U7 7 7 1.9

Due to the know approximation properties of the stabilized operators on regular and quasi-uniform
families of meshes (see [16]), one obtains the following lemma:

12



Lemma 4.6. For any v € H*1(Qq)? x HF1(Q,)4

k— 2
< op*t Z ||UH1<;+17Q“

| Bor ) - om0
i=1,2

0,I'1 ¢

and
2

- 2
<CR* Y ol
i=1,2

Z HE/?(H?(%’)) —o(vi)n;

1=1,2

0,l';,p
The following coercivity property can be stated :

Lemma 4.7. For M > 0 fized, it exists a > 0 such that for all v with M = ~ > 0 the following
coercivity property holds:

1
a(v,v) + 3 Z / v 2 dl' > a Z ||vs
Iip

i=1,2 i=1,2

Tan WeV (14)

The proof of this lemma is detailed in the appendix. Now, by defining the following operator B"
from V" to V"

1 7h7A *h,A
(B "0 = A (u",0") + Z/ —(Piy (ul') = uip) - Piyp(vlt) dT
i—12/Tip 7 15
1o hs s (15)
+/F §[P’£L7P(uh) o g]_’_Pe’yaP(vh) dr \V/’U,h,’l}h c ‘/*h7
1,

it is sufficient to prove that B" is hemi-continuous (see the Corollary 15 p. 126 of [3]) to end the
proof of Theorem 4.1. The proof of hemi-continuity of B” is detailed in the appendix. O

4.2 A priori Error analysis

In this section some optimal a priori error estimates are proved for the problem under consider-
ation. The rate of convergence is the same as for standard finite element methods.

Theorem 4.8. Let u be a solution of the stabilized problem (4) belonging to H%+”(Q1)d X
H%+”(Qg)d with v > 0.

1. If # —1, we suppose vy > 0 is sufficiently small. The solution u" of the stabilized problem
(11) satisfies the following error estimate:

2

2 i 1 )
5 st} ronto + 2Rk — )
i=1.2 1,9,‘ 7 071_‘1’0
_1,—h —h,p 2

+ 3 @ ) - PRl |

i=1,2 4D

2 2 2 (16)
< C inf ( ‘u‘—vh +H =3 (u — " +H% u) — Ry(v" H
urevh i:zl:Q e, Mo, o 2 omle) = RO,
1 ' 2 1 _ 2

] IS TARREY S ] SIUNEE VL

i—zl:2 v 0L, p 1—21:2 ot (0) 0.T%,p

with C' > 0 a constant independent of h, u and ~g.
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2. If 0 = —1, then for all vg > 0, the solution u" of the stabilized problem (11) satisfies the
error estimate (16) with C > 0 a constant independent of h and wu.

Proof. The proof is also an adaptation to our fictitious domain framework of the one in
[6]. Let v" € V" using the coercivity inequality (14) and continuity of the form a(.,.) +

1
3 Z / 7~1(.)? dI' and Young’s inequality, it holds:

2
! g ‘uz—u? < alu—ul u— g —uM?dr
; 1,
1=1,2 i=1,2
2
= a(u—ul, (u—o") 4 (" E H’y 2 (u; — ul ‘
0.l p
1=1,2 ’
< w; — ul! u; — ol + a(u —ul, v —uh)
/[/:172 Rk 3 Rk 2
1 1 2
-1 h
i) E H’Y 2(ui_ui>‘
i—1o 0.l p

U; —

U; —’Ulh

N
| R
M -

1,0

i=1,2
1 2
+§ ‘_21:2 Hff%(ul —ul) ‘OL',D + a(u,v" —ul) — a(ul, v" —uh).
Hence

> e < 5 2 oot 43 2 2

— U; — < — U — U; 2 u —u

2 ‘ ’ 1,9; 2a Z e 3 Z v 0.0 p (17)

1=1,2 =1, i=1,2 ’

2
+a(u,v" — uh) — a(uh o —ul).

Let u be the solution to (4), it verifies the stabilized formulation (12), thus we have:

a(u,v" — u") — a(ul, " —uh) = /F 0y(on(u) — Ry(u™))Ry(v" — u) dT

7 1 —n —h,p —h,p
- —(Piy(wi) = Py (ul)) - Piyg(vl — uf) T
i=127/Tip 7 (18)
+ 0y(o(ui)ni — Rp(uf)) - Ry(v] —w!) dT
i=1,2714i.D
1
[ SRR - gl ~ (Phw) - gl P~ ) dr
e’
First, using Cauchy-Schwarz and Young’s inequalities for 81 > 0, it holds:
/ 0(0n (1) — Rp(u) Rp(v" — u") T
< Lo - 40+ 2 Rt -
261 P 0o 0o
For all a,b € R, we have the following estimate:
([al+ = [B]+)(b — @) < —([al4 — [B]4)*. (20)
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Then, set:

m =_Awiqﬂww%—m+—wﬁm—gnwﬁ%w—uhdr
= [ (a4 SRR — gl )PP " — ) aT

Using Cauchy-Schwarz and Young’s inequalities for 2 > 0 and 3 > 0 and (20), it holds:

16| ’ 1 Lohpg, b ’
1 < 1+ + v2(op(u) + —[PyP(u") —g
( 252 2033 ) (on(w) 7[ v () —gly) 0l .c (21)
B2 H L nhph h 2 [1—0]8s 1 NI
el PP (uh) — P H 7’ S(oh — H .
5 3 (PP (o) — Pl(u)) ore T2 Y2RH(0" —u") or

Moreover, set:

T2

el

™ 2 P Pl ar

1=1,2

+ Z / (o(ui)n; — Rﬁ(v?)) dr (22)
1=1,2
+(1+6) Z/ (Rp(vl —ul)) dr

=1,2

Using Young’s inequality for 54 > 0, it holds:

- Z / (vf — i) - (?Z'y(ui) - P?f(uh)) dr

i=1,2

Ba H H ~Lph Bhe |12
< — u;) Py (wi) = Py (uj H
121:2 N 0r;, 254 21:2 HEE A (23)
32| [+~ 2
< - U (2
Z fy ’U u 0. p ,34 Z "y 2 u u O,Fi,D
+— ‘ Eauini—RAu H ;
B4 2.2122 7 p 0,I'i, p
and for 85 > 0
[ =) (otwn — Ry(el) ar
i=1,27 1D
, 24)
1 1 2 ﬂ5 1 _ h 2 (
< — H 2ui—u?‘ + 2 ‘ 2 (o(u;)n; — Ry(v H
205 =19 7 ( ) 0, p 2 i§2 7 ( ( ) p( )) 0.l p
and for g > 0
(146) Z/ (s —ul) - (Rp(ul — ul)) dT
i=1,271iD (25)
146 H -1 h ’2 Be|1+0| ’ 1 h H2
2 Uj —u 2 v —U .
206 i:zl:2 T ) ODD 121:2 ) 01,0
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. . o . 1 _1 h 2 .
Using inequalities (23), (24) and (25) in 7 + 5 Z H7 2 (u; — ug) , it holds:

‘ r;
i=1,2 0Li.p

2

1 _ 1 h
wr b5 -
=1,

S <_1+ji+2& ’ggﬂ)iju_ i

o,

8, 712 ; . ) (26)
T2 Z H’Y G 0,1, ﬁ4 Z ‘ o (ui)ni p(ul))HoriD
_ 2 56 ’1 + 9‘ 1 2
n) R
P(U )) 0F1D Z 2 uz )) 0T; p
1=1,2 1=1,2 ?
Gathering (18), (19), (21) and (26) in (17), it holds:
<
1=1,2
62 ; 2
a5 |7 Onle) = Bo(h))|
’1 e‘ﬁ 07F1,C 9
B 3\ || 1 h . h
0+ [+ rate" =t
O+ ) AU )
1 9] 1., L
+<—1+—+ H + —[PyP(u") —g
2/82 25 ) f}/[ Y ( ) ]+) 071_‘1’0
2
+2 kuﬂc’p(v )~ Ph(w)
2 T1,c
11 PRI 2 (27)
W B 3 b
Ba 5 2536 Z 0T, p
B4 1, 2
+§Z 772 (v — W) or
1=1,2 ’
1 1 — 2
— 2 (o(u;)n; — Ry(ul H
5 & e =R,
ﬂs 1 h 2
> [t~ Tt
=1,
Bs |1 +6 1 oh P
9 Z ’ v (Rﬁ<vz — U )) ‘0,1"2 -
i=1,2
Using lemmas 4.2 and 4.5, we obtain:
2 2
”Y%Rﬁ(vh—uh)H < v —u
0 ¢ —y 1,0
h 2 nl|?
< 20170(Z: UV U ™ + ; ’ Ui — Uy Lo, )7
2 2
: ﬁ(v?—u?)‘ < ol — ul
i=1,2 O.F%p i=1,2 1.8
2 2
< 202’70(' o — Lo, + 21: ’Uz—u? 1,91-)’
i=1, =

)

16



and we know

2

_1_h _1 2 1
o =Pl < et vz e - s
L COR 0] TRl 2| — )|
and using Young’s inequality for 5 > 0, it holds:
1 2 a N
_ 2 _ - — 2 .
>t 3 3 ot - msea],
1=1,2 ’ i=1,2 ) ’ (28)
_ 1 _ —15h _ 7/) h )
=8 Y |2 P Py
i=1,2 ’
Let 6 € R be fixed, if 82, B3, B4, B5 and Fg are chosen sufficiently large such that:
IR il
252 283 2’
1 1 1+6 1
— i L/ RO
2 P 255 206 4
And if 7y is sufficiently small and 8 < 1, we get the inequality (16).
In the case § = —1, thanks to (27), it holds:
<
i=1,2
- ()|
QB fyz(an(u) 5(v or e
+(— 1+ﬁ+,83 HwR Wb =l H
0,l'1¢
1 n 2
+(—1+7+ H u) + —[Py(u") — g
202 fs 7[ (') =) 0,1c (29)
—i-@ ‘7_5Ph’p(v )—Ph (u H
2 ) (e )
+(‘§+*+275) Z IR .
1 - h 2
Sy ot -w =3 | s — Ryl
1=1,2 0., B4 i=1,2 0., b
1 - h 2
0 > [ o twsyn = Ryt >>HMLD .

Let 71 > 0 and ny > 0, we take 51 = 21, Bo = 1+ 1/m, B3 = 1+ n1, Bs = 2(1 + n2),
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Bs = 2(1 + 1/n2), then it holds:

« 2 02 h 2
< = Y
2 1,0 20 Z ’ul Yi 1,9
1 1=1,2
1 h 1 h INI&
b=, i)
m 1 1 h
— o (|72 (on(u) + =[Py (u") — gl+)
2(1+m) H ! v 0,10
1
g iRt - |
207F1,c
1+7]2 ; H ‘oriD
2
H14m) Y el - w) .
1=1,2
1 _ 2
—1—7 ‘ 2 (o (ui)n; — Ry(ul H
' _ 2
+(1+1/m) ni — Ry(vl")) :
| 0, p
1=1,2 ’
Using (28) and = ”_ - 1, we have:
2+
2 2
2 (u; — < (ul ’
1+'I72 Z H’y u u IO,FZ"D 1+772 P(ul) O,Fin

1=1,2 i=1,2

_ 2 H 75? u _Ff%P ul H2
2(1+T]2)(2+772) iZI:Q v ’Y( ) Y ( ) 07F¢,D’

and
1 h 2 1 h 2
> [rowoni = Boh)|| < 23 |rbotuin - Rooh)|
; 0,I'; p . 0, p
1=1,2 ’ 1=1,2 ?
2
+2 ’ 20(R, vh — uh ‘ .
3 [ttt b,

Let o be positive. If we take n; = a/(32C170) and 12 = Cavy/(32cr), then we get the inequality
(16). This ends the proof of Theorem 4.8 O

Theorem 4.9. Let u be a solution of the variational problem (4). Suppose that u belongs to
(H3(Q1)) x (H2 Q) with 1/2 > v > 0 ifk =1 and with 1 > v > 0 if k = 2. Then,
if additionally vo > 0 is sufficiently small when @ # —1, the solution u" of the stabilize problem
(10) satisfies the following a priori error estimate:

2
1 1 5
‘“19 \w@4m+@%wﬁ—mﬂ
i—1o 7 0.I',c (30)
1 , —h 2 v
] G O WL e Dy Y
i=1,2 e =12

with C > 0 a constant independent of h and u.
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Proof. Now let us establish the inequality (30). Set v = I1?(w;), we have the following estimates:

|| wi — T (ug) | < CRF " gy g,

m,$%

2 _ 2
HRﬁ(Hh(u)> - U”(U)HOILC < Ch?-! 2121,2 Hquchlflz )
and

Y1 || R (MM (wi) — U(“i)”iHo,Fi,D < ORI s lullirg, -

If we replace v by T1%(u;) in (16), v = yoh and we use the previous inequalities, we get (30). We
can write:

1 1 5
5 =], + 2ot + 222 - 1)
1=1,2 1.8 v 0,I't¢ (31)
_1 —=h,p —=h
+ 3 @ ) = Pl))|| < OnE Yl
i=1,2 Tep i=1,2
O

5 Numerical study

This section is dedicated to some numerical experiments with isoparametric Lagrange P1 or P2
finite element methods. The accuracy of the method is discussed for the different cases with
respect to the finite element used, the mesh size and the value of the parameter 9. Note that
the following results are obtained without the stabilization introduced in Section 3.4. From a
numerical viewpoint, the stabilization seems not strictly necessary to obtain an optimal rate of
convergence. This has already been observed in a linear case in [16]. The numerical tests in
two dimensions (resp. three dimensions) are performed on a fictitious domain =] — 0.5,0.5[>
(resp. 2 =] — 0.5,0.5[3 which contains the first body Q1, a circle of radius 0.25 and center (0, 0)
(resp. a sphere of radius 0.25 and center (0,0, 0)), and the second Q2 =]—0.5,0.5[x] —0.5, —0.25]
(resp. Q2 =] —0.5,0.5[>x] — 0.5,—0.25[). A Dirichlet condition is prescribed on the bottom of
the rectangle (resp. parallelepiped).

The projector II is defined from the lower part of the boundary of €; (i.e. for I' ¢ = {z €
0 : x4 < 0}) onto its projection on the top boundary of Q9. All remaining parts of the
boundaries of 21 and 29 are considered traction free.

Since no Dirichlet condition is applied on €2y, the problem is only semi-coercive. In order to
recover the uniqueness of the solution, it is needed to prescribe the horizontal rigid translation
in 2D and two horizontal translations and one rotation in 3D. This is done by prescribing the
displacement on some given convenient points.

We use a generalized Newton’s method to solve the discrete problem (10) (see [27] for more
details) and our finite element library GetFEM++'. The tool for fictitious domain methods of
GetFEM++ has been used which provides cut integration methods. The geometries are described
with zero level sets of some signed distances to the domain boundaries. The distance functions are
approximated by quadratic Lagrange finite elements. In order to build cut integration methods,

'see http://download.gna.org/getfem/html/homepage/
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each element of the mesh which crosses a domain boundary is cut into a set of sub-elements
conforming to this boundary. Then, an integration method is produced on each sub-element lying
on the interior of a domain and on each sub-element boundary lying on a domain boundary. In
order to obtain a convenient order for the produced integration methods and for the approximation
of the domain boundaries, curved sub-elements are used.

Moreover, no specific treatment have been considered for the fact that boundary terms for
the contact condition approximated by Nitsche’s method is non-regular (due to the positive
part). We used an order four numerical integration method on each sub-element and we noted
no improvement of the accuracy with higher order or refined numerical integration method.

0.3
0.12

0.2
0.1f 0.1
oy --0.08

0.1}
-40.06

0.2
0.3} 0.04
-0.4f 0.02

0.5

1 | 1 O
0.5 0 0.5

Figure 4: 2D numerical reference solution with contour plot of Von Mises stress. Parameters
h =1/400, vo = 1/200, 6 = —1 and P> elements.

For simplicity, we consider a dimensionless situation with Lamé coefficients A =1 and =1
and a vertical volume density of force —0.1.

The situation studied is not strictly speaking of Hertz type due to the fact that {2 is bounded.
The expression of the exact solution being unknown, the convergence is studied with respect to
a reference solution computed with a P, isoparametric element on a very fine mesh (h = 1/200
in 2D and h = 1/30 in 3D) with the skew-symmetric method § = —1 (see Figures 4 and 5).

5.1 Numerical convergence in the two dimensional case

We perform a numerical convergence study on the three methods § = 1, § = 0 and § = —1
for a fixed parameter v9 = 1/200 (chosen small in order to have the convergence for the three
cases). On figures 6, 7 and 8, the relative error in percentage in L? and H'-norms on each bodies
for P; Lagrange finite elements are plotted. As expected the optimal convergence is obtained
in H'-norm for all methods in good accordance with Theorem 4.9. The rate of convergence in
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Figure 5: Cross-section of 3D numerical reference solution with contour plot of Von Mises stress.

Parameters h = 1/30, 7o

1/200, 6 = —1 and P» elements.

L?-norm is slightly sub-optimal on € if one refers to Aubin-Nitsche lemma in the linear case.
However, such a result is not available for the nonlinear contact problem. Moreover, this slight

sub-optimal convergence may be caused by the Neumann-Dirichlet transition at the bottom of

Q.

SToTiTn

ITITOTITio

F T

VTR

T T

DR nE 0

1/200 and P1 finite elements

for the relative L2-norm of the error (on the left) and the relative H!-norm of the error (on the

right).

-@-norm on Ql (slope=1.1144)

fr=ret e e Mh
T
I
e T o
=== T <
o onnnmonm oo NEITO DT o 0T
e . e <
f--o-- - - —oDIoooo o= = - +
N € s
R S mﬂuom. =
(% ur) JOXId dATIR[IX H Il
>
=l
Q
<
+~
=
(]
- <
R sy +
i fhansababiial Q —
oo oo -+ O
oo EIIEITE Q 1
i W OIIODIT O
e e - =)
SR ‘mIoIIe Il
f-ooc e @ a
e e g R AR ey (=%
- —-ooooooC == < =]
S =it D w7 o—
T mInnT oo Do~ 2
= 2
E E G G v
B B s g W
=] =] -
e sl 3
EE °
o mponne s = %
ooz IIITO 1
) n_v + m
----- = 1
wwwm,w.w,m:.w::.%wwmm A'Fn,,wz_zﬁuﬂ NO
SR DW
FIiton D oo nIIIonilion
[oooc - ===iic s =
SR Q
fooooc - - =ttt = (@]
20 10 00 _00- ..
— — — - 6
(% ur) JOXId JATIR[IIX NA m
=
joto}
3

On figures 9, 10 and 11, the same experiments are reported but for P isoparametric Lagrange

finite elements. The convergence rate for the three cases is close to 1.6 on 2; and 1.3 on 5. This

is also close to optimality if one takes into account that the expected maximal regularity of the
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norm of the error (on the left) and the relative H'-norm of the error

elements for the relative L2

(on the right).

should be H?/2~" for any
22]). Accordingly, one could

displacement next to the transition between contact and non-contact

[

expect that the convergence rate in the L?-norm would be close to 2.5. This is approximately
the case with again some sub-optimal rates which may due to the nonlinear characteristic of the
contact condition or to the presence of non-regularities on the transition between the Dirichlet

n > 0 (However, this result has only been proved in a scalar case in
and the Neumann condition.

Influence of the parameter

5.2

The influence of 7 on the H'-norm of the error is plotted in Figure 12 for P; elements and on

Figure 13 for P, elements. The most affected method is the one for § = 1. Indeed

it converges

?

algorithm do not fully converge for all numerical experiments probably because there is no solution

only for 7y very small. The large oscillation in the error norm comes from the fact that Newton’s
to the discrete problem in some cases.

The method for § = 0 gives a more regular error with

respect to vg. It is still important to have vy small to keep a good solution but a larger value is

allowed. Accordingly to the theoretical result of Theorem 4.9

the influence of g on the method

)

0 = —1 is more limited. There is only a slight increase of the error for large values of 79. Note that
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right).
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(on the right).
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Figure 11: Convergence curves in 2D for the method # = —1, with 79 = 1/200 and P2 finite

elements for the relative L2-norm of the error (on the left) and the relative H'-norm of the error
(on the right).

the nonlinear discrete system (10) becomes very stiff when ~g is very small. Thus, the possibility
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to have a large v is an advantage.
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5.3 Numerical experiments in the 3D case

Due to the high number of degrees of freedom in 3D, it obviously has not been possible to produce
convergence curves with a mesh size as small as in 2D. The convergence curves for 3D are shown in
Figures 14, 15 and 16 only for P; elements. Although we also made some tests with P, elements
and on the influence of 7y, we do not reproduce them for brevity of the paper. Indeed, the
conclusions that can be drawn are were very similar to the 2D case.

Conclusion

In this paper, we developed a fictitious domain approach for the approximation in small de-
formations of the frictionless contact with nonzero initial gap of two elastic bodies. The main
ingredients are the adaptation of Nitsche’s method for the contact condition introduced in [5, 6]
and the fictitious domain method (inspired by the X-fem) developed in [16] including the stabi-
lization proposed for the elements having a small intersection with the real domains.
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Perspective of this works would be to weakened the conditions on the projection operator II
to include for instance non regular situations such as the one illustrated in Figure 17 where II is
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only piecewise regular. Another possibility would be to consider a non-orthogonal projection.

oo

Figure 17: Example of non regular situation on I'1 ¢.

As already mentioned, the analysis can be easily adapted to Tresca friction similarly as it has
been done in [7] for the non-fictitious domain situation.

From this study we conclude that the presented method allow an optimal approximation of
unilateral contact problems for affine and quadratic finite element methods. The method for
0 = 1 is symmetric which can be an advantage for the numerical solving but requires a very small
parameter 79 which may lead to a very stiff discrete problem (10). The method for # = 0 has
the advantage of the simplicity and allows the use of a moderate vg. Finally, the skew-symmetric
method 6 = —1 allows the use of larger value of vy which can be a real advantage for the solving
of the discrete problem.

Appendix

Proof of lemma 4.2. First, we define the following matrix norms:

2 2
Al o,z = sup([[A(2)]I|p) and [[[A[l[; 5 = / [A@)[7 dz,
reK K
where |[|.||| 7 is Frobenius’ norm. If v is a fixed vector, we define the translation of a vector u, by

ty(u) = u+v. In the following, the constant C' may vary from a line to another but is independent
of h. In order to prove (13), we distinguish the three different cases from the definition of Rj.
First, by using the geometric transformation, the integral is expressed on the reference element.
Then by using the equivalence of the infinity norm with the 2-norm located on a ball, we are able
to deal with the 2-norm located on the current element. Finally by using the definition of the
stress tensor, we obtain the result.

o If K satisfies 3 i > 0 such that B(jk,p) C Tic' (K N ), then Ry(u)|, = on(ult|,) and
it holds:

2
R;(u" H = / opn(u)? dr.
LT R A
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We define T'y = T (T'1,c N K) and &(u;) = o(ul) o Tk and #; a unit normal vector on
Tic.

/ o (ulh)?2 Al = / 612 |det (Jic) | | Tk || dF
I'y cNK I'y
— |6 (u1)n - n|? |det(Jg)| || T || AT (32)
Iy
< OB a2, & |-
because
~ ~ 2 ~
|6 (u)n - n| < |6 (u)llp Il = [l6 (u)lllp-
Moreover, I ‘1 is bounded, indeed the operator Tk is a continuous one to one correspon-

dence. Now using the equivalence of norms in P* (K ), we have:
A 2
eDllZ, & < W8l peg) = 16 () o tog llI%, B02)
< Clllgu) o togilllz po g = Cllla(ul)lllgBym) (33)
< Cllotm) ¢ o) dz.
H’QT leK)) Tgl an ) ’ ’ ‘F

Using the upper bound of ’fl‘ and the previous inequalities, it holds:

hd_l . R
[omttrar < B [ el de] da
I,enNK K JTg (funK)

<O ]l
1

< Chit

o o

2
v, as
Q1NK F

L2
< Chit HVUlH dz.
QNK 2
e Otherwise, if 3K € Sk such as 3 Uz > 0 such that B(jz,p) C TE{l(R’ N Q2), then
R;(v")| ;e = on(Ex(vh) o IT) |det(V Pi)| and using the continuous of Jy i.e. |det(Ji)| < C,
it holds:

2
slu = on(E=(uy) o et(J
Rj(u" Ez(u}) oI0)? |det(Jy)[* dT
O,Fl’cﬁK I, CQK
< C on(B(uh) oTI)? |det(Jy)| dT
FlycﬂK
< C on(Eg(u}))? dT
H(I‘LCHK)
< C Un(Ef((u}Ql))2 dr

Urkes F2.cNK
We define I'y = TIEI(UFESK IycNK) and 6(ug) = o(u}) o T and 7z a unit normal vector

on f‘g@. As previously, we have ‘fg‘ bounded. In the same way as in (32), we have:

on(Bg(uh)? dr < ChE o) |2, [T
/Uxes Iy, cNK TR K ool
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Now using the equivalence of norms in P*(K)? and in the same way as in (33), we obtain:

lo@)lsp, < HNo@ll s, 2 m) 721D

< c / ruo— ()% di.

Hence, using the previous inequalities, it holds:

hdt
[ omtrar < SE- [ et aeg)| a2
FLOQK [? Tf( (QlﬂK)

1 h 2
< Chz / HVU2 H dz.
K Qlﬂk 2

e Otherwise, we suppose it exits an neighbor element K’ of K such that 3 g > 0 such that
B(jx, p) C T (K' N Q1), then Ry(v")| . = 04(Efs (vh)). Then, it holds:

st = [ o) ar
0,I'1,cNK 'y oNK

We define by I} = Tr! (T,cNK) and 6'(u1) = o(ul) o Tks and by 71 a unit normal vector
I

on f‘l’c. As previously, we have bounded. In the same way as in (32), we have:

/ on(Egr(uf))? dT = /&/(u1)2|det(JK,)|HJK}mH dr
I,enNK 4

d—1 |~ 2 s
< O 6" )l e [

Now using the equivalence of norms in P¥(K)? and in the same way as in (33), we have:

llo@ < o@D 00

< c/l ot az

Hence, using the previous inequalities, it holds:

H ‘oo TK’ (K)

hd_l
RAhngéCK'/ A2, [det(Jxr)| di
/1“1ch (1) h?« TK/I(QmK’)H‘J(M)H‘F’ o] d2

< ChK%/
O NK’

Finally, by iterating on all the elements K intersecting I'y ¢ and using the quasi uniformity
of the mesh, we obtain (13).

2
VU?H dx.
2

O

Proof of lemma 4.7. We argue by contradiction. It is sufficient to prove the result for v = M.
Suppose there exists (vn)neny C V such that >, , HUMH? q, = 1, for n € N, which satisfies

a(vp, vp) Z / M1

112

:.\H
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n—-+00 n—-+00
i=1,2

compactness of the unit ball of V', there exits v € V and a subsequence still denoted by v,, which
weakly converges to v. The compact injection of H' into L? implies that up to a subsequence,
v, converges to v strongly in L?(Q1)? x L%*(Q2)?. First, we show that v = 0 and then that
vy, converges to v strongly in H'(Q1)? x H'(22)%. By using the lower semi-continuity of v

>ic12 Jr, , Vi, AT, we have Z v? dT' = 0 with mes(T; p) # 0. Furthermore, due to the
’ i=1,27 1D

Hence, it holds lim Z /F vzn dI' =0 and lim a(v,,v,) = 0. From the weak sequential
i,D

2 . _ . . .
L#-convergence, one has nglfoo '212 [vimllo.q, = '212 [villg g, - Similarly by using the weak lower
=1, =1,
semi-continuity of af(.,.), we deduce a(v,v) = 0 and using the property of the fourth order tensor
A, it holds:

0= /Q o(v;) : e(v;) dQ = /QiE(Uz') te(vy) dQ = ||5(Ui)H0,Qi'

Let us finally show that v = 0. Since, the tensor A is uniformly elliptic, it holds:
a(vn,vn) = C Y / e(vin) 1 ein) dA2=C > |lein)llgg,  and lim a(vs,v,) =0.
Q;

n—-+o00
1=1,2 i=1,2

Hence

Jim S fle@inllog, = D el g, =0
1=1,2 1=1,2

Moreover, thanks to Korn’s inequality (see [9]), it holds:
Z \|€(Uz‘,n)||o79i + Z ”Ui,nnojw =C Z Hvi,nHo@i'
i=1,2 i=1,2 i=1,2

We deduce:
nEI-&I-loo Z Hvi,n”l,ﬁi - Z HviuLQi =0

i=1,2 i=1,2

2
‘17Qi =1L g

which contradicts 3, 5 [[vin
Proof for operator B" to be hemi-continuous (for the proof of Theorem 4.1).

First, we need to prove B” is coercive which is a consequence of the previous lemmas. Then
we establish an estimate which will imply the hemi-continuity. Let u”, v € V*, it holds:

(B"u" — B ut — M) g = THIT+IIT (34)
with T = a(u” — o, u" — ") — /F H'yR[;(uh - vh)Rﬁ(uh — M) dr
1,C

=30 [ Rl = o) Ryl ol ar
I'ip

i=1,2
1 —np —h,p —h,p —h,p
=3 /F S ~ Pl - (PLud) — Pipp(el) dr,
i=1,2714D

111 = /F i([a’%ﬁ(uh) — gls — [P — gl ) (PP (uh) — PRP(o1)) dT.

Now, we need to bound I, 11, 11I from below to prove the coercivity.
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Using Young’s inequality for 5 > 0, it holds:

10| | 1 2
> - B0 b ety - gl - (PR20R) - gl
A e
02 -
5 Y2 Rs(u v'") or o
Using Young’s inequality for 8 > 0
[1+6) ‘ N N b
I > (1- _
(-5 2 e b
\1+0|Zﬁ’1 N , _ 2 (36)
+(0 - )Y [ @ty = Rotl) |

i=1,2
We deduced from the estimates of I1 and 717 that:

(B"u" — B"" " — M)y g

2 1 _ 2
> h_hh_h_g‘ iR h_hH iy "RA’»‘—RA?Z‘
olat — ol o) =0 Rt = =0 B B R
v =B 3 o) — g, — () g
2ﬁ v ) + v + O,Flyo
ool ‘ vE Ry(uh _”h)H
|1 9| 0,'1,¢ ) |1+9’5, ,
+ —1 Ls by _ B ok
35 IZMH (ul —ob)|. D+<9—)iZmeR,s(ui)—R,s<v,->>\%
1+9[ 2
st L S b
a(ul — ol u — o) 4 ( Z (ult — ol Fi,D
|1+9’5/ ‘ 1 - ‘2 1=01B\ | tp n
~ R — 0+ =) | Ryt — oM
Z 2( s(v1) .- 0+ =) |72 Bp(u” —v") 0r e
(1= B PR ) e — 1P =gl
If 9 =1 and 8 = 2, we have:
(B"u" — B"" u — M)y g
1 1 _ 2
S h_ .k h . hy 6 % H“h_h ’
z a(u’ —vu U)JrQ'_Z272(uZ v — Ry(v])) -
T 2 2
+ |t - g}+—[P¢»p<vh>—g1+>H ]wRﬁw —MH .
O,Flyc Oyrl,C

Thus, if 7o is sufficiently small and using the coercivity (14) for I and the previous lemma 4.7:

(B — Bhwh o ult — o
i=1,2
If # = —1, choose 5 = |12;0‘, it holds:
(B Bhvh uh_vh) 2
> a(ul —o" Z H’y (ult — o Fi,D

i=1,2
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and from the coercivity (14) for I, we obtain:

(Bhuh — B oyt — Uh)LQ >C Z ’
i=1,2

laQi .

If 6 £ —1, we take 8 = @ and 8/ = |1+ 6|, it holds:
(B"u" — B"" u — ™)y g

1 1
h h . h h —=/.h h
> a(u” —v"u —v)—i—fzé H’y 2 (u —vy))

—i(1+9)2‘

2

1—1—9
R

1=1,2

1

F(Rp(ul) = Ry(e))

1 2
TR,(ul — ol H .
Y p( ) 0 .c

So, using 7o sufficiently small and using the coercivity (14) for I and previous lemma 4.7, it holds:

(Bhu — Bhoh, ol ult — o

1=1,2

Now, we prove the hemi-continuity of B". Let t, s € [0,1] and u",v" € V", we have:

‘(Bh(uh —to") — B — sv™), "), Q‘

1—
< s—tav + |s —t] |0 2R H +|s —¢| |0 ‘ 2R
s = tla(e", o)+ |s — | lo] > =il 3 .
—h, (37)
s Y [ S|P -\Pi;’e(v?) ar
z 1,2 Tip /Y
+/ — ‘[P;L’p(u — ") — g]¢ [Php(u — suP ‘ ‘Ph’o ‘
Tic
For all a, b in R, we have the following estimate:
]+ = [b]4] < |a—1].
So we deduce that
1 R
/ — ‘[th’p(uhftvh) —g]+ [Php(u — sul HPhP ‘
r
- 1 h h,p h (38)
A S
Tic Y
Hence
‘(Bh(uh_ h)_Bh( P s, ,Uh)m‘
1
gs—t<av +9‘2R ” + 16 ‘5
s =] (ae" ") + 161 | iy .
+ Z/ o)| - [Pie (el dF+/ —‘P;L’p(v )| [P "] ar).
I'ip 7 ISR
Hence B" is hemi-continuous. O
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