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The experiments presented in the main text were performed on hair cells from the bullfrog’s

sacculus, an organ responsive to frequencies around 100 Hz (Lewis, 1988). We wished to test the

generality of our previous conclusion that hair cells display high coherence (Kozlov et al., 2007)

in auditory hair bundles tuned to higher frequencies. For this purpose we recorded from hair

bundles of the basilar papilla in the tokay gecko (Gekko gecko), a lizard with a well developed

sense of hearing that extends to about 7 kHz (Manley, 1972).

Cochleae dissected from geckos (Chiappe et al., 2007) were maintained in oxygenated

saline solution comprising 170 mM NaCl, 2 mM KCl, 1 mM CaCl2, 10 mM D-glucose, and

5 mM HEPES at pH 7.3.  After a 30-60 min digestion of basilar papillae at room temperature in

1 mg/ml collagenase (type XI, Sigma Chemical Co.), hair cells were mechanically isolated with

an eyelash and allowed to settle onto the bottom of an experimental chamber coated with either

concanavalin A (Sigma) or Cell-Tak (BD Biosciences) to promote cellular adhesion.

A typical pair of time series obtained from the opposite edges of a gecko's hair bundle

demonstrated fluctuations with a root-mean square (RMS) magnitude of 3.5 ± 0.5 nm
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(mean ± standard deviation; Fig. S1A). The associated spectra showed a high coherence across

the hair bundle with a phase difference near zero at all frequencies (Fig. S1B). A complete

measurement, which comprised twenty such records, yielded similar coherence and phase

spectra (Fig. S1C). These results did not differ significantly from those obtained with the two

laser beams superimposed at the same position on the hair bundle (Fig. S1D). The average

coherence and phase spectra obtained from five hair bundles confirm the consistency of the

results (Fig. S2).

Measurements of coherency from isolated hair cells may be corrupted by whole-cell drift.

We therefore performed on each isolated cell a control measurement in which one laser beam

was positioned on the hair bundle and the other on the apical portion of the cell body. If the two

signals displayed cross-correlations above the background noise level, the cell was rejected from

further analysis. For the five cells included in the analysis, the average coherence between

measurements from cell bodies and the associated hair bundles was 0.2 ± 0.1 and the average

phase was 0.0 ± 1.7 rad between 100 Hz and 5 kHz. This result is consistent with the expectation

for two independent signals. In contrast, when the two laser beams were positioned on the

opposite sides of these hair bundles, the coherence was 0.88 ± 0.07 and the phase was

0.0 ± 0.1 rad (Fig. S2). These values indicate that auditory hair bundles from the tokay gecko

move with a high coherence.

Experimental studies of hair-bundle kinematics with high resolution in isolated cells

suffer from at least three methodological drawbacks: cell isolation may cause excessive

mechanical and metabolic damage; the proximity of a hair bundle to the recording chamber’s

glass surface may affect the hydrodynamic forces experienced by the stereocilia; and isolated

cells may drift with the local hydrodynamic flow. Although drifting could be strongly reduced by

covering the recording chamber with adhesive substances such as concanavalin A and Cell-Tak,

most cells nevertheless displayed whole-cell motions of several tens of nanometers. Because

these movements were large compared with those typical of relative stereociliary motions, they

dominated the measurements. When their global motion was negligible, we could use some
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isolated cells for recordings of hair-bundle motion. However, stimulating isolated cells with a

patch pipette attached to their hair bundles displaced the cell bodies too much to allow reliable

measurements of the relative stereociliary motion. Because the basilar papilla of the tokay gecko

is thin, with only a dozen hair cells abreast, we could not fold it to provide optical access to

laterally protruding hair bundles without damaging the cells. For these reasons, we report in the

main text the results from our experiments with the bullfrog's sacculus, which has the advantage

of being mechanically stable and metabolically robust: we occasionally observed hair bundles

oscillating spontaneously for as long as 20 hours in vitro.

Choice of the multitaper spectral-analysis technique

The structure of the data was investigated through linear frequency-domain representations using

the multitaper spectral-estimation method (Thomson, 1982; Percival and Walden, 1993). This

choice is motivated by the observation that standard spectral-estimation methods based on single

data windows suffer from two fundamental problems, namely bias and lack of consistency of the

so-obtained estimates. The first problem refers to the fact that the estimate of the spectral

quantity at a given frequency mixes information from different frequency components of the

original signal. The second problem refers to the fact that the variance of the estimate does not

decline with an increasing sample size, for the outcome contains as many quantities as there are

data values. Data tapering by a single window, which is often used in an attempt to solve the first

problem, suffers from variance-efficiency reduction, unequal weighting of the data, and

arbitrariness in taper selection (Brillinger, 1981; Thomson, 1982). In our case, the bias reduction

offered by the use of a single window was also inadequate because our records contained a

relatively important part of low-frequency signal that was unrelated to the desired observations

and that could have contaminated the frequency components of interest. To solve the second

problem, a convolution product in the frequency domain could be used to smooth the desired

estimates, but this operation relies on the assumption that the output spectral quantities are
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smooth. In our case the spectral power was concentrated at specific frequencies and this

condition was unsatisfied.

Details of the multitaper spectral analysis

Any stationary stochastic process 

€ 

X(t) sampled at a rate 

€ 

τ  can be characterized by its Cramer

spectral representation

€ 

X(t) = dX( f )e2πift
−1/(2τ )

1/(2τ )
∫ (1)

for any time 

€ 

t  at which it is sampled. Here 

€ 

dX( f ) is an orthogonal-increment process: for zero-

mean processes 

€ 

E{dX( f )} = 0 ; for distinct frequencies 

€ 

f1 and 

€ 

f2 , 

€ 

dX( f1)  and the complex

conjugate of 

€ 

dX( f2)  are statistically uncorrelated. The second moment of this function defines

the power spectrum 

€ 

S( f )  of the process,

€ 

S( f )df = E dX( f ) 2{ }. (2)

In actual experiments, however, we can observe only a specific realization 

€ 

x(t)  of 

€ 

X(t)

and can do so only over the finite time window 

€ 

T = Nτ . The observed time series 

€ 

˜ x (t)  has a

Fourier transform 

€ 

˜ x ( f )  that is related to the Fourier transform 

€ 

x( f )  of the infinite time series

€ 

x(t)  by

€ 

˜ x ( f ) = x(t j )e
−2πif t j

j=1

N

∑ = K( f − f ',N)x( f ')df '
−1/(2τ )

1/(2τ )
∫ , (3)

in which 

€ 

t j = jτ  and

€ 

K( f ) = e−πif (N +1) sin(Nπf )
sin(πf )

 

 
 

 

 
 . (4)

For a stationary stochastic process the spectrum can be estimated as 

€ 

˜ x ( f ) 2 , the squared Fourier

transform of the data series. However, 

€ 

˜ x ( f )  is not equal to 

€ 

x( f )  but is related to it by a

convolution product that mixes information originating in different frequency channels

(Equation 3); this corresponds to the first problem of bias mentioned above. Moreover, 

€ 

˜ x ( f ) 2

squares the observations without averaging them, estimating 

€ 

N  quantities from 

€ 

N  data values.
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The resultant over-fitting problem corresponds to the second problem mentioned above, namely

lack of consistency.

The multitaper spectral-estimation method provides an elegant solution to both problems

(Thomson, 1982; Percival and Walden, 1993). In this approach, the data are multiplied not by a

single window but rather by a set of 

€ 

K  optimally chosen data tapers 

€ 

wk (t). The power spectrum

is then estimated as

€ 

SMT ( f ) =
1
K

˜ x k ( f ) 2

k=1

K

∑ , (5)

in which

€ 

˜ x k ( f ) = wk (t j )x(t j )e
−2πif t j

j=1

N

∑ . (6)

The optimal choice of the taper functions requires that they be mutually orthogonal, providing 

€ 

K

independent spectral estimates, and that they possess maximal spectral concentration, yielding

the greatest relative power over the frequency bandwidth 

€ 

2W (Mitra and Pesaran, 1999). The

spectral concentration value is quantified by

€ 

λk (N,W ) =
Uk ( f )

2df
−W

W
∫

Uk ( f )
2df

−1/(2τ )

1/(2τ )
∫

, (7)

in which 

€ 

Uk ( f )  is the Fourier transform of the sequence 

€ 

wk (t) and 

€ 

τ  is the sampling rate. It can

be shown that 

€ 

λk (N,W ) is the 

€ 

k th  eigenvalue of the eigenvector relation

€ 

sin 2πW (t j − t j ' )[ ]
π (t j − t j ' )

w(t j ' )
j '=1

N

∑ = λw(t j ); (8)

€ 

wk (t) corresponds to the associated eigenvector under appropriate normalization.

These optimal taper functions have the remarkable property that 

€ 

2NWτ  of their

eigenvalues are approximately equal to one, whereas the remainder decay sharply to zero

(Slepian and Pollak, 1961; Slepian, 1978). As a result, the spectrum is convolved with a window

that is as close as possible to a rectangular shape, yielding a power-spectral estimate that results

at each frequency 

€ 

f0  from an equally weighted average of contributions across the frequency
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band 

€ 

f0 −W , f0 +W[ ]. At the same time, leakage to and from frequencies outside this frequency

band is as small as possible.

We chose as the final spectral estimate an equally weighted average of the different

tapered spectra. Although more sophisticated techniques of averaging can be implemented with

both frequency- and data-dependent weighting (Thomson, 1982; Percival and Walden, 1993;

Mitra and Pesaran, 1999), these approaches significantly affect the results only when tapers with

poor spectral concentration are used. Because we could average over several independent records

for each measurement, we did not need to include a large number of tapers to obtain consistent

estimates. We could therefore restrict ourselves to tapers with high concentration properties,

rendering adaptive-weighting techniques superfluous.

Jackknife error estimation

The multitaper method also permits calculation of the variance of an estimated spectrum by

means of jackknifing (Thomson and Chave, 1991). Although this method is applicable to

relatively complicated data, it is largely free of distributional assumptions and hence highly

reliable. Moreover, the jackknife variance always exceeds the true variance, so the estimates are

conservative (Efron and Stein, 1981).

The jackknife approach was implemented as follows. Let 

€ 

xi{ }, 

€ 

i =1,...,P  be a sample of

€ 

P  independent observations drawn from some distribution characterized by a parameter 

€ 

θ  to be

estimated, and let 

€ 

ˆ θ  be an estimate of 

€ 

θ . In addition to the usual estimate 

€ 

ˆ θ all  based on all 

€ 

P

observations, we formed 

€ 

P  estimates 

€ 

ˆ θ \ i{ } , each based on the 

€ 

(P −1) observations remaining

after deletion of the 

€ 

i th  one. In the nonparametric estimation of the variance of an arbitrary

statistics,

€ 

var ˆ θ ( ) =
P −1
P

ˆ θ \ i −θ∩( )
2

i=1

P

∑ , (9)

in which
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€ 

θ∩ =
1
P

ˆ θ \ i
i=1

P

∑ . (10)

These estimates require the use of transformations prior to jackknifing when the statistics is

bounded or its distribution is strongly non-Gaussian, for example strongly asymmetrical about

the mean value. We used the logarithmic transformation for jackknifing power spectra and the

inverse hyperbolic transformation for jackknifing coherences (Thomson and Chave, 1991).

In power-spectral estimation, a logarithmic transformation stabilizes the distribution into

a more symmetric one. Taking 

€ 

ˆ θ = ln ˆ S  as our estimator, we formed the delete-one values 

€ 

ln ˆ S \ i

as

€ 

ln ˆ S \ i = ln 1
P −1

ˆ S k
k=1
k≠ i

P

∑
 

 

 
 
 

 

 

 
 
 
, (11)

with their average

€ 

lnS∩ =
1
P

ln ˆ S \ i
i=1

P

∑ (12)

defining a power-spectral estimate 

€ 

S∩. It follows that the jackknife estimate of the variance of

the logarithmic power spectrum was

€ 

ˆ σ 2 = var ln ˆ S { } =
P −1

P
ln ˆ S \ i − lnS∩( )

2

i=1

P

∑ . (13)

Because of the logarithmic transformation, 

€ 

ln ˆ S \ i − ln S∩( ) / ˆ σ  was distributed nearly as 

€ 

tP−1, a

€ 

t -distribution with 

€ 

P −1 degrees of freedom. The approximate 

€ 

(1−α)  confidence interval for

the power spectrum was given by

€ 

ˆ S e−tP−1 (1−α / 2) ˆ σ < S ≤ ˆ S etP−1 (1−α / 2) ˆ σ . (14)

Coherence and phase estimation

To jackknife coherence and phase spectral estimates, we assumed the availability of 

€ 

P  complex

transform pairs, 

€ 

xk ( f ) and 

€ 

yk ( f ). We defined the delete-one estimates of the coherency as
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€ 

ˆ c \ j =

xk ( f )yk
∗( f )

k=1
k≠ j

P

∑

xk ( f ) 2

k=1
k≠ j

P

∑ yk ( f ) 2

k=1
k≠ j

P

∑
 

 

 
 
 

 

 

 
 
 

1/ 2 (15)

for 

€ 

j =1,2,...,P , plus the standard estimate with nothing omitted (Thomson and Chave, 1991).

From these, we transformed to the almost normal variates

€ 

Q\ j = 2P − 2 tanh−1 ˆ c \ j( ) (16)

and obtained estimates and tolerances of the coherence spectrum.

Delete-one phase factors were constructed as

€ 

e\ j =
ˆ c \ j

ˆ c \ j

, (17)

with an average value

€ 

e∩ =
1
P

e\ j
j=1

P

∑ . (18)

This approach provided an estimate of the phase variance as

€ 

V ˆ φ { } = 2 P −1( ) ⋅ 1− φ∩( ) , (19)

in which 

€ 

φ∩ = arg e\ j{ }, an application of the jackknife method to standard phase statistics

(Fisher, 1993). In particular, the estimate took periodicity into account and was equivalent to

€ 

P −1
P

φ\ j −φ∩( )
2

j=1

P

∑ , (20)

in which 

€ 

φ\ j = arg e\ j{ } for small phase dispersion.
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Figure S1: Time series and coherency spectra from an auditory hair bundle.

(A) Simultaneous recordings with two interferometric beams show highly similar patterns of

motion at the opposite edges of a gecko's hair bundle. (B) The coherence and phase spectra for

the records in panel (A) are shown in red, together with their associated 95 % confidence

intervals in blue. (C) Averaging the coherence and phase spectra from 20 records for the opposite

edges of the same hair bundle greatly reduces the experimental uncertainty. The confidence

intervals were obtained by jackknifing the entire set of records. (D) The average spectra from 20

records with the two beams positioned at an identical position in the same hair bundle closely

resemble those in panel (C).
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Figure S2: Coherence and phase spectra from auditory hair bundles. The figure displays the

average values (red) and the associated standard deviations (blue) of the coherence and phase

spectra for recordings from the opposite edges of five hair bundles from the gecko's basilar

papilla.
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