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A conservative well-balanced hybrid SPH

scheme for the shallow-water model

Christophe Berthon, Matthieu de Leffe, Victor Michel-Dansac

Abstract A scheme defined by a hybridization between SPH method and finite

volume method is considered. The aim of the present communication is to derive

a suitable discretization of the source term to enforce the required well-balanced

property. To address such an issue, we adopt a relevant reformulation of the flux

function by involving the free surface instead of the water height. Such an approach

gives a natural discretization of the topography source term in order to preserve the

lake at rest. Moreover, we prove that the scheme is in conservative form, which is,

in general, a very difficult task since we do not impose restrictive assumptions on

the SPH method. Several 1D numerical experiments are performed to exhibit the

properties of the scheme.

1 Introduction

The present work concerns the numerical approximation of the well-known shallow-

water model. The model under consideration is given as follows:

{

∂th+∂x(hu) = 0,
∂t(hu)+∂x(hu2 + g

2
h2) =−hg∂xZ,

(1)

Christophe Berthon

Laboratoire de Mathématiques Jean Leray, UMR 6629, 2 rue de la Houssinière, BP 92208, 44322

Nantes Cedex 3, France, e-mail: christophe.berthon@univ-nantes.fr

Matthieu de Leffe
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where h ≥ 0 denotes the water height, u ∈ R is the water velocity in the x direc-

tion, and g > 0 stands for the gravity constant. The function Z denotes the smooth

topography. To shorten the notations, the system is rewritten in the following form:

∂tΦ +∂x f (Φ) = S, Φ =

(

h

hu

)

, f (Φ) =

(

hu

hu2 + g
2
h2

)

, S =

(

0

−hg∂xZ

)

. (2)

By adopting a finite volume method to approximate the weak solutions, a usual

property to be satisfied concerns the lake at rest preservation. Indeed, the stationary

solution given by u = 0 and h+Z = cst, must be exactly preserved by the numerical

method (for instance, see [2, 5, 3] and references therein).

Here, we do not consider a classic finite volume scheme, but we adopt a hybrid

method deriving from the SPH techniques. More precisely, the SPH method (is-

suing from the particle methods) involves a like interface numerical flux function.

According to [7, 14], this like interface flux function is substituted by a like finite

volume flux function derived from approximate Riemann solvers [5, 12, 9].

In the present paper, we exhibit a source term discretization to make well-

balanced this hybrid numerical technique. The paper is organized as follows. In the

next section, we briefly recall the gradient evaluation derived from the SPH tech-

nique, and the hybrid version by considering approximate Riemann solvers. Next,

in Section 3, after [4], we adopt a relevant reformulation of the model to introduce

a suitable well-balanced discretization of the topography source term. The full dis-

crete scheme is proved to preserve the required lake at rest, and it is in conservation

form without any additional assumptions. In Section 4, numerical experiments are

performed in order to illustrate the relevance of the scheme. A short conclusion is

given in the last section.

2 Introduction to the SPH method and finite volume

hybridization

The Smoothed Particle Hydrodynamics (SPH) method was introduced to per-

form astrophysical simulations. Recent works (for instance see [13] and references

therein) extend the SPH method in the field of CFD. Now, we present the derivation

of the SPH scheme to approximate the weak solutions of (2).

First, it is worth noticing that, for all real functions f : R → R, we have the

following relation: f (x)= ( f ∗δ )(x)=
∫

R
f (y)δ (x−y)dy, with δ the Dirac measure.

The particle approximation relies on a suitable regularization of this Dirac measure.

To address such as issue, after [10, 11], a kernel W ∈ C1
0(R)∩ L1(R) is intro-

duced, which is usually some bell-shaped function, depending on both center x

and smoothing length h. It must satisfy the consistency conditions [11] given by
∫

R
W (x,h)dx = 1 and

∫

R
W ′(x,h)dx = 0.

Now, after [10, 11], the particle approximation of f , given by ( f ∗W )(x) =
∫

R
f (y)W (x− y,h)dy, is nothing but a second-order accurate approximation of the
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function f . Using the Green formula, we easily deduce an approximation of f ′,

given by
∫

R
f (y)W ′(x− y,h)dy.

Unfortunately, this particle approximation involves integrals which cannot be

exactly evaluated. As a consequence, a quadrature formula is adopted as follows:
∫

R
f (x)dx ≃ ∑ j∈P ω j f j, where x j are the quadrature points, f j denotes the eval-

uation of f at point x j, and ω j stands for the associated weight. Within the SPH

method, the quadrature points are made of particles xi with volume ωi, and P de-

notes the set of interacting particles x j close enough to the particle xi. We then get

the following approximation:

Π
h( f )i = ∑

j∈P

ω j f jWi j, Π
h( f ′)i = ∑

j∈P

ω j f jW
′
i j, Wi j =W (xi − x j,h). (3)

From now on, let us underline that a natural property to be satisfied by this parti-

cle approximation is Π h(1) = 1 and Π h(1′) = 0, which reads

∑
j∈P

ω jWi j = 1 and ∑
j∈P

ω jW
′
i j = 0. (4)

Such relations are not always satisfied by usual choices for the kernel W (see [13]).

By adopting the derivative discretization formula (3), the SPH scheme for a gen-

eral set of equations (2) is given by

1

∆ t
ωi

(

Φ
n+1
i −Φ

n
i

)

+ ∑
j∈P

ωiω j( f n
i + f n

j )W
′
i j = ωiS

n
i ,

with f n
i = f (Φn

i ), ∆ t the time step, and ωiΦ
n
i the vector of conserved variables for

the particle xi.

Concerning the source term discretization Sn
i , one may adopt the particle approx-

imation (3). However, in order to satisfy the required well-balanced property, we

will introduce a specific approximation of the topography in the next section.

To conclude this brief presentation of the SPH scheme, we now show the finite

volume approximate Riemann solver hybridization as introduced in [14]. Indeed,

the derivative discrete operator involves an interface flux approximation given by
1
2
( f n

i + f n
j ). In [14], this flux approximation is substituted by the numerical flux

function coming from usual Godunov-type scheme (for instance Godunov, HLL,

HLLC, Roe scheme [8]). As a consequence, we consider the following modified

hybrid SPH scheme:



















1

∆ t
ωi

(

hn+1
i −hn

i

)

+ ∑
j∈P

2ωiω j (hu)i j W
′
i j = 0,

1

∆ t
ωi

(

hn+1
i un+1

i −hn
i un

i

)

+ ∑
j∈P

2ωiω j

(

hu2 +
g

2
h2
)

i j
W ′

i j = ωiSi,
(5)

where f ∆x(Φn
i ,Φ

n
j ) = ((hu)i j ,

(

hu2 + g
2
h2
)

i j
) stands for the numerical flux function

issuing from a usual finite volume scheme.
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3 A well-balanced scheme

Neither usual SPH techniques (for instance Monaghan SPH formulation [11], Vila

formulation [13]) nor the here presented hybrid schemes combining SPH and Rie-

mann solvers [14] are able to preserve the lake at rest steady state.

In order to derive a lake at rest preserving scheme, we adopt a recent equivalent

reformulation of the PDE. After [7, 14], the flux function, which is in the center of

the hybridization, is reformulated by considering the free surface H = h+Z and the

velocity. Indeed, within the required lake at rest, these two quantities stay constant,

which is of prime importance in the numerical flux definition.

Here, we assume H > 0 and we introduce X = h/H a water height like frac-

tion. To shorten the notations, we set V = t(H,Hu). In the following statement, by

considering V , we reformulate the system (1) (see [3, 4]).

Lemma 1. The weak solutions of (1) satisfy the following system:







∂th+∂x(X(Hu)) = 0,

∂t(hu)+∂x

(

X(Hu2 +
g

2
H2)

)

=
g

2
∂x(hZ)−gh∂xZ.

(6)

Let us emphasize that these reformulations involve the flux function but for the

new variables V . As a consequence, as soon as a lake at rest is considered, this flux

function only involves constant states (see (10) later on). This turns out to be the

main ingredient to get the required well-balanced property.

Now, we suggest to adopt the hybrid scheme (5) but for the equivalent formula-

tion (6). As a consequence, the hybrid SPH scheme under consideration now reads



































1

∆ t
ωi

(

hn+1
i −hn

i

)

+∑
j

2ωiω jXi j (Hu)i j W
′
i j = 0,

1

∆ t
ωi

(

hn+1
i un+1

i −hn
i un

i

)

+∑
j

2ωiω jXi j

(

Hu2 +g
H2

2

)

i j

W ′
i j =

ωi

(g

2
∂x(hZ)−gh∂xZ

)

i
.

(7)

Concerning the here involved numerical flux function ((Hu)i j,(Hu2+gH2/2)i j),
we directly adopt f ∆x(Vi,Vj). To complete the scheme, we characterize the new

formulation of the source term. Let us first notice the following easy relation:

g

2
∂x(hZ)−gh∂xZ =

g

2
∂x

(

H2X(1−X)
)

−gHX∂x (H(1−X)) .

In fact, a straightforward application of the SPH discretization is not relevant and

we need to consider an additional correction term. We thus adopt the following SPH

like discretization of the source term:
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ωi

(g

2
∂x(hZ)−gh∂xZ

)

i
=

g

2
∑

j

2ωiω j

(

Xi jHi j −2H̄iX̄i

)(

Hi j (1−Xi j)
)

W ′
i j+

g∑
j

2ωiω jH̄
2
i X̄i(1− X̃i)W

′
i j,

(8)

where H̄i, X̄i and X̃i are averages to be defined. Let us remark that the correction

term g∑ j 2ωiω jH̄
2
i X̄i(1− X̃i)W

′
i j vanishes as soon as the kernel function satisfies the

consistency conditions (4). This correction term is, in fact, a representation of zero.

Equipped with the hybrid SPH scheme (7)-(8), we now exhibit a suitable defini-

tion for X̄i to enforce the expected well-balanced property.

Theorem 1. Assume both free surface averages to satisfy:

Hi j = H̄i = H, as soon as Hi = H j = H.

Assume X̄i is defined by

X̄i =
1

2

∑ j ω jX
2
i jW

′
i j

∑ j ω j (Xi j −1)W ′
i j +(X̃i −1)∑ j ω jW

′
i j

. (9)

Then the scheme (7)-(8) preserves the lake at rest.

Proof. At time tn, we assume the approximate solution Φn
i be given by the lake at

rest. Then, for all i in Z, we have hn
i +Zi = H a positive constant and un

i = 0. The

proof consists in establishing Φ
n+1
i = Φn

i . Since the numerical flux function f ∆x is

consistent, it preserves the constant states. Hence, we have the following sequence

of equalities:

f ∆x(Φn
i ,Φ

n
i+1) = f ∆x

((

H

0

)

,

(

H

0

))

= f

(

H

0

)

=

(

0

g H2

2

)

. (10)

From the water height evolution issuing from (7), we immediately get hn+1
i = hn

i .

Next, concerning the discharge evolution, because of the consistency properties of

the involved average functions, Hi j and H̄i, the source term discretization (8) now

reads

ωi

(g

2
∂x(hZ)−gh∂xZ

)

i
=

g

2
H2 ∑

j

2ωiω j

(

(Xi j −2X̄i)(1−Xi j)+ X̄i(1− X̃i)
)

W ′
i j.

Finally, by definition of X̄i, given by (9), a straightforward computation gives

ωi

(

g
2
∂x(hZ)−gh∂xZ

)

i
= g

2
H2 ∑ j 2ωiω jXi jW

′
i j. As a consequence, the updated dis-

charge, given by (7), gives un+1
i = 0, and the proof is achieved. ⊓⊔

Let us underline that the formula (9), to define X̄i, is consistent with an evalua-

tion of X at particle xi. Indeed, from the SPH space derivative approximation (3), we

notice that 1
2 ∑ j ω jX

2
i jW

′
i j is consistent with 1

2
∂xX2 while ∑ j ω j(Xi j − 1)W ′

i j is con-

sistent with ∂x(X −1). Since ∑ j ω jW
′
i j is consistent with zero, then X̄i is consistent

with 1
2
∂xX2/∂x(X −1) = X .
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To conclude this section, we remark that the required well-balanced property

is established independently of the definitions of Xi j and H̄i. Here, we adopt the

averages introduced in [3, 4]: H̄i = hn
i +Zi and Xi j = Xi if (Hu)i j > 0, X j otherwise.

In fact, at this level, we notice that the proposed scheme satisfies an additional

stronger property. Indeed, when adopting SPH type scheme to approximate the solu-

tion of homogeneous hyperbolic systems (i.e. with vanishing source term), in gen-

eral it is not possible to preserve the constant solutions. By considering an initial

data made of a uniform constant state, the SPH approach makes some particles move

and the constant initial data is no longer preserved. Since the derived scheme is well-

balanced, it obviously preserves such constant solutions as soon as the topography

is flat, i.e. Z = cst. Moreover, we can exhibit a precise definition of the average func-

tions to preserve the conservation form of the scheme: ∑i∈Z ωih
n+1
i = ∑i∈Z ωih

n
i and

∑i∈Z ωih
n+1
i un+1

i =∑i∈Z ωih
n
i un

i . The conservation of the water height is directly de-

duced from the evolution law for hn+1
i given by (7). Next, considering the updated

formula for the discharge, we easily obtain

∑
i∈Z

ωih
n+1
i un+1

i =∑
i∈Z

ωih
n
i un

i −g ∑
i∈Z

ωiH̄iX̄i ∑
j

2ω jHi j(1−Xi j)W
′
i j+

g ∑
i∈Z

ωiH̄
2
i X̄i(1− X̃i)∑

j

2ω jW
′
i j

Now, we have to define the average functions (Hi j, H̄i, X̄i and X̃i) such that the

discharge conservation is recovered as soon as the topography function is a given

constant Z. Of course, providing that the consistency conditions (4) holds true, we

have just to consider average functions such that Hi j(1−Xi j) = Z.

If (4) is not satisfied, we enter the delicate problem of the inconsistency of

the SPH technique. Let us assume that the average functions satisfy the follow-

ing condition as soon as the topography is a given constant Z: Hi j(1− Xi j) = Z

and H̄i(1− X̃i) = Z. Then we immediately recover the expected conservation of the

discharge. Such average functions can be easily obtained. For instance, let us set

H̄i = hn
i +Zi, X̃i = hn

i /(h
n
i +Zi) and Hi j = Hi if (Hu)i j > 0, H j otherwise.

4 Numerical experiments

We now illustrate the relevance of the proposed SPH scheme. For all the tests, the

computational domain is [0,25], 200 particles are used, and the gravity constant is

equal to 9.81.

To test the well-balanced property, we consider a topography defined by Z(x) =
0.4e(sin(x)−1). The initial conditions are h(x,0)+Z(x) = 0.5, and u(x,0) = 0.

Figure 1 shows that the free surface is unperturbed with an oscillating topog-

raphy. The velocity is, as expected, close to 0, up to 10−15. The perturbations ap-

pearing the in the velocity are of the order of magnitude of the machine precision,
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Fig. 1 Left: Free surface profile for the lake at rest with the above defined topography. Right:

Velocity and free surface errors for this lake at rest. Both graphs show the solutions at time t = 600s.

which is confirmed by a simulation in quadruple precision, where the perturbations

are close to 0, up to 10−33.

The next three test cases come from [6]. The topography is flat with a bump for

x ∈ [8,12], as follows: Z(x) = 0.2− 0.05(x− 10)2. The transcritical flow without

shock (G1), with shock (G2) and subcritical flow (G3) test cases are performed

according to the initial and boundary conditions given by [6].

Fig. 2 From left to right, the three test cases defined in [6], respectively G1, G2, G3. The dashed

line represents the free surface and the full line is the topography. The graphs show the solutions

at time t = 600s.

Figure 2 shows good agreement with the exact results (see [6, 3] for instance).

In Table 1, the discharge errors turn out to be similar to other methods like hy-

drostatic reconstruction.

Table 1 Discharge errors for the three test cases described above. Comparisons between three

schemes: the modified SPH scheme as well as the ones introduced in [1, 3].

Test case Hydrostatic reconstruction Hydrostatic upwind SPH scheme

L2 error L∞ error L2 error L∞ error L2 error L∞ error

G1 4.35E-2 1.92E-2 5.98E-2 1.87E-2 5.67E-2 1.85E-2

G2 4.88E-2 3.31E-2 4.68E-2 2.85E-2 5.50E-2 4.02E-2

G3 9.62E-2 3.07E-2 9.78E-2 2.70E-2 9.83E-2 2.74E-2
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5 Conclusion

By adopting a suitable reformulation of the shallow-water model, we have derived

a relevant discretization of the topography source term to enforce a hybrid SPH

scheme (introduced in [7, 14]) to be well-balanced. Numerical simulations have

been performed to illustrate the interest of such a topography source term discretiza-

tion. Indeed, usual and hybrid SPH schemes are known to not preserve the constant

state because of the kernel function which does not satisfy the consistency condi-

tions (4). The proposed technique corrects such a failure.

Acknowledgements Victor Michel-Dansac would like to thank the project PEPS SPHINX of

Labex AMIES (under contract ANR10-LABX-02). Christophe Berthon would like to thank the

ANR-12-IS01-0004-01 GEONUM for financial support.

References

1. Audusse E., Bouchut F., Bristeau M. O., Klein R., Perthame B.: A fast and stable well-balanced

scheme with hydrostatic reconstruction for shallow water ows SIAM J.Sci.Comp., 25, 2050-

2065 (2004)

2. Bermudez A., Vazquez-Cendon M.E.: Upwind Methods for Hyperbolic Conservation Laws

with Source Terms. Computers and Fluids. 23 1049-1071 (1994)

3. Berthon C., Foucher F.: Efficient well-balanced hydrostatic upwind schemes for shallow-water

equations. J. Comput. Phys., 231 (15) (2012), pp. 4993-5015

4. Berthon C., Foucher F.: Hydrostatic upwind schemes for shallow-water equations. Finite Vol-

umes for Complex Application VI, Springer Proceedings in Mathematics 4 (2011), pp. 97-106

5. Bouchut F.: Nonlinear stability of finite volume methods for hyperbolic conservation laws and

well-balanced schemes for sources. Frontiers in Mathematics. Birkhuser Verlag, Basel, 2004.

6. Goutal N., Maurel F.: Proceedings of the 2nd workshop on dam-break wave simulation. Tech-

nical report, EDF-DER, HE-43/97/016/B (1997)
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