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THOMAS-FERMI APPROXIMATION FOR COEXISTING TWO
COMPONENT BOSE-EINSTEIN CONDENSATES AND NONEXISTENCE
OF VORTICES FOR SMALL ROTATION

AMANDINE AFTALION, BENEDETTA NORIS, AND CHRISTOS SOURDIS

ABSTRACT. We study minimizers of a Gross—Pitaevskii energy describing a two-component
Bose-Einstein condensate confined in a radially symmetric harmonic trap and set into rota-
tion. We consider the case of coexistence of the components in the Thomas-Fermi regime,
where a small parameter € conveys a singular perturbation. The minimizer of the energy
without rotation is determined as the positive solution of a system of coupled PDE’s for
which we show uniqueness. The limiting problem for £ = 0 has degenerate and irregular be-
havior at specific radii, where the gradient blows up. By means of a perturbation argument,
we obtain precise estimates for the convergence of the minimizer to this limiting profile, as ¢
tends to 0. For low rotation, based on these estimates, we can show that the ground states
remain real valued and do not have vortices, even in the region of small density.

1. INTRODUCTION

1.1. The problem. In this paper, we study the behavior of the minimizers of the following
energy functional describing a two component Bose-Einstein condensate
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in the space

H = {(u1>u2) SRURS Hl(R27C)7 / |Z’|2|Uj|2dl’ < 00, ||uj||L2(R2) =1, 5= 172} : (12)
R2

The parameters g1, g2, g, € and €2 are positive: €2 is the angular velocity corresponding to the
rotation of the condensate, 2+ = (—x5, ;) and - is the scalar product for vectors, whereas
(, ) is the complex scalar product, so that we have

oy (i, Vi) = oy wVu —iuVu — U0y, U — U0, U " U0, U — iﬂ@mu‘

2 2 2
Here, g; is the self interaction of each component (intracomponent coupling) while g measures
the effect of interaction between the two components (intercomponent coupling). We are
interested in studying the existence and behavior of the minimizers in the limit when ¢ is
small, describing strong interactions, also called the Thomas-Fermi limit. We assume the

condition
9° < 9192, (1.3)
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which implies that the two components u; and us of the minimizers can coexist, as opposed
to the segregation case g2 > ¢1g.. Additionally, we can assume without loss of generality
that

0< g1 <go. (14)

We start with the analysis of the minimizers of the energy functional E? without rotation,
namely with 2 = 0. Up to multiplication by a complex number of modulus 1, the minimizers
(M., m2.) of EY in H are positive solutions of the following system of coupled Gross-Pitaevskii
equations:

- 52A771,a + |ZE|2771,E + 91|771,a|2771,a + g771,a|772,a|2 =AM in R2> (1.5a)
— 52A7}2,e + |I\2772,e + 92\772,e|2772,e + 9|771,s\2772,s = AocMpe in R27 (1.5b)
Nie(x) > 0as |z| =00, i=1,2, (1.5¢)

where A\; ., Ao are the Lagrange multipliers due to the constraints. We will also refer to the
positive minimizers as ground state solutions. Formally setting ¢ = 0 in (1.5) gives rise to
the nonlinear algebraic system

|55|2771 + 9177% + 9771773 = )\1707’]1 n R2,
(1.6)
212 + 9213 + g2 = A2,072 in R?,

where 7; > 0 satisfy ||7;||L2@2) = 1, @ = 1,2. In the region where neither 7; is identically

zero, this yields the system

Qs+ gns = Ao — |zl
(1.7)
9Nt + goms = gy — ||

This leads to the condition (1.3) and the fact that the supports of 7; are compact sets:
more precisely, the supports of 7; are either 2 disks or a disk and an annulus. The limiting

geometry is two disks when
91+ Vgt + 8919 (1.8)
A . .

0<g<

This condition is more restrictive than (1.3), in the sense that (1.4) and (1.8) together imply
(1.3). If, on the contrary, we assume that

g1+ v/ 91 + 89192
> A , (1.9)

9

then the limiting configuration consists of a disk and an annulus; in this case, the assumption
g1 < go implies g > g;. It is helpful to introduce the following quantities:

2
rn=1-< r=1-9 r1r=1-9 (1.10)

g1 92 9192
Under the assumptions (1.3)-(1.4) and (1.8), we prove that

771'2,5 — a; uniformly in R* as e — 0, i = 1,2, (1.11)



where \/a;, +/as are the solutions to (1.6) with L? constraint 1, so that

azo(T), |z| < Ry,
aro(z), |z| < Ry,
ar(x) = as(x) = ago(x) + g%aLo(I), Ry < |z| < Rap,
07 ‘ZII’| Z Rl,(]a
07 |ZI§'| Z R2,Oa
(1.12)
with Ry < Rs determined explicitly in terms of g, g1, g» (see (3.5)), and
r R, — R? r
aro(z) = gl—?(Rf,o —z[?),  aselx) = % + 92—}(33,0 — |=?), (1.13)
a20(@) + Laro(x) = —(R2, — |?). (1.14)
92 g2

We note that Ry < Rap if g1 < g2 and a; = ay if g1 = go. Moreover, we show that
Aie = Aio, @ = 1,2, where

Ao = giRS,O +ToR2,, Ao = R, (1.15)
2

Because of (1.3)-(1.4), we always have that I' and I'y are positive. On the other hand, I'y
can have either sign: if g < g1, the singular limits a; consist of two decreasing functions, and
in the case g > g1, as is increasing near the origin and up to Ry o (though it remains strictly
positive under assumption (1.8)) and then decreasing, while a; is decreasing. If g = g1, we
have that as is constant on the ball of radius R;,. We remark that the first derivatives of
Var and \/as have an infinite jump discontinuity across the circles |x| = Ry and |z| = Rap
respectively, while the first derivative of /ay has a finite jump discontinuity across |z| = Ry
(if g1 < g2). In particular, neither function belongs to the Sobolev space H'(R?). Actually,
their maximal regularity is that of the Holder space C'z(R2).

In the case of (1.3)-(1.4) and (1.9), that is when a; is supported in a disk and ay in an
annulus, we also define the corresponding functions a; and prove (1.11).

Based on the estimates for the convergence in (1.11), we will show that for a large range
of velocities €2, the minimizers of Ef* in H coincide with the minimizers of E°, provided that
e > 0 is sufficiently small.

The aim of this paper is threefold:

(1) prove the uniqueness of the positive solution (7., 72.) of (1.5) (given any A;. and
A2), and of the minimizer of EY in H (modulo a constant complex phase),

(2) get precise estimates on the convergence, as ¢ — 0, of (11.,72.), the positive mini-
mizer of EY in H, to the singular limit (y/a1, \/az) defined in (1.12),

(3) prove that for © below a critical velocity, the minimizers of £ in H have no vortices
in R?, provided that e > 0 is sufficiently small.

Point 1 relies on the division of two possible positive solutions componentwise, and proving
that each quotient is equal to a constant of modulus 1.

Point 2 is the extension to the system of the results of [27] for a single equation. The
idea is to apply a perturbation argument to construct a positive solution to (1.29), “near”
(y/a1,+/az). Then, the uniqueness result in Point 1 allows us to conclude that the constructed
solution is indeed the ground state. Therefore, we are able to obtain precise asymptotic
estimates for the behavior of the ground state as ¢ — 0. We emphasize that, even though
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the system (1.5) is coupled, we are going to reduce it, at leading order, to two independent
Gross-Pitaevskii equations. The proof of Point 2, when both condensates are disks, with
different techniques, is the topic of a paper in preparation by C. Gallo [20].

Point 3 relies on fine estimates for the Jacobian from [25]. It consists in extending the
proof of [3] for a single equation to the system, which works well once the difficult results of
points 1 and 2 have been established.

1.2. Motivation and known results. Two component condensates can describe a single
isotope in two different hyperfine spin states, two different isotopes of the same atom or
isotopes of two different atoms. We refer to [4] for more details on the modeling and the
experimental references.

According to the respective values of g1, g2, g and €2, the minimizers exhibit very different
properties in terms of shape of the bulk, defects and coexistence of the components or
spatial separation, as € — 0. In a recent paper, Aftalion and Mason [4] have produced phase
diagrams to classify the types of minimizers according to the parameters of the problem.
Below, we summarize their findings.

e Coexisting condensates with vortex lattices: each condensate is a disk, and, for suf-
ficiently large rotation, displays a vortex lattice. The specificity is that each vortex
in component 1 creates a peak in component 2 and vice versa. It is this interaction
between peaks and vortices which governs the shape of the vortex lattice. For some
parameter regimes, the square lattice gets stabilized because it has less energy than
the triangular lattice [5].

e phase separation with radial symmetry: component 1 is a disk while component 2 is
an annulus. New defects emerge such as giant skyrmions and the presence of peaks
inside the annulus, corresponding to vortices in the disk.

e phase separation and complete breaking of symmetry with either droplets or vortex
sheets.

It turns out that the sign of the parameter I' defined in (1.10) plays an important role:
if ' > 0, the two components coexist while if I' < 0, they separate or segregate (case
of droplets, vortex sheets). In the case of no rotation, the segregation behavior in two
component condensates has been studied by many authors: regularity of the wave function
[30], regularity of the interface [16], asymptotic behavior near the interface [12, 13, 18], I'-
convergence to a Modica-Mortola type energy [6] in the case of a trapped condensate. On the
other hand, the case of coexistence is the topic of emerging works in terms of vortices: [5] for
a trapped condensate and [8] for a homogeneous condensate. The results that are the core
of this paper are totally new and will allow a much better description of vortices. Indeed,
in order to understand the behaviour of vortices in a trapped condensate, one has first to
understand the effect of the trap at leading order on the profile. Therefore, one requires
very precise estimates on the ground state at {2 = 0 for small €. This is the analogue of
what has been obtained for the single component case that we now recall. Many papers
[1, 3, 21, 24, 27] have studied the one component analogue of the energy functional (1.1),
namely the functional

Vul|? 2 .
JH(u) = /R2 {| 2u| + %Mz + 4—22|u|4 — Qut - (Zu,Vu)} dx (1.16)

under the constraint [p, [u|*dz = 1, where ~ is some positive constant.
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In the following theorem we have collected various results from [3, 21, 27] (see also Ap-
pendix A herein) concerning the minimizers of the energy J° without rotation.

Theorem 1.1. For every ¢ > 0, there exists a unique positive minimizer 1. of J? with L?
constraint 1, and any minimizer has the form e'“n. for some a € R. The minimizer 1. is
radial and there is a unique pair (n., ;) which is a solution of
—?An + |z*n+n° = A, x € R?, n(x) = 0 as |z — oo, (1.17)
with n positive. Let
2ozllE 2] < Ry,
ao(z) =
07 ‘ZII’| Z R07
where A\g > 0 is uniquely determined from the condition fRZ ag(x)dz =1 and Ry = /Xo.
There exist constants ¢, C, 6 > 0, with 6 < %, such that the following properties hold:
IAe = Xo| < C|logele?,
1
[7: — /ol oo m2) < Ces,

1e(r) = Vao(r)| < CedVaolr), 0<r =] < By — e,

1n- = Vo Lo (jzj<ro—s5) < C|logele?,

and

Wi

1e(r) < Ob exp {—cr
9

for sufficiently small € > 0.

0}7 TZR(D

In fact, given A > 0, the assertions of the above theorem hold for the unique positive
solution of equation (1.17) with A in place of A.. Using these estimates and a Jacobian
estimate from [25], the following theorem is proven in [3]:

Theorem 1.2. Assume that u., n. minimize respectively JS, J° under the constraint of L*
norm 1. There exist £y, &g, w1 > 0 such that if 0 < e < &y and Q < &y|loge| — & log | loge]
then u. = €'“n. in R? for some constant .

This leads, in particular, to the uniqueness of the ground state for small 2.

1.3. Main results. Our first result concerns uniqueness and radial symmetry for the prob-
lem without rotation.

Theorem 1.3. Assume that (1.3) holds.

(1) Let us fix some ;e > 0, i = 1,2. Then, the positive solution of (1.5) is unique, if it
exists.

(2) The positive minimizer (1 ¢, m2.c) of E2 in M is unique and radially symmetric. Every
other minimizer has the form (emlm,a, ei‘”ng@), where vy, ap are constants. If g1 = g
then n1 e = Noe.

In the case g; = g9, the system reduces to a single equation. Therefore, for the next result,
we can assume that
91 < g2- (1.18)
Our main result provides estimates on the convergence of the positive minimizer (7, 72,.)
to its limiting profile (\/E , \/@) as € — 0, first in the case of two disks.
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Theorem 1.4. Assume that (1.3), (1.8) and (1.18) hold. Recall that the a; are defined by
(1.12)-(1.13) and N by (1.15). Let (n1.,m0.) be the positive minimizer of EY in H. Then,
(M.esMa,e) is a solution of (1.5), for some positive Lagrange multipliers Ay o, Ao, and there

exist constants ¢,C,0 > 0, with § < min {%, L’O;RLO }, such that the following estimates
hold:
Xie — Aio] < Cllogele?, (1.19)
1
17 — V@il Lo w2y < Ces, (1.20)

< Ceiv/ai(r), |z| < Rig— €3, (1.21)

Mie(r) — v ai(r)
2
> e = Vaill Lo (i< i o-5) + M2 = Vazll oo (ry go<ial<rag—s) < Cllogele?,  (1.22)
i=1

and

- R; .
nie(r) < Ces exp {_CT ! ,0} , >R, i=1,2, (1.23)
£3
for sufficiently small € > 0.

This theorem is the natural extension of what is known for a single condensate described in
Theorem 1.1. The fine behavior of the minimizer near R; o and Ry, as ¢ — 0, is established
in Theorem 4.1 in Section 4. It is based on a perturbation argument which proves very
powerful in this system case, where we have not managed to extend the sub and super
solutions techniques of [2, 3].

Based on the above, we can show the absence of vortices for the minimizers of ES* with
small rotation.

Theorem 1.5. Assume that (1.3), (1.4) and (1.8) hold. Let (uy e, us.) be a minimizer of
ES in H. There exist e, wp,w; > 0 such that if 0 < & < g9 and Q < wy|loge| — w; log |loge]
then w; . = eiaim,g in R? for some constants oy, i = 1, 2.

In the case of a disk and an annlus, that is when (1.9) holds instead of (1.8), we can prove
the equivalent of Theorem 1.4. Generalizing Theorem 1.5 is harder, because vortices may
exist in the central hole of component 2 and this has to be tackled by other techniques than
the ones in this paper.

Theorem 1.6. Assume that (1.3), (1.9) and (1.18) hold. We define the functions a; by
CLL(](T’) + gilag,o(’f’), 0 S r S R2_,07

1
ai(r) =q aio(r), Ryy <r < Ry, whereaio(r) = T ()‘w - ﬁkm,o - Fi+17"2) )
07 r Z R1,07
(1.24)
(0, 0<r < Ry,
aso(r), Ryo <1 < Ry,
as(r) = (1.25)

az,0(r) + Zaio(r), Ripg<r< R3,,

+
L 0 r > Ry,



and
)\2,0 = (R;-’0>2’ >\170 — gi)\g,o = FQR%O O/ﬂd )\2,0 — gi>\170 = Fl(R£0)2 (126)
2 1
where A1, Aao will be given by (5.8). Let (n1.c,m2..) be the positive minimizer of E° in H.
Then there exist constants ¢,C,d > 0, such that, for sufficiently small e >0, (1.19), (1.20)
hold, (1.21) holds for i =1 and is replaced, fori =2 by

< Cesv/as(r), for Ry + 3 < lz| <R3 — €3, (1.27)

M2 (r) = Vaa(r)

(1.23) holds with RIO instead of Rag, and on fized compact sets away from |x| = Ry and
7| = Ryy, (Me,70e) is close to (y/a1, /az) with an error of order O(]loge|)e?.

We point out that if go < g1, then an analogous theorem holds exchanging the subscript
1 and 2 in the formulae.

1.4. Methods of proof and outline of the paper. Theorem 1.3 is proved by assuming
that there are two solutions, studying their ratio componentwise and writing the system
satisfied by the ratio, as inspired by [15, 28]. For the first part of the theorem, we need
decay properties at infinity of the solutions of (1.5), that we prove in a similar way to a
Liouville theorem in [11]. We point out that the system is non-cooperative, and the usual
moving plane method does not seem to apply easily in this case to derive radial symmetry
of positive solutions. Nevertheless, our result implies that since positive solutions of (1.5)
are unique, they are thus radial.

For the second part of the theorem, we use the decay of finite energy solutions and extra
estimates for radial functions. A key relation is the following splitting of energy: if (1, 72)
is a ground state among radial functions, then for any (uy,us), E%(ui,us) = E2(n1,n2) +
F%(vy,v7), where v; = u;/n; and

2 2
T Ji g
P =Y | {;WW + g (il - 1)2} Aot oo [ (= lu)0= P dr.
1=1
(1.28)

The condition I' > 0, that is g > /gig2, implies that F2(vi,v,) > 0. If we assume that
(u1,us) is a ground state of EY then using the sign of FY, we find that (uy,us) is equal, up
to a multiplication by a complex number of modulus 1, to (7;,72). Thus, any ground state
is radially symmetric and equal, up to a multiplication by a complex number of modulus 1,

to (m1,72).

Theorem 1.4 contains a fine asymptotic behaviour of the ground state (1, ¢,72.) as € tends
to zero. The difficulty is especially in the regions near R; g, R2o where the approximate
inverted parabola matches an exponentially small function in a region of size £%?. The
general procedure is to first construct a sufficiently good approximate solution to the problem
(1.5), for small ¢ > 0, with coefficients A\;. and Ay, being equal to the unique Lagrange
multipliers that are provided by Theorem 1.3. Then, using the invertibility properties of
the linearized operator about this approximate solution, we perturb it to a genuine solution.
The first uniqueness result of Theorem 1.3 implies that this constructed solution coincides
with the positive minimizer of £j in H. The method is a generalization to the system case
of the tools developed in [27] for the single equation.
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In order to construct this approximate solution, we rewrite the system (1.5) as

- 52A771 +m (77% - al,a(l")) +9m (773 - a2,a(if)) =0, (1.29a)
- 52A772 + a2 (775 - a2,e(35)) + gn2 (77% - @1,5(@) =0, (1.29b)
ni(x) >0 as |z| = o0, i=1,2. (1.29¢)

where a; ., as. are the € equivalent to (1.13), that is

1 1
al,E(x) = 5 (Al,a - i)\2,a - F2|$|2) ) 0275(1') = — ()\275 — 2)\175 — F1|l’|2) s (130)
gl 92 gal’ 9
and
R = (ALE - iszg) ,RE = (1.31)
R 9o ’

At leading order, in the regions where neither 7); is close to zero, we expect that the 2An;
terms are negligible so that at leading order,

g1 (nf — al,g(:c)) +g (7}3 — a27€(:c)) =0, (1.32a)
Jo (77% — &275(117)) +yg (nf — aLE(:):)) = 0. (1.32b)

Near Ry, the term ?An; cannot be neglected so that we use (1.32b) to express 73 — ag.
and insert it into (1.29a) to find a scalar equation for 7;. In the region of coexistence, that
is in the disk of radius Ry g, 12 is obtained from 7; by (1.32b), while outside this disk, »; is
small and can be neglected in (1.29b). This reduces the system (1.29) to two independent
approximate scalar problems:

2
—2An + <g1 — Z—) m (nf —ar1:(z)) =0, = €R?* m(z) = 0as |z] — oo, (1.33a)
2

— 2An, + ganp <77§ —ag.(x) — gial,a(:z)> =0, z€R?* nx) = 0as|z| — oo, (1.33b)
2

whose unique positive solutions are called 7); . and 7, .. The properties of 7); . and 72 . can be
deduced from an analogue of Theorem A.1 (see Proposition 4.2 below). We point out that
they are linearly nondegenerate, which implies that the spectrum of the associated linearized
operators to (1.33a) and (1.33b) consists only of positive eigenvalues. The main features of
a1 . and as . that are used for studying 7 . and 7). are that a; . and as . + g%éh,s change sign
once, from positive to negative as |z| crosses R;. and Ry, respectively and that

/
ay (Rye) = —c <0 and <a275 + iOLLE) (Ree) = —¢ <0 ase — 0. (1.34)
’ 92

In particular, ﬁie and ﬁg,e converge to (a1,0)+ and (agp + g%aLo)Jr, uniformly on R?, as
e —0.

Equation (1.33a) provides an effective approximation for (1.29a) up to a neighborhood of
Ra, where the term £2An, is expected to be of equal or higher order than ?An; as € — 0.
The approximate solutions to (1.29) that are constructed in this way match in C*, in fixed
intervals contained between R;, and Rso. Therefore, we can pick any point in (R, Ray),
for instance the middle point and we can smoothly glue the solutions together, via a standard
interpolation argument to create a global approximate solution to the problem (1.29). We
remark that, in order to estimate the remainder that this approximation leaves in (1.29), we
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have to prove some new estimates for the behavior of the derivatives of the ground states of
(1.33a) and (1.33b) near R;, and Ry respectively, as ¢ — 0.

The next step is to study the associated linearized operator to the system (1.29) about
this approximation (see (4.41) below). To this end, as before, our approach is to reduce the
corresponding coupled linearized system to the two independent scalar linearized problems
that are associated to (1.33a) and (1.33b). As we have already remarked, the spectrum of
the latter scalar operators consists only of strictly positive eigenvalues. This property allows
us to apply a domain decomposition argument to handle the “two center” difficulty of the
problem. We are able to show that the associated linearized operator to the system (1.29)
about the approximate solution is invertible, for small ¢ > 0, and estimate its inverse in
various suitable Sobolev L2-norms. We point out that this is in contrast to the scalar case,
where it is more convenient to estimate the inverse in uniform norms (see [21, 27]). Armed
with these estimates, we can apply a contraction mapping argument to prove the existence
of a true solution to (1.29), near the approximate one with respect to a suitable e-dependent
Sobolev norm, for small € > 0. Finally, we can show that the solution is positive and obtain
the uniform estimates of Theorem 1.4 by building on the Sobolev estimates and making use
of the equation. In particular, we also make use of some carefully chosen weighted uniform
norms, see (4.109), which are partly motivated by [31].

We note that our approach can be extended to cover the more complicated case of the
disk and annulus configuration, that is when (1.9) is assumed.

In order to prove Theorem 1.5, we need to study some auxiliary functions §; ., involving the
primitive of 377?,5(3)7 where (1., 7.c is the positive minimizer of EC. For this purpose, we use
the estimates that link (1.29) to (1.33), obtained in the proof of Theorem 1.4, to derive the
estimates for &; . as perturbations of those for the scalar equation. Then, we use a division
trick which splits the energy as the sum of the energy of the minimizer without rotation
plus a reduced energy (see Lemma 7.5). The reduced energy bears similarities to a weighted
coupled Ginzburg-Landau energy and, after integrating by parts, includes a Jacobian (see
Lemma 7.6). Assumption (1.3) allows us to treat this coupled energy as two uncoupled ones
of analogous form, and conclude by following the arguments of [3] which are based on the
control of the auxiliary functions and a Jacobian estimate due to [25].

The organization of the paper is as follows: in Section 2, we prove Theorem 1.3. In Section
3, we obtain the first rough estimates for the asymptotic behavior of (97, 73.) as e — 0.
In Section 4, we apply the perturbation argument to prove Theorem 1.4. In Section 5, we
prove Theorem 1.6. In Section 6, we study some auxiliary functions that will be useful for
the estimates with rotation. In Section 7, we prove Theorem 1.5. We close the paper with
two appendixes. In Appendix A, we summarize some known results about the scalar ground
states of Theorem 1.1, in a more general setting, and derive estimates for their derivatives.
In Appendix B, we have postponed the proof of a technical estimate from Section 4 that is
related to our use of the weighted norms.

1.5. Notation. By ¢/C we denote small/large positive generic constant, whose values may
decrease/increase from line to line. By O(:) and o(-), we denote the standard Landau
symbols. We write r = |z| to denote the Euclidean distance of a point = from the origin. By
Bpr we denote the Euclidean ball of radius R and center 0.



10 AMANDINE AFTALION, BENEDETTA NORIS, AND CHRISTOS SOURDIS

2. UNIQUENESS ISSUES

In this section, we prove Theorem 1.3. Since the result holds for every ¢ > 0, we often
omit the subscript €.

2.1. Uniqueness of positive solutions of (1.5). Given positive A, Ag., we want to
prove the uniqueness of the positive solutions of (1.5). We use some ideas from [15] which
deals with a class of scalar equations in bounded domains. In order to extend it to the
entire space, we have to establish some control on the decay of positive, possibly non-radial,
solutions.

Lemma 2.1. Let (u1,us) be a positive solution of (1.5a)-(1.5b), then

VAdie(Nie +Ajc+1)

uf < Nie/9i, |Vt peeey < O -

Ci=1,2, j#i.
The proof is adapted from [3] and [24].

Proof. Let w; = (\/giu; — \/i)/€, then Kato’s inequality yields

g.
Aw] > Yqwz0pAw; > X{wiEO}gui(giU? — Aig),
where y is the characteristic function of a set. Then we obtain

Ew; + /A
Awf > X{wizO}T’awi(é‘wi +2¢/Aie) = (wf)

A non-existence result by Brezis [14] implies that w;” = 0, so that the first bound is proved.
In fact, since u; is bounded, it follows by a standard barrier argument that (1.5¢) is also
satisfied.

Now fix z € R?, L > 0 and for y € Byr(z), let 2;(y) = u;(e(y — x)). Then

—Az = —z(®ly — a* + 9757 + 925 — Nie) = hic(y), (i # ).

We have proved above that there exists C' > 0 independent of ¢ and of x such that
1Pl oo (Boy (2)) < C/Nie(Nie + Aje + 1), Standard regularity theory for elliptic equations
implies |V (B, @) < Cy/Aie(Xie + Ajc + 1), and in turn the second part of the state-
ment. [

This implies in particular uniform bounds for the solutions of (1.5). In the following
lemma, we prove that positive solutions of (1.5) decay super-exponentially fast as |z| — oo.

Lemma 2.2. Let (uj,us) be a positive solution of (1.5). For every k > 0, let r; =
(14 k)N e and

26V 1+ k

T

1 k
I/Vi(s)zrgaxui-exp <—— —(82—7“2)) for s>r>mr;, i=1,2.

Then we have w;(x) < Wi(|x|) for |x| > r >r;, i =1,2. Moreover,

lui(z)| + |Vui(z)| < Cee =" 2 e R?, i=1,2. (2.1)
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Proof. Given k > 0, let r > r; = /(1 + k)N .. For |z| > r we have \;. < ﬁ'k, and hence

lz|> = N > 1+k\x|2 so that u; satisfies
k 9 Ui\ 1o Ui 2 2
—Au; + 2 11 k|55| < —Au; + 5—2(|x| — Xie) = _g_g(giui +guj) <0
for every |z| > r (here j # i). On the other hand, it is easy to check that
W, k
—AW; + R |x\2 >0 for|z| >, Wi(r) > wi(x) for |x| =r.

Suppose by contradlctlon that W, — u, is negative somewhere in the exterior of B,. Since

both functions go to zero at infinity, there exists z, with |Z| > r, where W; — u; reaches its

minimum: W;(|z|)—w;(z) < 0 and AW;(|z|)—Au;(Z) > 0. By subtracting the two differential

inequalities satisfied by u; and W;, and then evaluating at =, we obtain a contradiction.
Lemma 2.1 implies a uniform bound for maxu;. Using (1.5), we obtain that

|Au(y)| < Cee™l y € Bi(2), = €R%.
By standard interior elliptic estimates, we deduce (2.1). O

Proposition 2.3. Assume (1.3). Given \;. > 0, then problem (1.5) has at most one positive
solution.

Proof. Let (n1,1m2) and (uy, ug) be two positive solutions of (1.5) with the same A; . and A ..
Then, the function ¢; = w;/n; solves the following equation with j # i:

-V (U?V%’) = u; An; — Ay

2.2
= B (gap ) + g1 - 03], 22

We want to show that 1); is identically equal to 1. To this end, we multiply equation (2.2)
by (2 —1)/4; in a ball of radius R to obtain

/ {mvw (1+ w) +n—l[gm?(w?—1)2+9n?(¢?—1)(¢]2-—1)]} dn

2 2
:/ {(Uz—n—z> Vui—<ﬁ—m) Vﬁz}'l/do'a
OBR Uy i

where v denotes the outer unit normal vector to 0Bg. We sum the previous identities for
1 = 1,2 and then we use the following inequality

2gmin; (¥ — 1) (3 — D] < (g1 = i (W = 1)* + (g2 — 1) (¥3 — 1)°, (2:3)
where 0 < v < min{gy, g»} is such that
9<Vg1— W92 —, (2.4)

which exists by (1.3). We get
2 1 y
Z/ {mIVW (1+ 2) + 5 (7 — 1>2} dx
— JBx (&

2 2
i—1 Y OBr u; T

Y
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To conclude that v¢; = 1, it is enough to show that there exist Ry, — oo such that the
right-hand side of (2.5), with R = Ry, tends to zero as k — oo. This task will take up the
rest of the proof.

Let x be a smooth cutoff function in R? which is identically equal to 1 in the unit ball and
identically equal to 0 outside of the ball of radius 2. For all R > 1, we define xz = x(-/R).
In the remaining part of this proof, we denote by C. a positive generic constant which is
independent of R > 1. We multiply (2.2) by r®x%1;, where a > 2 (r = |z|), and integrate
the resulting identity by parts over R? to find that

/ X (WWZ- i ara—1§¢i> P2V + / ro 2RV X R Vibidz| < .,
Bon B

2R

where we have also made use of (2.1) and of the definition of ¢);. Our motivation for including
X% comes from [11, Thm. 1.8]. Thanks to the elementary inequalities

)x2 o1l v IV | < dxFron | V? + XRT“ Win? YV d >0,

2d
and

1
120X RV X R, Vi | < d G n? |V + ETW? IVxk|*n; Vd>0,
choosing a sufficiently small d > 0 (independent of R), via (2.1), we infer that

/ rxENE Vi Pdr < C..
R2
By Lebesgue’s monotone convergence theorem, letting R — oo in the above relation, we
obtain that
/ ron? | Vi *dz < C..
R2

Replacing 1); by its value and using (2.1), we find that

/ro‘u2|vm| dr < C..
R2 77;

Reversing the roles of u; and 7;, and summing, we reach

2
/ Z( 772‘%@‘ )d:)s<C
R2 u

i=1 4

Therefore, by the co-area formula, there exists a sequence Rj, — oo such that

2

Vnil? Vu;|?

R?/ E <u,2‘ Z| +17i2| Z‘)da—>0 as k — oo.
dBr, =1 i u;

To conclude, we note that the above relation, the Cauchy-Schwarz inequality, and (2.1),
imply that the right-hand side of (2.5) at R = R}, tends to zero as k — oo, as desired. We
remark that, in the case of radial symmetry, one can argue directly, analogously to [3], by
making use of Lemma 2.8 below. U

Remark 2.4. If gy = go and A1 . = Ao, then ny = ny. Indeed, (n1,m2) and (n2,m) are both
positive solutions to (1.5) and we can apply Proposition 2.3.

Remark 2.5. The uniqueness result of Proposition 2.3 yields radial symmetry of u; and us.
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We observe that the proof of Proposition 2.3 applies to provide also the following local
uniqueness result, since in this case, the boundary terms vanish.

Proposition 2.6. Assume (1.3). Given ;. > 0, i = 1,2, and a bounded domain B C R?
with Lipschitz continuous boundary, if (n1,n2) and (uy, uz) are positive solutions to the elliptic
system in (1.5) on B such that u; = n; on OB fori = 1,2, then u; = n; in B.

2.2. Uniqueness and radial symmetry of the ground state. We now turn to the
uniqueness and radial symmetry of the positive minimizer of the energy without rotation

2 2 2
0 _ V] || 2, Yi 4 9 20, |2
E{u, uz) = ;lefw{ S gl + sl b dot o [ Pl (26)

in the space H which is defined in (1.2).

If (u1,us) minimizes E° in H, then the diamagnetic inequality implies EO(|uy], |ua|) <
E2(uy,us), so that u; differs from |u;| by a constant complex phase. In fact, by the strong
maximum principle, we can assume that u; are positive functions. By elliptic regularity,
positive minimizers of EY in H lead to smooth solutions of (1.5a)-(1.5b) for some positive
Lagrange multipliers A; ., Ao .. Nevertheless, we have to prove that (1.5¢) holds too. A priori,
we only know that it holds for radial functions by the Strauss lemma [33]. In the subsequent
lemma, we provide a lower bound for the decay rate of positive solutions to (1.5) as |z| — co.
The following proof is adapted from [3] and [24].

Lemma 2.7. Let (uy,us) be a positive solution of (1.5). Let
wi(s) = %ﬂ;n U; + €Xp (—%(82 - 7“2)) for s>1r> /A,
where, fori,j =1,2 and j # i, we have defined

1 11 Y
= oy (g S,
“EN T \/A?,a = ( i ngi,e)

Then u;(z) > w;(|x|) for |z| > 1 > \/ Aie.
Proof. We know from Lemma 2.1 that u? < Nie/gi for i =1,2. Thus, u; satisfies

)\ 1.€ . .

—e2 A + u; <|:B|2 +g¢) >0, z€R? (j+#14).
J

On the other hand, our choice of a; implies that

A\
—82Awi + w; (‘SL’|2 + gi) < w; (2042'82 + i)\j’g + (1 — 82045))\1'75) = O, |LL" >,
J J

where we have used that 1 — e?a? < 0. The maximum principle can now be applied, as in
Lemma 2.2, to yield the desired lower bound. U

In the case of radial solutions, we can show the following lemma analogous to the one in
3]-

Lemma 2.8. Let (uy,us) be a positive radial solution of (1.5). There exists C. > 0 inde-
pendent of r such that, for 1= 1,2, we have

[ui(r)| < Coruy(r) for r>2\/\..
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Proof. Since u; is radial, and r > 24/A, ., an application of Lemma 2.2 (with k& = 3) yields
that

wi(r) =Wi(r) and w(s) < Wi(s) for s>r.

It follows that w(r) < W/(r) < 0. Similarly, an application of Lemma 2.7 yields that
u(r) > wi(r) = —ayru;(r), completing the proof. O

In order to proceed, we need the following splitting of the energy:

Proposition 2.9. Assume (1.3). Let (n1,m2) be a minimizer among radial functions in H
with n; > 0. Let (uy,us) € H. Then the splitting of energy (1.28) holds.

Proof. We test the equation for n; by n;(Jv;|> — 1) in a ball of radius R and then integrate by
parts. As a result, we get the term

| AV = 0+ 20V 0,90} do = [ ~Anap(u = 1)da
R

Bpr

12
+/ <|UZ| —T]i) VT]Z"VdO',
OBR i

Lemmas 2.1 and 2.8 apply to n; to provide

12
/ <|UZ| —m) V- vdo
OBR i

Note that the conditions (11,72), (u1,uz) € H imply the existence of a sequence Ry — oo
such that the integrals above vanish along Ry via the co-area formula. Therefore, we have

< 08/ R|u,~|2da+C€/ Rn? do,
0BRr OBRr

1

LAVl =1 + 2090 (Vo0 do === [ 2ol = (el + g + gn) o

where the Lagrange multiplier term has disappeared because [o, n7(|v;|* — 1) dz = 0. We
replace the last equality into the definition of E?(uy,us) to find

Eg(ul, Uy) = Eg(ﬁlvh 12vs)

2
|C77,~|2 2 2|Cv,~|2 |37|2 2112 9i 4 |4

= — v Vi - (Vug, v, T = |V —"1; Vi d

;_I/W{ 5 lvi|* + Vi - (Vo v;) +1 5 +2€2n v\+4€2n|v\ x

g
+ 202 - ninzlo1?|ve|* da

2
g [Vil® AVOil? el g 4 9y 2 2
—1 /RQ { 2 0 2 - 2e2 mi + 452772 + 45277@(|U | ) X

g
to miny ([o1*oa* = [01]* = Jwa| + 2) da.
9 R2

By collecting the term E2(n;,ns) in the previous expression, the result follows. O
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2.3. Proof of Theorem 1.3.

Proof. Given A;. > 0, ¢ = 1,2, the first assertion of the theorem is proven in Proposition
2.3.

Now, let (n;,72) be a minimizer of E? in H among radial functions, and let (u;,us) be
a minimizer of E? in H. Since (1;,7) is an admissible test function, we have E°(uy,us) <
E%(n1,ms). Consequently, the quantity F(vy, vy), defined in (1.28), satisfies

F2(v1,02) = E2(ur, us) — E2(m, 1) < 0.
On the other hand, recalling (2.4), we find that

2
O(vy, v) Z/ ( |Vui|* + 1 2m(\vl|2 —1) ) dx > 0.

This implies that F?(vy,v2) = 0 and that |v;| = 1 for ¢ = 1,2, which implies the second
assertion of the theorem. If g; = go then 1, = 19, as (11, 72) and (72, 71) are both minimizers.
]

3. PRELIMINARY ESTIMATES FOR THE ENERGY MINIMIZER WITHOUT ROTATION

In this section we prove that, under assumptions (1.3), (1.8) and (1.18), the positive
minimizer (7, 17,) provided by Theorem 1.3 satisfies

n? —a; in L*(R?) and Ao — \ig as € — 0.

This result is achieved through the estimate of the energy of the minimizer.

3.1. Limiting profiles. We recall briefly how to calculate the limiting configuration (1.12).
We first assume the case of two disks

Di={x €R*: || < Rip}.

where Ry < Ry to be determined later. If x € Dy, formally let ¢ = 0 in (1.5) and solve
the resulting algebraic system in n?, 3. This provides, for z € Dy,

1 g

ai,0() o ( 1,0 7 2,0 2| 7| ) ’ (3.1)
@) = = (a0 = Las - Tl 32

aso(z — =Xio—Dilz|” |, .

2,0 gl \ 1207 Ao~
and also the value of R, o, which is the radius at which a; o vanishes:
1

Rlo=1t (ALO - iAgvo) . (3.3)

If x € Dy\ Dy, then 17 = 0 and formally with e = 0 in (1.5), we solve the resulting equation
for n3, to obtain the following limiting behavior for n3:

>\270 — ‘SL’|2

s with R% 0= )\270. (34)
92 ’
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Notice that (Ayo — |2]*)/g2 = aso + Lay, in agreement with our definition of a, in (1.12).

Finally, by imposing the normahzatlon conditions ||ai||z2r2) = ||az||L2r2) = 1, we obtain
2 2q:I'T
)‘3,0 = 7(92 * g)v Ao — £>\2,0 = o 27
T 92 T
and hence

a 200 2 tyg)
1,0 71_:[12 ) 2,0 N

(3.5)

Notice that, in our setting, the condition (1.18) is equivalent to Ry < Ry, as can be
deduced from (3.5). Next observe that the monotonicity of aso depends on the sign of I';.
If I'y > 0, then ag is decreasing and

CLQ@(I’) > a270(R1,0) = (R;O — Rio)/gg >0, x¢€ D;. (36)

If I'y = 0 then ayp is constant, whereas it is increasing when I'y < 0. In this last case, we
have, for z € R?,
1 g
az,0(z) > az0(0) = T <>\2,0 91)\1’0) ; (3.7)

which is a positive constant thanks to (1.8). Condition (1.8) is thus equivalent to having
two disks.

In the case of a disk plus annulus, we assume that a; is supported in a disk D; of radius
Ry and ay on an annulus

with Ry, < Rio < Rj,. Other rearrangements of Ry, Ry, Ry, can be excluded, see [5].

In the coexistence region, that is R, < |z| < Ry, (\/@1,0,1/@2,0) given by (3.1)-(3.2) is the
solution of (1.7). The fact that a; vanishes at Ry and ay at Ry, and Ry, yields (1.26). If

_ + )\10_T2
r<R,,<Rj, a;=0and a) = —
’ ’ g1
Ao — 12
Riog <, a1:08u1r1da2:L
g2

which are consistent with (1.24)-(1.25). The computations of the L? norms provide

14+ %(1 - Iy)?
Ao = \/le( g ( ) and oo — Ao =/ —I'1T 9192—F2) (3.8)

s Tg>

3.2. Energy estimates. In order to obtain some energy estimates, we first rewrite the
energy functional in a different form.

Lemma 3.1. Assume (1.3), (1.8) and (1.18). Let (u1,u) € H, then E%(uy, us) = E°(uy, us)+
K, where

Vuz i
2, o) Z/RZ{' %u wl =0} dot 2 [ (Gl = ool - os) do

r

; _
(g|u1|2 + g2|u2|2) (az,o + —Cll,o) dx
2¢? Jpo\p, 222 Jeo\p, 92
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and K is the following constant (depending on ¢)

>\170 + >\270 1 9 9
K = o T 1= . (g1a] + goa5 + 2gajas) du.
Proof. We note that
)\170, X € Dl,
> + gras + gay = Tolz[*+ ZXoo, @€ Do\ Dy,
‘ZL’|2, $€R2\D2,

and
A rzeD
2 o 2,05 29
|z]* + gaa2 + ga; = { 22, z € R?\ Dy,

Therefore, we have:
gl 4 20z P|ur]? + galua|* + 2|z [ual® + 2g]u [*us|* =
= gi(lm]* = a1)* + ga(Jual® — a2)? + 2g(ua |* — ar)(Jua]?* — a2)
+ 2|ua(|2]* + grar + gag) + 2|us*(J2f* + gaaz + gar)
— 10} — g203 — 2garas.

Inserting the above in the definition of EY, and rearranging the terms, gives the statement.
O

The following proposition provides some estimates for the minimizer which will be used
in the sequel for estimating the associated Lagrange multipliers.

Proposition 3.2. Assume (1.3), (1.8) and (1.18). Let (n1,m2) be the positive minimizer of
E? in H that is provided by Theorem 1.5. If ¢ > 0 is sufficiently small, for i = 1,2, we have

[ Ve < g, (39)

/}R2 (n? — a;)* dw < Ce?|loge, (3.10)

/R?\D 77%@1_,0 dx + /R?\D (gn5 + g2m3) (a;o + iam) dr < Ce?|loge|. (3.11)
1 2

In particular, n} — a; in L*(R?) as e — 0.
Proof. First, we claim that, for small € > 0, we have
E2(n1,m2) < Cllogel, (3.12)

with E? defined in Lemma 3.1. This is proved as in [2] and [3], therefore we only give a
sketch here. Consider the competitor functions

. - 2
i = he(a;) | where ho(s) = { s/e if 0<s<e?,

t e (ai) || L2 r2) Vs if s> €.

It is proved in the aforementioned papers that

1-0e*< / he(a;)* dw < 1
R2
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|Vhe(a;)|* de < C|loge]
R2

/ (he(a;)* — a;)*do < Ce>,
R2

Here we are implicitly using assumption (1.8) which ensures that a; are positive (recall
(3.6),(3.7)). In addition notice that

Q/RQ(hE(al)? — a1)(he(as)? — ag) dz < Z/W(ha(ai)z — @)% dx

and that

/ ﬁ%aio dr = / (gﬁ% + 9277%) <a270 + 2&1,0) dr = 0.
R2\ D, R2\ Do g2

Therefore, we have obtained E°(7y,7,) < C|loge|. Finally, let (11, 7,) be the positive mini-
mizer, the decomposition proved in the previous lemma provides

E2(mi.mp) + K < E2(, 1) + K,

so that (3.12) is proved.
On the other hand, relation (2.4) implies

[ =t —axyda| < [ {on =)0t =00+ (=)0 00} d

The result follows by combining this inequality with (3.12). O

29

In the following proposition, we derive a preliminary estimate for the Lagrange multipliers.
Even though this estimate is far from optimal, its form will play an important role when we
improve it in Proposition 4.18.

Proposition 3.3. Assume (1.3), (1.8) and (1.18). Let (n1,12) be the positive minimizer
of E2 in H. Let \;. be the associated Lagrange multipliers in (1.5). There exists C' > 0
independent of € such that, fori=1,2,

Nie = Aol < Cellogel'? (3.13)
where \;o are defined in (1.15). Given (1.31), this implies
|Rie — Rio| < C¢ loge|?, i=1,2. (3.14)

Proof. We test the equation for 7 in (1.5) by 1 itself, integrate by parts (since n; € H'(R?)),
and then subtract ;¢ from both sides to obtain

A — Ao = /2 {2V >+ 03|z + gim7 + gms — M)} de.
R

With calculations similar to the one used in the proof of Lemma 3.1, we rewrite the right
hand side of the previous expression in the following form:

| AT i = a0+ g0 = )0 = ) + guan (o~ )
R

p —
<a270 + _aLO) 7]% dx.

ay o do + g/
g2

+gai(n; — a2)} dx + 91F/
RZ\DQ

R2\D,
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We notice that

[ ol = )+ 9008 = )} da| < flallgen (sl = e
R

+gllns — aslr2@e)) -
Hence by applying Proposition 3.2 we obtain the convergence of \;.. The convergence of
Ao can be proved similarly. O

Remark 3.4. The equivalent of Proposition 3.2 and 3.3 hold when (1.9) is assumed instead
of (1.8). The only difference is that (3.11) has to be replaced by

_ _ g B
/ 17 car o de + / 15 a5 da + / (gm3 . + 92m3.) (az,o + —al,o) dx
{|z|>Ri1,0} {lz|<R3 o} {lz|>R$ o} 92

< 0% loge].

4. REFINED ESTIMATES FOR THE ENERGY MINIMIZER WITHOUT ROTATION

In this section we capture the fine behavior of the minimizer (9;.,12.), as ¢ — 0, by
means of a perturbation argument. Since this type of approach is in principle not applicable
to problems with integral constraints, we argue indirectly as follows. First, given (A; ., Aa.)
as in the previous section, for small € > 0, we construct a positive radial solution of (1.5)
“near” (ay,as) by a perturbation argument. Then, the uniqueness result in Theorem 1.3 will
imply that this solution coincides with the unique positive minimizer of E° in H.

4.1. The main result concerning the minimizer without rotation.

Theorem 4.1. Assume that (1.3), (1.8) and (1.18) hold. Let (m,m2) be the positive min-
imizer of EY in H. Let ;. be the associated Lagrange multipliers in (1.5). There exist
constants ¢,C, D >0 and 0 € (0, i min{ Ry o, Rao — Rl,o}) such that the following estimates
hold: Estimates for the Lagrange multipliers

|Nie — Nio] < Cllogele?®, which implies that |R;. — Rig| < Cllogele®, i=1,2; (4.1)

Outer estimates

Im1.e — Varel zoe(al<rr.—6) + 126 — Va2 || oo (2| <Ry —5) < CE, (4.2)

uniformly as € — 0;
Algebraic decay estimates

me(r) = fa1) = O (& = Rucl2), mocr) = Jarer) = O (S = Racl™) . (44)

ifr€[Ri.—0,Ry . — D&?%], and

and
< O (4.3)

L (R1,5+5S‘$‘SR2,5_5)

g
MN2e — 4 /G2 + —a1,
g2

o (r) — \/age(r) L) = O (= Facl F) if 1€ Ra =0 Ro = DFL, (45)
2

uniformly as € — 0;
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Exponential decay estimates

Nie(r) < Ce3 exp {CRi,e - 7’} . r> R, i=1,2, (4.6)
c3
and
g 2 Ric—r 2\ -
Noc(r) =y [age(r) + g—al,a(r)%—(?(g:%)exp c— +0(e?) if r € [Rye, Ri-+0], (4.7)
2 £3

uniformly as e — 0;
Inner estimates

o (g+ I — RLE|%) if r€[Ri.—0 R,

r— Ry,
nmovze%mrraangmrﬁﬁm gL)+
€3

O(e) exp {CRZE%_T} if 7€ [Rie R+ 9],
(4.8)
)

(@) (5% +r— Ry > +elr— Rl,a|% +eslr — Rl,e|%) if 7€ [Rie—0, R,

Moe(r) = V@zAﬂ—%éamOﬁ—g%@ﬂﬂ‘%éﬁﬁVQ(@JW@%@“EM

)

_l_
O exp {5} + O() € Rue Fae 0,
(4.9)
and

O (e+1r = Rael?) if 7€ [Roe— 6, Racl,

_1 1 r— Ry,
Moe(r) = 5%92 ° P2,V (92%2,5722’) +
3 _r .
c O(e) exp {CRZ%} if 7€ [Roe, Roe+ 9],
(4.10)
uniformly as e — 0, where V' is the Hastings-McLeod solution [23] to the Painlevé-II equation

[19], namely the unique solution of the boundary value problem
v =v(w?+5), sER; v(s) —v—5—0ass— —o0, v(s) = 0 as s — oo, (4.11)

and
1
3

B = (—di (B) &£=<—%Ame—§%ARMQ
2

The proof of this theorem will be completed in Subsection 4.8. Note that in the case
g1 = g2, then an analogous of this theorem holds. It is simpler since 7, . = 72, so that
R, . = Ry.. The result is just a consequence of Theorem A.1 in the appendix.

4.2. An approximate solution. In this subsection we construct a sufficiently good approx-
imate solution (7); ., 7j2.-) to the problem (1.29) such that 7, > 0 and 7, . — /a;, uniformly
on R? ase — 0, ¢ = 1,2. The building blocks of our construction will be the unique positive
solutions 7, . and 7o of the reduced problems (1.33a) and (1.33b) respectively.
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4.2.1. The reduced problems. The asymptotic behavior of 7., ¢ = 1,2, as ¢ — 0, can be
deduced, after a proper constant re-scaling, from the following proposition which is a special
case of the more general result that we prove in Appendix A.

Proposition 4.2. Suppose that \. satisfy A\. — \g as e — 0, for some A\g > 0, and let
Ae(x) = )‘e - M|$|2> LS ]R2>

with > 0 independent of €.
There exists a unique positive solution u. of the problem

eAu=u(u*—A(z)), z€R* u(z)—0 as|z] = .
This solution is radially symmetric and, for small € > 0, satisfies the following properties:
lue = VAH|zm(gr) < O, e = VAl |2t <ras) < C, (412)
where v, = (,u‘1>\€)%, for some 6 € (0,1ry), ro = (1" Xo)"/?, and
us(r) < Ce3 exp {c»s_g(r6 — 7“)} , T > T (4.13)
In fact, the potential of the associated linearized operator satisfies the lower bound
clr —re| + ced if Ir—re| <0,
3ui(r) — A(r) > (4.14)
c otherwise.
More precisely, we have
(’)<6+|7’—r€\%> if re—0<r<r,,

ue(r) = 3 8.V (&T — Tf) + (4.15)
c O(e)exp{—c":—%jg'} if e <r <r.+0,

win

where V' is the Hastings-McLeod solution, as described in (4.11), and

B = (—AL())
Furthermore, we have

rT—Te

ul(r) =e 352V (55 ) + 0 <€% + |r— 7“€|%) if |r—r] <9, (4.16)

2
£3

uniformly, as € — 0. Moreover, there exists D > 0 such that the following estimates hold
2
forr e [r. —4d,r. — Des|:

u(r) = A(r) = 220(r = r|7%),  wl = (VA) = 20(|r —r|72),

Au. — A (VA = 20(|r —r.|73),

(4.17)

uniformly, as e — 0.
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4.2.2. Gluing approximate solutions. Consider a one-dimensional smooth cutoff function ¢
such that

(t)y=11if t<R.—9; ((t)=0 if t> R, (4.18)
where, for convenience, we have denoted
R+ Ro.
R. = % (4.19)

and 0 > 0 is a small number that is independent of small € > 0. Note that ¢ can be chosen
independent of ¢ > 0 as well. We recall that 7 ., 2. are the solutions of (1.33). In view of
(4.13), let

e(@) = ((|z))ine(z), =R (4.20)
Then, let

1
3
Mo (z) = <a275(:c) + gial,s(x) - giﬁie) , x| < R +6. (4.21)
2 2

The motivation for this comes from neglecting the term e2An, in (1.29b), since it is expected
to be of higher order, compared to the other terms, in the region |z| < Ry, — 0.
From (4.12), it follows that

o) — (az,am T ial,m) = O(), in C*(R. < |o| < R. +5), as e 0.

92
In other words, recalling (4.18) and (4.21), we have that
Nae(x) = oe(x) = O(e?), in C* (R. < |z] < R. +6), ase — 0. (4.22)

Thus, we can smoothly interpolate between 7, . and 72 . to obtain a new approximation 7 .
such that

772,6(5(:)7 ‘SL’| S R€7
Moc(®) = Tae(x) + Oc2(e?), R < |z[ < Re +9, (4.23)
ﬁ275(1’), |Zl§'| ZRE+5

To conclude, we define our approximate solution of the system (1.29), for small € > 0, to be
the pair (7, 72.), as described by (4.20) and (4.23). We point out that this approximation
satisfies the desired limiting behavior

(1.0, 72.c) — (V/a1, /az), uniformly in R? as ¢ — 0, (4.24)

where a; and ay are as in (1.12). Moreover, estimates that quantify this convergence can be
derived easily from the corresponding ones that are available for the ground states 7); . and
72, from Proposition 4.2.

4.3. Estimates for the error on the approximate solution. The remainder that is left
when substituting the approximate solution (7; ., 7j2) to the system (1.29) is

o —2Nije + qiiie (. — are) + gine (3. — ase)

E(ie Toe) = (4.25)

B, —e2Aie + gotoe (7. — an.c) + gie (M. — ar,e)

The next proposition provides estimates for the L?-norms of E;, i = 1,2, which follow
from some delicate pointwise estimates that will be established in the process.
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Proposition 4.3. The following estimates hold for small € > 0:

3 5
||E1||L2(R2) S Ce o 3, ||E2HL2(|IE|<R5) S C€3 cmd HE2HL2(M>35) S 062. (426)

Proof. 1t follows from the construction of 7; . and 7, ., via (4.13), that

2
E,=0if |[z|<R.—6or|z| >R, |E|<Ce™ *if R.—§<|z|<R.. (4.27)
On the other side, we have

By = —*Afjy. if |2| < R. — 6; (4.28)

2

By = —&*Afjp. + O(e”* 7)) uniformly if R, — 6 < |2| < R., as ¢ — 0;
Ey=0if |[z| > R. 4+ 6; |Ey] < Ce*if R, < |z| < R. + 6 (recall (4.22)).

In view of the previous observations, we only have to show the second relation in (4.26).
In fact, since A7), . remains uniformly bounded if |[r — Ry .| > § as ¢ — 0, it suffices to show
that

| ATz el L2(jr—Ri o <8) < Ce™3 for small £ > 0. (4.29)

It follows readily from (4.21) and (4.23) that
|Adlo | < Cht VAL + C i N e + Vi |+ C i [r = Ry | < 6. (4.30)

Next, we estimate the terms in the right-hand side by making use of Proposition 4.2. To
this end, we need to derive a relation for A7, . in terms of the Hastings-McLeod solution

near Ry .. Making use of (1.33a), (4.15) and the natural bound |V (s)| < C(|s|2 +1), s € R,
setting & = (¢1') " 2e, after a tedious calculation, we arrive at

ﬁl,eAﬁl,s - é:_%ﬁ?‘/? (ﬁe%) |:V2 (@T_gl’E) + 557“_}21’5] -+
g3 £3 £3

O (&7 = Rl + e il — Rl + &7l — Rugl?) + (4.31)

5
2 )

uniformly if [r— Ry .| < 4§, as e — 0, where 32 = —a} .(Ry ). Similarly, but with considerably
less effort, it follows from (4.16), and the bound |V'(s)] < C(|s| + 1)_%, that

+O (5—%|r R e ir— R +14e S| — Ry

—Ri\1?
Vi (r)? = &5 [V’ (ﬁril)] +O(1), uniformly if |[r — Ry .| <4, as ¢ — 0.
£3
(4.32)
It follows readily from the estimates in (4.17) that
i | Vinel* < C, (4.33)
and

MeDie + Vi =0 (1+r — Ry |7, (4.34)

uniformly in —6 <r — Ry, < —Cé‘%, as € — 0. Keep in mind that our eventual goal is to
show (4.29). In view of (4.30), the above relations imply the partial estimate

| Ao | 5 < Ce™3 for small € > 0. (4.35)

Loo(—6<r—Ry .<—e12
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On the other side, by the exponential decay of 7, . for 7 > R, ., we certainly have that

|| A7 || < Ce5 for small € > 0. (4.36)

L%(eT2 <r—Ry,.<6)

In the remaining interval (R, . — 12, Ry . + 1) we use the inner estimates (4.15), (4.31),
and (4.32), which in particular imply that

ﬁ%,a‘vﬁ1,€|2 S Cv (437)

and

MeAe + Vi = 5—%5§{v(5 - Rls> v (ﬁ %> n [V, <5%)]2}+

+0 ( i)
(4.38)

uniformly if |r — Ry .| < ez, as £ — 0 (for obtaining the last relation, we have also used
(4.11)). In order to proceed, we need the following easy estimate:

V(s)V"(s) + [V’(s)]2 = O(|s|™) as |s| — oo, (4.39)

which follows from the asymptotic behavior V(s) = (—s)z + O <|S|_g> as s — —oo, and

from the super-exponential decay of V' and its derivatives as s — oo. Now, by (4.37), (4.38),
and (4.39), via (4.30), we deduce that

_ 1
||A7]2,5HL2(|T_RL€|S€T72) < (Ce™3 for small € > 0. (4.40)
Finally, the desired estimate (4.29) follows directly from (4.35), (4.36) and (4.40). O

4.4. Linear analysis. In this part of the paper we are going to study the linearization of
(1.29) about the approximate solution (7 ., 2. ), namely the linear operator

—2Ap + [g1(37 . — a1,) + g(h . — ase)] @ + 2971 T2 00 o
L(p, ) = , 4.41
—? A + [g2(33 . — aze) + 9(7F . — a1c) | ¥ + 29T T

for (p,v) € D(L) = {(u,v) € H*(R?) x H*(R?) : [p |2|*(u® + v*)dz < co}. By Friedrichs
extension, the operator £ is self-adjoint in L*(R?) x L*(R?) with domain D(L).

4.4.1. Energy estimates for L. We estimate from below the quotient

(L(p, ), (¢, 9))
(), (@, )

which turns out to be positive, where (-, -) symbolizes the usual inner product in L?(R?) x
L?(R?) while < -, - > is a suitably weighted one. In turn, these lower bounds provide a-priori
estimates for the problem L(p,v) = (f1, f2).

Energy estimates in Bg.. In the sequel, we carry out this plan in detail in the domain
Bpg.. Analogous results can be deduced in R? \ Bp_. which we will describe later.

(0, 9) € D(£)\ (0,0),
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In view of (4.21) and (4.23), which imply that 75, — az . = —g%(ﬁie —ay.) in Bg_, we can

conveniently rewrite (4.41) in Bpr_ as

2 o 2 o - -
—e2Ap + [(91 - §—2) (377 e — are) | @ + 280 0 + 2901 710,
L(p,¥) = o (4.42)
_52A¢ + 292ﬁ§,5¢ + 29771,&7727590

for ,1 € H*(Bpg.) (the reason for not adding the similar terms in the first row is to keep
the linearization of (1.33a) about 7, . in the beginning).

Proposition 4.4. The following a-priori estimates hold: Suppose that
¢, ¥ € Hy(Bp.)={ve H*(Bg.) : v-Vv=0 ondBg_},

where v denotes the outer unit normal vector to OBg,_, satisfy

L(p, ) = Neip,¥) and /B ) <€%g02 + ¢2) dv =1, (4.43)
or
£l ) = M. 0) and | (iR ) de =1, (4.44)
then
A > c.

Proof. We use the following estimates:

c|r — Ric| +ced, if |r— Ry <6,

3t —are > (4.45)
c, otherwise,
and ,
C€§ +C‘T—R17€‘, lf |7’—R1,€| Sé,
e < (4.46)
C, otherwise,
which are inherited from (4.12), (4.14) and (4.15). In particular, observe that
3. — are > cify ., v € R (4.47)
Note also that -
2ga7f5. > ¢ on Bp,. (4.48)

Suppose that (4.43) holds. Testing by (g,), in the usual sense of L?(Bg.) x L*(Bg.),
and integrating by parts the resulting identity, we obtain that

In turn, using (4.45) and (4.47), we find that

2

2
2V + 2V + (g1 - 9—) (3. — ar ) 42 (iﬁwp " @mw) dr =\
92 V92
(4.49)

/ [52|V<p\2 + 2|V + ce30? + cﬁi€<p2] dw < . (4.50)
Br.

On the other side, the second equation of the system in (4.43) can be written as

_52Aw + 29277§,aw = )\’QD - 29772,&771,590'
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Then, testing the above relation by v, integrating by parts, using (4.48) and Young’s in-
equality, we obtain

Jpn, (EIVV]? + c?) da < o, (Mp2dx + O L) dx

(4.51)
4.43),4.50)

< CA.

Finally, by adding (4.50) and (4.51), recalling the integral constraint in (4.43), we deduce
that A > ¢, as desired. The case where (4.44) holds can be treated analogously. U

A direct consequence of Proposition 4.4, and of (4.49), is the following

Corollary 4.5. If € is sufficiently small, there exists ¢ > 0 such that

(L(p, ), (0,0)) > ¢ /

(a2|w\2 + VYL +ed? + it + W) dr Yo, € D(L),
BRs

(4.52)
where (-,-) denotes the usual inner product in L*(R?) x L*(R?).

Energy estimates in R? \ Bg_. Since ;. = 0 in R?\ Bg_, the operator £ in R?\ Bg_ has
the simple “decoupled” form

—€2A90 + [9(77%5 - a2,€) - glal,e} ¥

L(p, ) = :
—€2A¢ + 92 (377%,5 — A2 — g%al,a> 'QD

for ¢, € H?*(R?\ Bg.). Note that

2

} ; g g
9. — a2e) — a1 = g (773,5 — age — —m) + (— - 91) ae > ¢,

92 g2

< C¢i therein.
In analogy to (4.52), for small € > 0, one can show rather straightforwardly that

in R?\ Bpg., because a;. < —c and ’ﬁie —ag. — g%al,a

(L, 1), (,10)) > /

(52|Vg0|2 V2 4?4 esy? + 17§7E¢2> dr,  (4.53)
R2\Bp,

for every (p,9) € D(L).
Energy estimates in R?. Tt follows at once from (4.52) and (4.53) that, for small € > 0,
we have

(Lo, 0), (0,8)) 2> e foa (VP2 + VPR do e [, (c39? + iR 07 +07) dot

+c fR2\BRE <902 + 5%¢2 + ﬁ%,a¢2) dz,
(4.54)
for every (p, ) € D(L).
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4.4.2. Invertibility properties of L. We are now in position to obtain estimates for the so-
lution of the inhomogeneous problem L(p,%) = (f1, f2) in R? with suitable right-hand
side.

Proposition 4.6. Let f; € L*(R?), i = 1,2. The equation

L(p, ) = (f1, f2) in R, (4.55)

has a unique solution (p,v) € H?(R?) x H*(R?), provided that ¢ > 0 is sufficiently small,
independently of fi. Moreover, that solution satisfies

et <e [ (igeg)are [ (feeig)a @)

with C > 0 independent of € and f;, where the norm |||(-,-)|| in H*(R?) x H'(R?) is defined
by

2 2
I = & (190 aqmn + 19w + e lelZagy + 1y
(4.57)

2
HlelFa@\sa,) + €3 1V 2@\ 52,

If e > 0 is sufficiently small, there exist ¢,C > 0 such that, for any f € L*(R?), the
solution of
L(p,¥) = (nef,0) inR?, (4.58)
satisfies
I ol <c | fde+ce=? [ far (4.59)
Br, R2
If e > 0 is sufficiently small, there exists C > 0 such that, for any f € L*(R?), the solution
of
L(p,¢) = (0,72 f) in R, (4.60)
satisfies
(e, DI < ClIf Nl 2r2)- (4.61)

Proof. As we have already discussed, the linear operator £ is self-adjoint in L?(R?) x L*(R?)
with domain D(L). Relation (4.54) certainly implies that the kernel of £ is empty for small
e > 0. Hence, the existence and uniqueness of a solution (p,1) € H?*(R?) x H?*(R?) to
(4.55) are clear. We now turn our attention to establishing estimate (4.56). Testing (4.55)
by (p,1), and using part of (4.54), we find that

52/ (IVel* + [VY|?) dz +/ <6§<p2 + w2> dx +/ <<p2 + 6§w2> dr <
R2 B Rz\BRs

SO/B (|f1s0|+|fz¢|)dx+0/R (frgl + | o)) de

Q\BRE
Using Young’s inequality, we can bound the first integral in the right-hand side by

3 ) 1
/ €—<p2 + Ce 3 f2 4+ W+ Cf} | dz,
Br. 2

Re

2

and analogously we can bound the second integral. By absorbing into the left-hand side the
terms that involve ¢ or 1, we get (4.56).



28 AMANDINE AFTALION, BENEDETTA NORIS, AND CHRISTOS SOURDIS

Suppose now that (4.58) holds. As before, but this time making more use of (4.54), we
find that

52/ (Ve + [VoP) dx+/
R2 Br.

<c / il folde + C / il foldr.
BRE RQ\BRs

The desired estimate (4.59) follows readily as before, using Young’s inequality to absorb a
term of the form 1 [ B, 77} p*dx into the left-hand side, and recalling the exponential decay
(413) of 77175 for r > Rl’e .

Finally, suppose that (4.60) holds. As before, making use of (4.54) once more, we arrive
at

(a%ﬁ + i+ ¢2) dz + / <<p2 + g%;ﬁ) dr <
R?\Br,

52/ (Ve + Vo) dx+/
R2 Br.

sc/ ﬁz,alfwld:HC/ | folde.
BRE RQ\BRs

The desired estimate (4.61) follows readily as before, using Young’s inequality to absorb
terms of the form 1 fR2\ Br, M3 0%dx and § [ Bx, Y2dx into the left-hand side. O

(5%g02 + wQ) dr + / (@2 tedg? ﬁg,aw) dr <
R2\Br,

4.5. Existence and properties of a positive solution of the system (1.29). We seek
a true solution of (1.29) in the form

(7]1,57 7]2,5) = (771,67 772,5) + (307 ¢)7 (462)
with g0,¢ S Hgad(R2)‘
In terms of (p,%), system (1.29) becomes

- ﬁ((p, ¢) = N(QO, ¢) + 5(771,57 772,6)7 (463)
where £ is the linear operator in (4.41), the nonlinear operator A is
Ni(p, ) 919° + 391 29” + g U + 297 + 9P
N(p, ) = = , (4.64)
Na(, ) 9o + 392770,V + gl P® + 29T P + g

and the remainder (7 ., 7. is as in (4.25).
In view of Proposition 4.6, for small ¢ > 0, we can define a nonlinear operator T :
H? ,(R?) x H? ,(R?*) — H? ,(R?) x H? ,(R?) via the relation

rad rad rad rad

T, ¥) = (,9),

where (@,v) € H2 ,(R?) x H2 ,(R?) is uniquely determined from the equation

rad
- ‘C(@a 775) - N(SO> w) + g(ﬁl,aa f]Q,E)- (465)
Note that Sobolev’s inequality implies that functions in H?(R?) are bounded, in particular
N(p, ) € L*(R?) x L*(R?) for every (p,v) € H*(R?) x H?(R?).
Fore >0, M > 1, let

Boar = {(¢,0) € H24(R?) x HZ,(R?) « |l(p,¥)ll < Me |,

The following proposition contains the main properties of the operator 7.
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Proposition 4.7. If M > 1 is sufficiently large, the operator T maps B. y into itself, and
its restriction to Be a is a contraction with respect to the ||(-,-)|| norm, provided that ¢ > 0
1s sufficiently small.

Proof. Let (¢,) € Boay, and (p,1) = T (p,1). In view of (4.64) and (4.65), we have

24: (4.66)

=1

(R?),i=1,---,4, satisfy

G10% + 2970 b + g

‘6|

where (¢, :) € HZ,,(R2) x H?

rad

_‘C(@lv QZI) = ;
G20 + 2911 00 + gt
) e Bg1? + gi?) ) 0
_E(@% 7\p2) - 5 _E(@& 7~p3) == 5
0 Tae (320 + g¢?)

and
—L(Pa, Va) = E(Tes T,z )-

Using Proposition 4.6, and the Gagliardo-Nirenberg interpolation inequality in order to es-
timate the L?-norms of the nonlinear terms, it follows readily that

(@1, 9n)||| < CM3<5 + CM%T and ||(@i,9)]|| < CM2e2, i = 2,3, (4.67)

where C' > 0 is independent of both € and M, provided that ¢ > 0 is sufficiently small.
In order to illustrate the procedure, let us present in detail the proof of the second bound
(1 = 2): Estimate (4.59) implies that

(B2, Do) ||| < 0/ (o + ¢Vdz + Ceo 3 /ﬂ@(so“wﬂ‘)dx

Br,

with constants ¢, C' > 0 independent of &, M, provided that ¢ > 0 is sufficiently small. Since
(p,1) € By, it follows that

4 2 5 2
||@||L2(BRE < M€3 HQOHHI R2) < M€3 ||wHL2(BR5) S M€3, ||¢HH1(R2) S Mes. (468)
Now, the desired bound follows via the Gagliardo-Nirenberg inequality

2

[ull o) < C IIUIIHl(g ||U||Lz(g p=2 (4.69)

for Q C R? regular, which implies that

1 1
lellzaea) < Cllelin g, l1ellz s, ) < CMe, (4.70)

with constant C' > 0 independent of ¢, M, provided that ¢ > 0 is sufficiently small, and
analogous estimates can be derived for ||¢|p1 (s, ), [|¢]|L1@e) and [|¢||p1g2). The remaining
bounds in (4.67) can be proven analogously. On the other side, by (4 25), (4.26), and
Proposition 4.6, we obtain that

[l (@a, Pa)| < Ce3, (4.71)
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for small € > 0 (here C' is clearly independent of M as well). Hence, by (4.66), (4.67) and
(4.71), we deduce that

i )l < ce¥ (23 + M2ed + 1),

with C' > 0 independent of ¢, M, provided that € > 0 is sufficiently small. Consequently, if
we choose M = 2C', and fix it from now on, decreasing ¢ > 0 further if necessary so that
M35 + M?2es < 1, it follows that

1@, )| = 1T (e, )| < Mes.

We conclude that, if ¢ > 0 is sufficiently small, the operator 7 maps By into itself, as
asserted.

It remains to show that the restriction of 7 to B. s is a contraction with respect to the
[I(-, )|l norm, provided that € > 0 is sufficiently small. To this end, let

(i, i) € Bor, i =1,2, and (@i, ¥s) = T (i, %), i = 1,2, (4.72)
Then, set B -
(w0, 2) = (@1 — Pa, 1 — Pa). (4.73)
As before, it is convenient to write
5
(0,2) = (w;, %), (4.74)
i=1
where (w;, z;) € H? 4(R?) x H? ,(R?),i=1,---,5, satisfy
91(93 + 9192 + 03) (01 — ©2)
—,C(’U_Jl, 21) - )
92(F + 1ahy + 03) (V1 — 1hy)
772,&
—L(W2, 22) = 29 [ha(p1 — p2) + p1 (Y1 — ¢2)] :
771,&

V3(01 — @2) + o1(¥1 + the) (Y1 — 1)
_E(U_)Z% 23) =g s
©3(11 — ) + Y1 (@1 + @2) (1 — 2)

£ 22 e [3g1(01 4+ ©2) (1 — ©2) + gt + 2) (V1 — y)]
yR4) = 0 )

and
0

—L(ws, Z5) =
M2 [3g2 (1 + 12) (V1 — ¥2) + g(1 + 92) (01 — p2)]
As before, using Proposition 4.6, the Gagliardo-Nirenberg inequality (4.69), and the inequal-
ities

_1 —_
lellze s,y < e 3l DL Nel@nsa) < M@l lelmes < Hite, D).

19ll2n) <MDl ¥ll2@sa) < e 3@ DI 1] @) < 6_1\H(%¢)(IH= )
4.75
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for every ¢, € H'(R?), we can show that
(@1, 20l < Ce3l(r — 2, 1 — o)l (@3, 2)II < Ce5l(p1 — 2,861 — ),

(@3, Z8)lll < CeR[l(2r = 2,1 — )l (@i, 2| < CeF (01 = 02,801 = W), & = 4,5,
(4.76)
provided that ¢ > 0 is sufficiently small. In order to illustrate the procedure, let us present
in detail the proof of the bound for |||(ws, Z5)|||: From Proposition 4.6, we obtain that

— _1 _1
(@2, )| < Ce™5[ldaler = pa)ll2(sr,) + Ce73lpr(dr = o)l 28, +

+Ce™5 (o1 — ©2) || 22\ Bg,) + Ce™5 |1 (v — Vo)l L2 @2\ B, )-

The second term in the right-hand side of the above relation can be estimated as follows:
By the Cauchy-Schwarz inequality, we have

_1 _1
e 5|1 (V1 — 2)llL2(BRy) < e73|lp1llLaBay It — Vol La(Br,)

4.70) 9
< Ces |1 — |l La(Bg,)

(4.69),(4.75) L
< Ces [l (01 — 2,1 — o).

The remaining terms can be estimated in a similar fashion, giving the desired bound for
[|(ws, Z2)[||. The other bounds in (4.76) can be verified analogously. Consequently, combining
relations (4.72), (4.73), (4.74), and (4.76), we infer that

17 (p1,91) = T (2, )| < C€%|||(S01>¢1) — (o2, )|l ¥ (wi,%5) € B, i =1,2.

We therefore conclude that, for sufficiently small ¢ > 0, the restriction of 7 to B. s is a
contraction with respect to the [|(-,-)|| norm, as asserted. O

The above proposition implies the main result of this section:

Proposition 4.8. There exists a constant M > 0, such that the system (1.29) has a unique
solution (M1, M2.c) such that

-« . 5
(e = T1esM2e = Tl < MeS, (4.77)

if € > 0 is sufficiently small, where the above norm is as in (4.57).

Proof. In view of Proposition 4.7, for small ¢ > 0, we can define iteratively a sequence
(Qpnu 7pn) S Bg,M such that

((pn—l—lvd}n—l—l) = T((pnﬂ/}n% n Z Ov (9007 w(]) = (Ov 0) (478)

Moreover, the same proposition implies that (¢,,,) is a Cauchy sequence in H! ,(R?) x

rad
H! ,(R?). Hence, we infer that
(s Un) = (Poos oo) in HYy(R?) x H ((R?), as n — oo,

rad rad
(R?) x H} ,(R?) such that

for some (¢oo, Voo) € H!

rad
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In turn, letting n — oo in the weak form of (4.78) (recall (4.65)) yields that (@Yoo, ¥o)
is a weak solution of (4.63). Then, by standard elliptic regularity theory, we deduce that
(Poos Vo) € HZ 4(R?) x H? ,(R?) (€. (Poo, ¥oo) € Bear) and is smooth (i.e. a classical solu-

r rad

tion). The point being that B. 5 is not closed in the ||(-,-)|| norm. In fact, equation (4.63)
has a unique solution in B. js, as the restriction of 7 to B, s is a contraction with respect
to the ||(-,-)|| norm, provided that ¢ > 0 is sufficiently small. Consequently, recalling the
equivalence of (1.29) to (4.63) via (4.62), we conclude that the assertions of the proposition
hold. O

A direct consequence of (4.77) is the following

Corollary 4.9. Ife > 0 is sufficiently small, the solutions n . and na of the system (1.29)
that are provided by Proposition /.8 satisfy

1Mi.e = Mielloe(zzs) < Ce, and m;c(x) = 0 as |z| = o0, i=1,2. (4.79)
Proof. Consider the fluctuations
©=me—Me and Y =12 — ..
It follows from (4.57) and (4.77) that
IVelliae) < Ce3, llollzme) < Ce3 and [Vl ae) < O3, Wlliaqee < 3, (4.80)

(note that we did not make full use of (4.77)). In order to transform the above into uniform
estimates, we need the following inequality which can be traced back to [33]: There exists a
constant C' > 0 such that

1 1
|93|% lv(z)| < CHVUHEZ(RQ)HUHIZ,Z(RQ) for a.e z € R?, (4.81)
and all v € H! ,(R?) = {v € H'(R?) : v isradial}. The desired asymptotic behavior in
(4.79) follows at once. Making use of this inequality for |x| > 0, we obtain that
[pllzoo(a1>s) < Ce and  [[Y]| 1o (a125) < C,
which are exactly the desired uniform estimates in (4.79). O

We now turn our attention to establishing uniform estimates on B;s. The following lemma,
will come in handy in the proof of Corollary 4.11 below.

Lemma 4.10. There exists a constant C' > 0 such that the solutions that are provided by
Proposition 4.8 satisfy

1Miellzesy) < C, i=1,2,
if € > 0 1is sufficiently small.

Proof. Suppose that the assertion is false. We use a blow-up argument to arrive at a con-
tradiction (see also [22]). Without loss of generality, we may assume that there exist €, — 0
and z,, € Bs such that

Men(Xn) = [[Me, || o0 (B5) = My — 00.
We may further assume that z,, — x., € Bs. Now, we re-scale 1, ., by setting
Vu(Y) = pne, (Tn + Enptny) With g, = M1 — 0.

The function v,, satisfies

—Av, “'glvg _glﬂial,en (n +5nﬂny)vn+gﬂi (ng,an (Tn + Enfiny) — Az, (Tn + Enluny)) vy = 0.
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By using elliptic LP estimates and standard imbeddings, exploiting the bound

175, — az.ell Lo () < Cp&t%Jr%, p > 2, (readily derivable from Proposition 4.8),

we deduce that a subsequence of v, converges uniformly on compact sets to a bounded
nontrivial solution v, of the problem

Av=gv*  v(0) =1, (4.82)

in the entire space R? or in an open half-space H containing the origin, with zero boundary
conditions on JH. Actually, in the latter scenario, one has to perform a rotation and
stretching of coordinates in the resulting limiting equation to get (4.82), see [22]. In any
case, by reflecting v, oddly across OH if necessary, we have been led to a nontrivial solution
of (4.82) in the whole space R?. On the other hand, this contradicts a well known Liouville
type theorem of Brezis [14]. O

The following corollary provides additional information to Corollary 4.9, but will be con-
siderably improved in Proposition 4.14.

Corollary 4.11. If € > 0 is sufficiently small, the solutions provided by Proposition 4.8
satisfy

17ie — V/aiellLoe(s) < Ces, i=1,2. (4.83)
Proof. Let
¢ =me—+/@1e, T E By (4.84)
Observe that estimates (4.12) and (4.77) imply that
4
@] L2(Bys) < Ce3. (4.85)

From the first equation in (1.29), by rearranging terms, in Bos we obtain that
_52A¢ = —01Mhe (771,5 + vV al,e) ¢ + 52A\/ a1 — 9771,5(773,5 - a2,€) = f
By interior elliptic regularity theory, we deduce that
_ _2
9l m2ms) < C (6721 fllz2(mas) + 19l 2(3,5)) < CE73, (4.86)

where we also used Lemma 4.10 and (4.85). Now, by the two-dimensional Agmon inequality
[7, Lem. 13.2], we infer that

1 1 (4.89),(4.86)

||¢||L°°(B5) < C’|¢H12{2(Ba)||¢||22(35) < Ces.
The desired bound for 7, . — /a; . follows at once from (4.84) and the above relation. The
corresponding bound for 7, . — /a2 can be shown analogously. O

We are now in position to show that the solutions in Proposition 4.8 are in fact positive.
Proposition 4.12. If ¢ > 0 is sufficiently small, the solutions in Proposition 4.8 satisfy
Nie>0 inR? =12
Proof. By virtue of (4.12), (4.15), (4.79), and Corollary 4.11, given D > 1, we deduce that

Me > cped >0 if |z] < Ry + Des, (4.87)
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provided that ¢ > 0 is sufficiently small; where throughout this proof, unless specified oth-
erwise, the generic constants ¢,C' > 0 are also independent of D > 1. From (1.29a), we
observe that 7, . satisfies a linear equation of the form

— &? A+ Q). = 0, (4.88)
where
Qz) = g1(ni. — are) + 9(n. — aze).
If R+ De’ < |z| < Ry, recalling (4.13) and (4.79), we find that
Q@) = gi(ni. =it + 7. — ave) + 9(m. — 73 + 75 — ase)
> —g101¢ + 9(773,5 —ay.) —Ce

g’ g
> (— - 91) are +9 (773,5 — Qgc — —al,a) — Ce.
92 ()

In particular, if R, + Dei < |z| < R, where 1)y = o, via (4.21), which implies that the
second term in the right-hand side is —g%g, 11735, and the exponential decay of the ground
state 7, . for r = || > Ry ., we obtain that

Q(r) > <‘Z—Z - gl) aye — CePes
(1.3),(1.30),(1.34),(3.13)
> o(r — Ry )%+ cDes — CePei,
> c(r—Rio)*+ chg,

increasing the value of D if needed, provided that ¢ > 0 is sufficiently small. Clearly, in
view of (4.23), the same lower bound holds if R. < |z| < R. + 6. On the other side, if

— 2 2 s 5 52 2
R. +6 < |z| < Ry, where a1 = —c(r® — R{_), Tlhe = T and |1y, — agc — g%al,e’ < Ces,

we deduce that Q(r) > ¢(r — Ry.)?. The latter lower bound also holds if |z| > Ry.. So far,
we have shown that

Q(z) > c(r — Ri)* + cDes, |a| > Ry + Deb, (4.89)

provided that ¢ > 0 is sufficiently small. By (4.79), (4.87), (4.88), (4.89), and the maximum
principle, we deduce that
Me >0 if |z] > Ry, + Des.

The desired strict positivity of 7 . follows immediately from (4.87), (4.88), the above relation,
and the strong maximum principle. The corresponding property for 7;. can be proven
analogously. O

The following lemma is motivated from Lemma 2.2, and will be used in the next section.
Lemma 4.13. Given D > 1 sufficiently large, we have
D3 2 9 2z .
Nie(s) <mic(r)exp ——5(s"—71%) p for s>r>R;.+ De3, i=12,
£3

provided that € > 0 is sufficiently small.
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Proof. Throughout this proof, the generic constants ¢, C' > 0 are independent of both small
e > 0 and large D > 1. Abusing notation slightly, let

Ds 2 2
u(x) =u(s) =exps ——s"p, r€R* s=|z|
€3
It is easy to see that

—2Au+c [(s — R+ D»s%} u > [—4D%E%82 +els— R )+ ¢Des | u >0, (4.90)

if s =|z| > R+ De3, for sufficiently large D > 1, provided that £ > 0 is sufficiently small.
Here ¢ > 0 is as in (4.89). For such D, ¢, and any r > R; . +D€%, it follows that the function
D3
v(s) = M (1) exp {——2(52 — 7"2)} . s=lz| >,
€3
is an upper solution of the linear elliptic equation that is defined by the left-hand side of
(4.90). On the other side, by virtue of (4.88) and (4.89), the function n; (s) is a lower
solution of the same equation for |x| > r, which clearly coincides with the upper solution v
on 0B,. Hence, by the maximum principle, and (4.79), we deduce that

Mme(s) <wv(s), Vs=lz|>r>Ri .+ DE%,

for any large D > 1, provided that € > 0 is sufficiently small. The validity of the asserted
estimate for 7; . now follows immediately, while that for 1, . follows analogously. O

4.6. Improved uniform estimates away from R, . and R,.. In this subsection we show
that the uniform estimates in (4.79), for the difference 7; . — 7; o, can be improved outside of
an O(£3)-neighborhood of R;., i = 1,2.

The results of this subsection, as well as those of the following one, are not essential for
the proof of Theorem 1.5, and, depending on the reader’s preference, can be skipped on a
first reading.

Proposition 4.14. Ife > 0 is sufficiently small, there exist C, 6 > 0, with < min {M M},

4 1
such that
|ni,a(r) - ﬁi,a(rﬂ S 052 Zf |7’ - R1,€| Z 0 and |7’ - R2,€| Z 5, 1= 172-

Proof. We prove the assertion in the case where r € [0, Ry . — ¢], which reduces to show that

Mie(r) — \/ e ()

(recall the construction of 7). and also see (4.12)). In the remaining intervals the proof
carries over analogously.
We first require a rough uniform bound for the radial derivatives of the functions

u= e — /Q1e and v = M2, — vV a e, (492)

say over the interval [, Ry, — Z]. It follows from (4.63), (4.68), and (4.79) (with a smaller
constant 6 > 0), that

<Ce® if re[0,Ry.—4], i=1,2, (4.91)

~ _2
HA80||L2(%,R175—%) = ||A(7]1,5 - 7]1,5)”[/2(%7}{175_%) < Ce™ s,
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In turn, by interior elliptic regularity theory and (4.77), we deduce that

_2
H‘PHHZ(@RM_%) < Ces.

Hence, from (4.80), via (4.81) with ¢’ in place of v, we get that

J
"(r)] < O Ric——]|.
wol<c re[sm.- 1]
Thanks to (3.13) and (4.12), we infer that

Hu/HLoo((;,RLs_%) <C. (4.93)

Similarly we have
HU/HLOO(&,RLE_ 5 ) < C. (4.94)

50

Observe that u, v satisfy
—e?Au+ g1 (m + a2 u+ gm(ne + /azz)v 2\, fai .

M(u,v) = = , (4.95)
—e2Av + ganp(n2 + /A2 )v + gna(mh + (/a12)u e2A\faz;
S B( =3 having dropped some ¢ subscripts for convenience. By virtue of (1.3), there

exists a unique solution (ug,vg) to the linear algebraic system

291a1,eu+2g\/@1,5 a2 UV = 52A\/a1,€7

20\ /1c/Az0 + 2g0a2.0 = £2Afay,

T e B( Rie—3): It follows readily that
luwol|  / < Ce® and vl < Ce?, (4.96)
(50, ) (5(m,.-4))
(keep in mind that a;. > ¢ in B(Rl,s—%)’ i =1,2). We can write
(u,v) = (ug, vo) + (4, D), (4.97)

where u, v satisfy
62AUO 2
M(i,7) = i 91(2a1c —nf — \/5175771)% +9(2y/a12\/A2c — mn2 — /Az2.:11)v0
’ 52Av0 92(2@2,5 - 77% - \/52757]2)110 + 9(21 [Q1 o\/A2 2 — T2 — /—@1,5772)”0 )
(4.98)
S B(Rl,s—%)'
Consider any p € (0, Ry — %}. By testing the above equation by (@, ?) in the L*(B,) x
L*(B,) sense, making use of (2.4), Proposition 4.8, (4.96), and Young’s inequality, it follows
readily that

/ (Vi) + 2|Vi? + @2 + 0%) do < Ces + C2[@ (p)alp)| + C2|F (p)i(p)],  (4.99)

By
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provided that € > 0 is sufficiently small. Setting in this relation p = R, — 5%, using (4.79),
(4.93), (4.94), and (4.96), we obtain that

/ (2| Val? + Vo2 + @2 + %) de < Ces + Ce™.
Ured)

Thus, there exists r; € (RL€ S R . i) such that

49 T 50
|a@(r)| + |9(r1)| < Ce® + Ce? and |@(r1)| + |7/(r1)| < Ce?.

Doing the same procedure with p = 7, using the above estimates instead of (4.79) when
estimating the boundary terms in (4.99), yields that

/ (2| Vil + 2| Vol + @2 + 8%) de < Ce5 4 Cet.

By

Thus, there exists r9 € (RL€ — %, 7"1) such that

|i(ra)| + [5(ra)| < Ce% 4+ Ce and |@(rs)| + |7 (rs)| < Ce.

[terating this scheme a finite number of times provides us with an r, € (RLE - %, Ry, — g)
such that

/ (@2 + %)dx < Ce3. (4.100)
Br*

Now, via (4.96), (4.98), and interior elliptic regularity theory, we find that

Ikad] < Ce® and ||7] < Ce”. (4.101)

H? (B<R1,576>> H? <B<R1,E—6)>

By the two-dimensional Agmon inequality [7, Lem. 13.2], we infer that

o 1 1 (4.100),(4.101) 8
U < Cllul|? ul|? < e”.
I IILOO(B(R 5) = I ”Hz(B(RWa))” HLQ(BmWa)) <
Analogously, we have

o]l < Ce’.

L= (Ben, . -9))

The desired estimate (4.91) follows at once from (4.92), (4.96), (4.97), and the above two
relations. [

In the following proposition, we prove estimates in the intermediate zones, bridging the
estimates (4.79) and those provided by Proposition 4.14, on the left side of R;., i =1, 2.

Proposition 4.15. The following estimates hold:
me(r) = ()] € C2lr=Ri[ 72, () = foe(r)| < C2lr—Ri ™, r € [Ri.—0, Ry .—De?],

and
|772,a(7°) - ﬁQ,E(T)| S C152|7’ - R2,a|_% Zf re [R2,a - 5a R2,a - Dg%]a

for some constants C,6,D > 0 (§ as in Proposition 4.1/), provided that € > 0 is sufficiently
small.
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Proof. We only prove the assertions of the proposition that are related to R, ., since those
related to Ry, follow analogously and are in fact considerably simpler to verify because 7; .
is small beyond all orders for r > R . + 0.

From (4.57) and (4.77), there exists C' > 0 and a sequence D; — oo such that

(e — 7o) (R1.c — Dye)| < Ce, (4.102)

for sufficiently small € > 0, 7 > 1.
2
For r € [Ry. — §, Ri . — Dje3], we can write

Y =Me — 771,5 =Mie — ﬁl,t?? w =T"M2,e — 772,6 =12, — ﬁ2,€7 (4103)

where ¢, ¢ satisfy (4.63).
Let g, 1o be determined from the problems

—&2Apy + [(gl — Z—j) (317 . — a1e) + 2£ﬁf€] wo=Ey, re(Ry.—6 Ri.— Ded),

g2

wo(Rie —0) = p(Ri. — ), @o(Ri.— Djes) = p(Ry. — Djes),
and
—e?Adhy + 29277%,61% = No(,¥) + By, 1€ (Rie— 0, R — Dj€%)7

Yo(Rie —0) = (R —0), o(Riec— DJ'&%) =y(Ry . — Dje*%),

where E;, N;(-,-), ¢ = 1,2, are as in (4.25) and (4.64) respectively. By virtue of (4.27),
(4.28), (4.30), (4.33), (4.34), (4.45), (4.48), (4.79), Proposition 4.14, and (4.102), via a
standard barrier argument, we deduce that

2 r— R+ Dj€§
lpo(r)] < Ce” + Ceexp? c 5 , (4.104)
€3
— Ry.+ Dje3
(1) < Ce? + Ce¥lr — Ry~ + Ccs exp {cr RL; e } , (4.105)
if r € [Ry. — 6, Ry — Djes].
We can write
SOZQDO_‘_@a ¢:¢0+@Z,
where @, 1 satisfy
,C(@ﬂﬂ): ~ , T €& (Rl,e 57R1€_D95§)7
E, (4.106)
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with £ as in (4.42), for some functions E;, i = 1,2, satisfying the following pointwise esti-
mates:

|Ey| < Clinetbol + [Ni (g, )|

= 2
via (4.46), (4.64), (4.79), (4.105) < Ce2 4 Cellr — Ry.| "2 4 Cjes exp {CM} :

(4.107)

- (4.46),(4.104) i .
| Ea| < Clijepol < Ce”+ Cjesexpy c

(4.108)

Wl

r— Rl,g + Djé?%
E )

for r € [Ry. — 0, Ry — Djed).

Our plan is to solve the second equation in (4.106) for ¢) and substitute into the first, thus
reducing the system to one scalar equation for ¢. Then, we derive estimates for ¢ in some
carefully chosen weighted norms that we define afterwards. Let [ = (R — 0, Ry — Djsg)
and

p(r)y=Ry.—r, rel,
for ¢ € C*(I), we define

1 _1 3
181l = €*[1p2 Grrlloe(ry + €%l 2 v ll ooy + 112 Bll oo ), (4.109)

(for related weighted norms we refer the interested reader to the monograph [31] and the
references therein). In particular, we rely on the following a-priori estimate: there exist
€0, jo, K > 0 such that if h € C(I) and ¢ € C? (|z| € I) satisfy

2
— 26+ (91 - z—) (3. —ar)p=h inl; ¢=0 ondl, (4.110)

2
with 0 < e < &g, 7 > jo, then
1
o[l < Kl[p2 k|| Lo (1) (4.111)
We stress that the above constant K is also independent of § (i.e. €9 = €0(d)). In the
remainder of this proof, we denote by k/K a small/large generic constant that is independent

of large 7 and small d,e. The proof of this estimate proceeds in two steps. Firstly, similarly
to [27, Prop. 3.5], using the following consequence of (4.17)

klr — Ryl <30f. —a1. < Klr—Ry.|, rel, (4.112)
and the maximum principle (in the equation for p%gb), one obtains the partial estimate

3 1
12| Loy < Kl[p2h|| oo (1) (4.113)
Then, the full a-priori estimate follows by going back to the equation for ¢ and using the
upper bound in (4.112). The details are given in Appendix B. From now on, we fix such a
large j and drop the subscript from Dj.
In view of the second row in (4.42) and (4.106), we can write

@:—i7l’€¢+w+z, rel, (4.114)

9212

where

— 2Aw + 2gyiw = —2 LA (”1’5 @) inl; w=0 on dI, (4.115)

92 72,
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and
— Nz +2g0f3 .2 =FE, inI; z=0 on 0I. (4.116)
Using the pointwise estimates

0<f.<Kp2, |Vin]<Kp 2, |Af.]<Kps,

k S 772,5 S K7 ‘vﬁ2,€| S K7 |A7~72,e‘ S K + K€2P_47
for r € I, which follow readily from (1.33a), (4.17) (having increased j if needed), (4.21),
(4.30), (4.33), (4.34), and (4.46), we can bound pointwise the right-hand side of (4.115) as

e ~ 1A ~ 1~ 3~
gL A(%w)) < K¢ <p2|As0|+p 2[V@|+p 2|90|>

92

1 1. 3~
< K(52p2|g0rr|—l-€2f> 2|sor|+p2|sol)

= K]
Hence, by the maximum principle, we deduce that
[l 2oy < K|l (4.117)
On the other side, from (4.108), (4.116) and a standard comparison argument, it follows that
— Ry, + De5
|2(r)| < Ce® + Ces exp {cr L 2+ = }, rel. (4.118)
€3

Substituting (4.114) into the first equation of (4.106), recalling (4.42), we arrive at

2

A+ (gl - i—) (3. — av)@ = By — 2ginsiie(w+ ) in I; @=0on dl.
2

Making use of the a-priori estimate (4.111), bound (4.117), and the easy estimates
Hp%EIHLO@(I) < Cg* (recall (4.107)), ||p%'fh’52||Loo([) < Og? (recall (4.46), (4.118)),

we obtain that
1]l < Ce® + 6K |2,

where we also exploited that 0 < 7, < K p% < Ké2 in 1. Consequently, choosing a
sufficiently small ¢, and fixing it from now on, we infer that

18]l < Ce™.
In particular, for small e, we have that
‘@(T)‘ S 082‘T — RLE‘_%7 r e [RLe - 57 RLg - D&j%]

In turn, from the second equation in (4.106), recalling (4.46) and (4.108), via a standard
barrier argument, we find that

G| < O = Ral v e [Rie— 6 R - D)

The desired assertion of the proposition now follows at once from (4.103), (4.104), (4.105),
and the above two relations. U
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Lemma 4.16. Given D > 0, we have that
‘772,€(T) - ﬁ2,€(r)‘ < C{;‘%, |T - R1,€| < D{;‘%’
provided that € > 0 is sufficiently small.

Proof. Asin the beginning of the proof of Proposition 4.15, given D > 0, if & > 0 is sufficiently
small, there exist 7 € (Ry. — (D +1)ef, Ry — Det) andry € (Riz+ Db, Ryc + (D + 1)et)
such that

[(rs)| < Ce5,
where ¢ = 1y, — 72.. Keeping in mind the proof of Proposition 4.3, (4.42), (4.46) and
(4.79)), it follows readily from the second equation of (4.63) that v satisfies

—2 At + 20975 ) = (9(5%), uniformly on [r_, 7], ase — 0.

The assertion of the lemma follows directly from the above two relations and the maximum
principle, since 7); . > ¢ in this region. U

Lemma 4.17. If ¢ > 0 is sufficiently small, we have

Ry .
|771,a(7“) - 771,5(7’)| < Ceexp {c L
£

- T

}7 Rl,eSTSRl,e_‘_&

wlno

Ri.—r
|772,e(7")—772,e(7")|SC&2+C€%6XP{C } Ri.<r<Ri.+6
€3

and

Ry, —
|?72,a(7“)—772,a(7’)|§C€eXp{c 2 } Ro <1 < Rop+0
13

wlno

Proof. We only prove the estimates that concern R;. because those concerning R, follow
analogously. As in the proof of Proposition 4.15, let ¢ =11 — . and ¥ = N2 — 2. In
view of (4.42), (4.63), (4.64), the relations

RLg - T

E, =0, |E < Ce3 exp {c }+CE2, r € [Rye, R1.+306] (from (4.27), (4.28), (4.30)),

i

€
(4.79), and Proposition 4.15, we infer that

—2Ap + p(r)p = O(ih ),
(4.119)

AP+ q(r) = O(e2) + O(e3) exp {CRLE—’“} ,

2
3
uniformly on [R; ., Ry - + 30], as € — 0, for some smooth functions p, ¢ satisfying
p>cei oand ¢>c (recall (4.45) and (4.48)). (4.120)
Note that, from (4.79) and Lemma 4.16, we have
©(R1:) =0(), (R4 20)=0(e),
(4.121)
4
w(Rl,E) - O(€§)> w(Rl,a + 35) - 0(5)7
as ¢ — 0. A standard barrier argument yields that
[ (r)| < Ces exp{c }+C€2+C€exp {c

Rl,a - T

—Ry.—36
Tl—} r € [Rie, Ri. + 36],

Wl

< 15
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which implies that

\wvﬂsck%wp{ﬁﬁ@

€

-

} + 062, re [R1,57R1,5 + 25]7

Wl

provided that € > 0 is sufficiently small, as asserted. Now, via (4.119) and (4.13), we arrive
at

5 Ry, —
~ap -+ p(r)e = O exp {1
€3
uniformly on [Ry., Ry . + 2d], as ¢ — 0. Keeping in mind (4.120) and (4.121), a standard
barrier argument yields that

r

lo(r)] < Ceexp {CRI’€ — } + Ceexp {c

2
€3

—Ri.—26
UL } . 1€ [Rug, Ry +20],
€3
which implies that

- T

hmwswwm{ﬁ“

} , € [Rl,aa Rl,e + 5])
S

win

as asserted. O

4.7. Improved estimate for the Lagrange multipliers. In the sequel, building on
Proposition 3.3, via the results of the previous subsection, we are able to considerably im-
prove the estimate for A\, — A; o of the aforementioned proposition.

Proposition 4.18. If ¢ > 0 is sufficiently small, we have
Nie — Aio] < Cllogele?, i=1,2.

Proof. Motivated by the proof of the corresponding estimate for the scalar equation, as given
in [27, Thm. 1.1], we first show that

[ .~ at.)de = O(f10g=), (4.122)
R2

+
/ (n5 . — ag.)dx +/ n. — (a;e + ial,a) dr = O(|loge|e?), (4.123)
Bry. RA\Br, ’ 92

as ¢ — 0, and then exploit that

/ n;ode = / adr =1, i=12. (4.124)
R? R?

It suffices to establish only the validity of estimate (4.123) because that of (4.122) follows
verbatim. By (4.21), (4.23), Proposition 4.15 and Lemma 4.16, we obtain that

77%,5 — Q2 = ﬁg,a —az. +0O (52|T - Rl,a|_1)

= Lo =)+ O(Er — Rie™),

uniformly on [Ry. — 0, Ry . — Dé‘%], as € — 0. Analogously, making use of Lemma 4.16, we
see that

~ 4
@JWszmm—ﬁg+mwx
2
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uniformly on [R; . — De3, R+ De’:‘%], as € — 0. Hence, via Proposition 4.14, we find that
fBRl (e —aze)de = 2 fBRl,s (a1 — Ni.)dz 4+ O(|logele?)

yE

(4.125)
412y 9 9
= 92 le,s—5<|1‘|<R1,s (alﬁ - 7717a)d37 + O(| 10g€|€ )7

as € — 0. Similarly, keeping in mind (4.13), we have

/ (773,5 — G2 — 2&1,5) dr = -2 ﬁiad:)s +0(e?),  (4.126)
Ri:<|z|<R2c—6 g2 92 J Ry c<|x|<Ri.c+6

as € — 0, where we use Lemmas 4.16-4.17 instead of Proposition 4.15. On the other side,
thanks to (4.12) and Proposition 4.15, for r € [Ry, — §, Ro s — De3), we find that

77375 - <a2,a + g%afl,a) = ﬁg,g - <af2,a + g%al,a> + 27?2,5(”2,5 - ﬁ2,a) + (772,5 - ﬁ2,a)2

= 3.~ (a0 + Lare) + Ol — Racl ™),

uniformly, as ¢ — 0. Analogously, making use of (4.12) and (4.79), we see that

g . g
77%,& - (ale + _aLE) = 77375 - (ale + _al,s) + O(e3),
g2 g2

ol

uniformly on [Ry. — De3, Ry + De’:‘%], as € — 0. Thus, we get that

g . g
/ (773,5 — g, — —al,a) du = / (773,5 — e — —a175> dz+0(|logele?),
Roc—0<|z|<Ra2,c g2 Ra,c—0<|z|<Ra2c 92
(4.127)

as € — 0. Similarly, using Lemma 4.17 instead of Proposition 4.15, keeping in mind (4.13),
we obtain that

/ M edr = / 3 .dz + O(e?) ase — 0. (4.128)
|z]> Rz, Ro.-<|z|<Ra,c+6

Now, estimate (4.123) follows readily by adding relations (4.125), (4.126), (4.127), (4.128),
and using the estimates

+
/ (7} .—ai.)dz = O(]loge|e?), / e — (az,s + gal,e) dz = O(|logele?),
||| —Rye|<é |z|—Ra.c|<6 g2

as ¢ — 0, which follow from the proof of Theorem 1.1 in [27]. The proof of relation (4.123)
is complete.
By virtue of (3.14), increasing the value of D, if needed, we may assume that |R; . — R, o| <

Dl|logel|ze, i = 1,2, for small € > 0. It follows from (4.122), (4.123) and (4.124), recalling
(1.30) and (3.13), that
/ (a1 —arg)dz = O] log gle?),
|z|<R1,0—Dlloge|2e

f|:c|<R1,O_D| 10g5‘%5(a2,5 - azo)dx—l—

T le,o+D|1oga\%a<\x\<32,o—m1oga|%a [(alf —az0) + g (a1c = arp) | dv = O] logele?),
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as € — 0. In view of (1.30), (1.31), and (3.13), this leads to the following system:
(>\1,a - >\1,0) - gi()\za - )\2,0) = O(| log €|52)a
2

1

f (>\2,e - )\2,0) - gg(kl,e - >\1,0)} (>\1,e - ggAu) + (>\2,€ - >\1,5)()‘2,€ - )\2,0) = O(\ 10g€|€2),
1 2

as ¢ — 0. Now, recalling that g < g¢o, the assertion of the proposition follows straightfor-
wardly. O

4.8. Proof of Theorem 4.1.

Proof. Let (ny,n2) be the unique positive minimizer of E° in H provided by Theorem 1.3 (2).
We saw in Proposition 3.3 that the associated Lagrange multipliers \; . satisfy |\; - — Aio| <
elloge|'/?, i = 1,2. In view of (4.79) and Proposition 4.12, the solution (1 .,72.) that is
provided by Proposition 4.8 also fashions a positive radial solution of the system (1.5), with
the same Lagrange multipliers A, .. Therefore, by Theorem 1.3 (1), it coincides with (1, 72).

Estimate (4.1) is proven in Proposition 4.18. Estimates (4.2)-(4.3) follow from Proposition
4.14, the definition of 7); ., and the second estimate in (4.12). Estimates (4.4)-(4.5) follow
readily from Proposition 4.15, the definition of 7). (especially recall (4.21) for the second
estimate in (4.4)), and (4.17). Estimate (4.6) follows readily from Lemma 4.13, (4.12) and
(4.79); estimate (4.7) follows from (4.13), (4.21) and Lemma 4.17. Finally, relations (4.8),
(4.9) and (4.10) are consequences of (4.15), (4.21), (4.79) and Lemma 4.17. O

4.9. Proof of Theorem 1.4. The desired minimizer (1., 72.) is that of Theorem 4.1.
Clearly, estimate (1.19) is the same as (4.1). Estimate (1.20) follows readily by combining
(1.30), (4.4), (4.5), (4.6), (4.7), (4.9), and (4.10). Estimate (1.21) follows readily from (4.2),
(4.3), (4.4) and (4.5). In view of (1.12), (4.2) and (4.3), we infer that (1.22) holds. Finally,
the decay estimate (1.23) follows immediately from (4.6).

5. ESTIMATES FOR THE ANNULUS CASE

In this section, we explain how to extend the previous section to prove Theorem 1.6.
5.1. Construction of an approximate solution.

5.1.1. QOuter approximations. As before, we work with the equivalent problem (1.29), where
a1, Gy are the same as in (1.30), and A; ., Ao are provided by Theorem 1.3 in the case of
(1.9). This time, the problem with both diffusion terms neglected has a unique continuous,
nonnegative solution given by

D=

m = (al,a + gila'z&) y T2 = 07 0<r< R2_,a>
1 1 _
m= a12,a7 N2 = a22,av R2,a <r< Rl,e;
3
= 0, 2 = <a'2,a + g%al,a> ) Rl,a <r< R;:@
m = 0, 2 = 0, "= R;:av
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where
R g +2
(RZE) - 17 )\275 - _)\175 ) (R2,a) - )‘2767
1 g1

and

1 g
RQE:—<>\ L — 2 )
].7 F2 17 g2 27

In view of (3.13), and Remark 3.4, we have that

|Ri. — Rug| + |Rs. — Ryl < C|logelze. (5.1)

5.1.2. Inner approximations. Here, we define approximate solutions of the problem in over-
lapping intervals around each point Ry < Ry < R{ 0-

On [0, Ry — ¢], where /a; is away from zero and has bounded gradient, we neglect only
the term e2An; . from (1.29), and get the following problem:

gum (1 — a1(r)) + gm (03 — az(r)) =0,

—e2Any + goma (15 — a2, (1)) + gnz (0} — a1,-(r)) = 0.

From the first equation, we find that

g
n=aie+ a(aze —13). (5.2)

Then, from the second equation, we obtain that

2

—e* Ay + (92 - g_) (13 — agz) = 0.
g1
The function ay . is negative in [0, R, ) and positive in (R, ., 00). We consider a function
A, . which coincides with aq . on [0, Ry o+ 9], changes sign once in (R; 9+ 0, 00), and diverges
to —oo as r — oo. We then take as an approximation for 7, on [0, Ry — d] the restriction
of the unique positive solution 7, of the problem

2
e?An = (92 — Z—) n (772 — Agﬁ(r)) in R?, n—0asr — oo.
1

The properties of 7, which we require are contained in Appendix A. Accordingly, we take
as an approximation for 7; on [0, Ry o —d] the one given by (5.2) with 7, in place of 7,. The
approximations for 1y . and 7, . on [Ry o+, RI o — 0] are the same ones as in the case of two
disks, namely those given by (1.33a) and (4.21) respectively. Analogously, if r > Ry o+ 6, we
take as an approximation for 7; the trivial solution, while for 7, the unique positive solution
of the problem (1.33b) which we now call 73

5.1.3. Gluing approximate solutions. Let

Ry 4+ R R Ri.+ R3.

T& 2 9 € 2
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Analogously to Subsection 4.2, we can define a smooth global approximate solution (7 , 72.¢)
such that

(

1
.~ 2
(al,s + g%a2,€ - ;;1(77275)2) ) O S r S Te,

Pa— 1 5.3
Me = af. + Oca(?), re<r<retd (5:3)
\ 771,87 re + 0 < r,
( T 0<r<r,
1
az. + Oc2 (e2), re <r<r.+9,
%
772,8 = (a'275 + g%aLE - g%ﬁie) ) Te + o S r S R87 (54)
3
<a2,a + g%al,a> + 002 (52)a Ra S r S Re + 5)
(Mo R.+d<r

5.2. Estimates for the error on the approximate solution. The remainder £ (7, 72.)
that is left when substituting the approximate solution (7, 72.) to the system (1.29) is as
in (4.25).
For convenience, we set
A.={zeR?* : r. < |z| < R.}. (5.5)
Analogously to Proposition 4.3 for the case of two disks, we have
Proposition 5.1. The following estimates hold for small ¢ > 0:
5
1B || r2(a.) < O ||Eall12a.) < Ce3,

and
|E1 || r2@a. < Ces, ||Ballr2@eva.y < Ce.

5.3. Linear analysis. In the sequel, we consider the linearization of (1.29) about the ap-
proximate solution (7 ¢, 72.), namely the linear operator that is given by (4.41) for this
choice of (71, M2.c)-

As in the case of two disks, using that

cmax{&t%,ﬁie}, Ir — Ry <0,
377375 - a’2,€ Z
c, re[0,Ry. —|U[Ry, +0,7],

Cmax{g%ﬂ?is}a |’l“ - Rl,e| S 6)
37\7%75 - al,E 2
) rE[re, Rie — e [Rl,s +0, R.],
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and
2
Cmax{5§>n§,e}> |7’ - R;_,s| < 6a

2 c, re[Rs,RI;a—é]U[R;EjL(S,oo),

we can establish an analog of Proposition 4.6.

. g
37]5,5 — Q2 — g_al,e >

Proposition 5.2. The assertions of Proposition 4.6 are valid, provided that in (4.560) and
in the definition of the ||-||-norm in (4.57), Br. is replaced by A. defined in (5.5).

5.4. Existence and properties of a positive solution to the system (1.29). As in
Subsection 4.5, using the properties of the linearized operator that we discussed above, we
construct a positive, radial solution (1 ¢, 72,) to (1.29), near the approximate one (7; ¢, 7j2.¢ ),
for small € > 0. As before, the first part of the uniqueness Theorem 1.3 guarantees that this
solution is the desired minimizer.

Using the ||-[|-norm, as redefined in Proposition 5.2, we can show that Propositions 4.7,
4.8 and Corollary 4.9 remain unchanged. We still denote the corresponding solution by
(M., M2,c). The assertion of the Lemma 4.10 also remains the same. The only difference in
the proof is that, say in the equation for v,,, we rearrange the terms differently, namely write

—Avy+ 10, = (01016, (T + Enpiny) + 92,0, (Tn + Enftny)] p0n + g1inni o, (T +Enftny)vn = 0,
with
2 4
M2, zr(Bs) < Cpe3 ™30, p > 2.
Then, the analog of Corollary 4.11 is

1
[me —y/aie + gialeHLw(Bg) + M2l Lo (By) < Ces.
1

The positivity of the constructed solution, namely the analog of Proposition 4.12; requires
some additional considerations, since 7, is also small in the disk || < R,_:

Proposition 5.3. If ¢ > 0 is sufficiently small, the constructed solutions satisfy
Nie >0 inR? i=1,2.

Proof. The main difference with the previous case is in the domain |z| < R;_, which we
describe below.
We know that
AMe—
/)7175 - L ! + O(E
g1
where O(£3) in dependent of D > 1 (this follows directly from the analog of Proposition
4.14 or from the analogs of (4.22) and Corollary 4.9), and

N2 (Ry . — Dsg) > ces > 0.

Wl

), r€l0,Ry. — Des), (5.6)

The function 7, . satisfies the elliptic equation

_52A772,a + (72 + 9277375 + 977%75 - )\2,5)772,5 = 0.

In view of the above, the desired positivity of 1, . follows directly from the maximum principle
once we show that

_ 2
24 gand .+ g0t — Ao >0, 7€ [0, Ry, — Des).
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Note that, thanks to (5.6), the left-hand side equals

g 2
Ly 4 g_)\l,a — X+ gom3 . + O(e5),
1

where O(¢3) in dependent of D > 1. In view of (5.1), it suffices to show that
F17’2 + i)\LO — )\270 2 CDE%, re [O, R2_0 — D€%], (57)
91 ’

for some constant ¢ > 0 that is independent of D, e, provided that D is sufficiently large and
2
¢ sufficiently small. Observe that, since r < R, — De3, we have

r? < (Ry.)? + D*5 — 2DR; 65 < (R;.)? — DRy 25,
provided that ¢ < e(D). Now, recalling that
I' <0,
we can bound the left-hand side of (5.7) from below by

Fl(R£0)2 + CDéf% + gi)\l,o — >\270. (58)
1
We use (1.26) to find that the quantity (5.8) equals cDe3 with ¢ = —I' Ry, > 0. O

5.5. Proof of Theorem 1.6. The proof for the case where (1.9) holds, instead of (1.8),
proceeds along the same lines as the proof of Theorem 1.4. This time, we have to decompose
[0,00) into four intervals with boundary points R, < Rip < R;’ o- We point out that
the reduced problem near R, is a scalar equation of the form (A.1) where a(r) < 0 for

r € [0,Ry,), a(Ry) = 0, and a(ry) = 0 for some ry > R, ,, which is covered in Theorem
A.l.

6. THE AUXILIARY FUNCTIONS [ ., F5,

Assume that (1.3), (1.8) and (1.18) hold. In this section, we consider the auxiliary func-

tions
_ gi,a (T)
n7(r)

which will play an important role when analyzing the energy with rotation. In particular,
we will link them to the limiting functions

Fi () Cwith &.(r) = / s (s)ds, >0, i=1,2, (6.1)

é;;,‘()(gg), 0 S r < Ri,07

Foolr) = with () = [ sai(s)ds. (6.2

0, otherwise,

where a; is as in (1.12). Note that Fj g is bounded in R? since a; > 0 for r < R; , as observed
in (3.6), (3.7), and Fjo(R;0) = 0. Note also that F; g is merely continuous at R;, as Fj has
a finite jump discontinuity across that point.

This section is devoted to proving the following.
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Proposition 6.1. Assume that (1.3) and (1.8) hold. Let F;. be given by (6.1) and F;o by
(6.2). Then
C(Rip— 1)+ Ce5, if 0<7r< Ry,
Fi(r) <
Ces, if 7> Rip,

and || F; . — Fip|| L2y < Ces, i =1,2, provided that ¢ > 0 is sufficiently small.

This proposition follows from Corollary 6.4 and Lemma 6.5. The proof is made under the
additional assumption (1.18). If g; = g¢o, a simpler proof holds since F} . = F. and the
property is that for a single equation [3]. The scalar counterparts

1 o0
fie(r) = W/ shp(s)ds, r>0, i=12, (6.3)
and their convergence to the corresponding limiting functions
_l’_
© ¢t (s)ds [Zs (ag,o + iaw) (s)ds
ﬁdmzléjﬁil—amiﬁdm: 2 (6.4)
7 al,O(T) ’

—+ )
<a2,o + g%al,0> (r)
have been studied in [3, Lem. 2.2]. We have
Fl,O = f1707 and Fg,o = f270 OTlly onr > RLO‘ (65)

Actually, the ground states in the latter lemma had unit L?-norm but its proof carries over
to the above case, yielding the following lemma.

Lemma 6.2. Suppose that u. is as in Proposition /.2 with |\. — Xo| < C|loge|ze. The
auxiliary functions

(1) :/r su(s)ds and f.(r) = 2 r > 0.
satisfy
C(ro—r)+05§, if 0<r<nmy,
r<{
Ces, if >,

and || fo — foll Lo m2y < CE%, where

i [ sAo(s)ds, if <,

fo(r) =

0, if > 1o,
provided that € > 0 is sufficiently small.
The main task in this section is to show the following proposition.
Proposition 6.3. If ¢ > 0 us sufficiently small, then
|FLe(r) — fie(r)] < Ce3, r >0, (6.6)

and )
[Foe(r) = foe(r)| < Ce3, 1> Ry (6.7)
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Proof. From now on, let us fix a large D > 1 such that Lemma 4.13 is valid. The latter
lemma, similarly to [3, Lem. 2.2], implies that

0< Fi.(r)<Ces, r>Ry.+ Des. (6.8)

Since the above estimate also holds for f; ., by virtue of Lemma 6.2, we infer that (6.6) is
valid for r > Ry . + Des.
Ifr <R+ De3, via (4.12), (4.15), and Corollaries 4.9, 4.11, we have

n%,s(RLE + Déf%) <

ni-(r)
Therefore, we can write
2 2
Ry c+De3 2 (Ri,c+De3) 2
Fie(r) = ni:(r) ST s (s)ds + %Fl,a(Rl,a + Des)
(6.9)
6.8 3
e e s (s)ds + O,
uniformly in » > 0, as ¢ — 0. After rearranging terms, we find that
2
Ri,+De3 A 7% (r)—ni (v R,EDE .
Fio() = fielr) = oo [0 s [0 (s) — ()] ds + sl 100 i ()dst
n3,e(r) ! , N7 e (1) e (1)
+0(eh),
uniformly in r < Ry . + Dé’:‘%, as € — 0. Since on this interval we can set
Y =Me — f]l,a =Me— ﬁl,aa
we obtain that
2
Fre(r) = fielr) = e [T sl 4 2y cp)ds—
(6.10)
2
® (r 2p(r) Rie+De3 .9 2
~ |t + e S s (s)ds + O(E),
uniformly in » < Ry, + D»s% as ¢ — 0. The above terms can be estimated by first decom-

posing the interval [0, R . + Dsa] as [0, Ry —0|U[Ry1 . —0, Ry — 53] [Ryc— s R+ Dsa]
(with § > 0 fixed small), then making use of the uniform estimates in (4.79) and Proposition
4.14 for ¢, and those in (4.15) and (4.17) for 7y .. To illustrate the procedure, let us estimate
in detail the term

1 R1,.+De3
27”/ 5771,5(5)90(5)613-

nl,e r

If Ry, — e3 <r<s< Ry + De3, since (4.15) and (4.79) imply that Mme(r) > ces and
Me(s) < Ces, using (4.79) to bound ¢, we deduce that

1 Ry,e+De3 2 1 1
27()/ s e(s)p(s)ds| < Ce™ 3(R15+D53 — r)ese < Ce dciete = Ce
771,5 r r

+

win
o=
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fRi.—0<r<s<Ry,— £3, arguing similarly, this time noting that Me(r) > ced, we
find that

1 R1,5+D€% 1 2
W/ sire(s)p(s)ds| < Ce™5e = Ces.
l,e r

Lastly, if 0 <r < s < Ry . — 9, where 1, > ¢, via Proposition 4.14, we get that

1 R1,5+Da§
W/ se(s)p(s)ds| < Ces.
l,e T

Wi

The remaining terms in (6.10) can be estimated analogously to complete the proof of (6.6).
We point out that a rather delicate term is

2
o(r) Ry e4+De3 .
S S ;
n%,€(r)ﬁl,a(r) /T 8771,6(8) S

5%], which can be estimated as follows: Since in this interval we
> Cel/% (from (4.17) and (1.34)), and the same holds for 1, . via

when r € [Ry. — 6, Ry .
have 7 (1) > ¢(Ry . — )
(4.79), it follows that

[NIES

o=

2
R1,5+D€§ _ r
T o [ st < 0 (= R et < 0
" " 7 nl,a r

The validity of estimate (6.7) can be verified analogously, using (4.21) to show that |1y —
ﬁ275| S CE% n [Rl,aa R27E — 5] ]

The assertion of the following corollary is analogous to the first assertion of Lemma 6.2
for the scalar case.

Corollary 6.4. If ¢ > 0 is sufficiently small, we have

C(R@(]—T) Zf OS’/’SR@Q—&%,
0< Fi.(r) < (6.11)
Ces if TZRZ;O—E%,
i =1,2, where § > 0 is independent of € such that Ry — Rio > 46 and Ry > 46.

Proof. The desired estimate (6.11) follows readily from the fact that it holds with f;. in
place of F;. (see Lemma 6.2), via Theorem 4.1 and Proposition 6.3. O

The next lemma is a natural extension of the second assertion of Lemma 6.2.
Lemma 6.5. If ¢ > 0 s sufficiently small, we have
[ Fie — Fiollpo@2) < Ces, i=1,2,
where F;o are as in (6.2).
Proof. The proof is based on the fact that
| fi,e = fiollzoeme) < C’e’:‘%, i=1,2, (see Lemma 6.2),
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where f; are as in (6.4). In view of Proposition 6.3 and (6.5), we infer that the assertion of
the lemma is valid for ¢ = 1 and that there exists some C' > 0 such that

|Foe(r) = Fog(r)| < C=5, 1> Ry, +e7, (6.12)

(recall also (3.14)). So, for the proof to be completed, it remains to show that there exists
some C' > 0 such that

W=

|Poc(r) — Fyo(r)] < Ce5, 0<r < Ry +eb. (6.13)

To this end, for 0 <r < R; . + 5%, we write

2 2
1 Ry c+e3 77% (Rl . + 85) )
For(r) = 5—— / 87728(S)d8 4+ = Fye(Ryc+e8),
M5(r) J; > 15(7)
and
2 2
1 [Raetet Mo(Fe +3) 2
F27()(’l") = ——— / 8772 (S)dS + . ’ F270(R175 + 55).
77%,0(7) r 20 77%,0(7’)

Now, estimate (6.13) follows readily from (6.12) and the property that
M2.(r) — moo(r)| < Ce3, 0<r < Ry.+es.

The latter estimate is a consequence of (4.20)-(4.21), the fact that ||77 . — a || L) < Ces
(see Proposition 4.2), Corollary 4.9 and Proposition 4.14. O

Finally, we have another estimate which will be used later.
Lemma 6.6. There exists C' > 0 such that ||V || p~me) < C, i = 1,2.
Proof. We have
&e(r) = —rni(r) (6.14)

so that the result follows from Lemma 2.2. O

7. THE ENERGY MINIMIZER WITH ROTATION

In this section, we study the behavior of the minimizers of the energy functional Ef* in
the space H, defined in (1.1) and (1.2) respectively, as ¢ — 0. In the following we assume

Q< C|loge|, (7.1)

for some constant C' independent of . Any minimizer (uy, ug) = (uy ., uz.) of ES in H solves
the following system

—&2Auy + up(|z]? + gi|ur|* + gluo|?) + 26%iQat - Vuy = py cuy in R?,
—&2Aus + us(|z]? + go|ua|* + glus]?) + 26%iQat - Vug = o cusn in R?,

for some Lagrange multipliers p ., p12.. The existence of a minimizer when (2 satisfies (7.1)
is a consequence of Lemma 7.1 below and of the compactness induced by the fact that the
harmonic potential |x|? diverges as |z| — oc.
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7.1. Energy estimates. The following proof uses some ideas from [24, Lem. 3.1].

Lemma 7.1. We have

/ < (iuj, Vuj) dx

z [ e oot o+
R2
202¢,T B
Fgl / aio|u1|2 dx + 292g2/ (&270 + 2&170) |U2|2 dz.
2 R2\ D R2\ D, g2

Proof. We have
2
‘Q/ ot - (i, Vi) do s/ ('V“" 02 |u1|2)
R2 R2 4

We need to estimate the second term in the right hand side. Let us start with ¢ = 1. Notice
that

291F

2

2g:1
aro(z) = ?2 ay () for |z| > V2R, 0.

j2|* < —

This implies

/ |z)?|uq|? do :/ |x\2|u1|2dx+/ |z)?|uq|? do
R?2 {|z|<v2R1,0} {|=[>v2R1,0}
2g1F

< 2R7,+ T / ayolu]? da.
2 R2\D1

Similarly, for ¢ = 2, we have

|z|* < 2g, (az,o + gi&l,o) (x) for |z > V2Ry,
2

so that

/ || |ug)? do < QR;O + 2g2/
R2

; _
<CL2,0 + —al,o) \U2\2 dzx,
R2\ Do g2

which concludes the proof of the lemma. O
In analogy to Proposition 3.2, we have the following lemma.

Lemma 7.2. Let (uy,us) be a minimizer of ES* in H. There exists C' > 0 independent of &
such that, for 1= 1,2, we have

/ |Vu;|*> dov < C|logel?,
R2

/ (Jui* = ai)2 dx < Ce?|logel?,
R2

/ lui*ay o dz +/ (Jui]? + |usgl?) (ag,o + gOLLO) dr < Ce?|logel.
R2\ D, R2\ Dy g2

Proof. On the one hand, by the definition of minimizers, by Lemma 3.1 and Proposition 3.2,
we have

E2(u1,uz) < EZX(m,m2) = E2(m1,m2) < Clloge| + K, (7.2)
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with K as in Lemma 3.1. On the other hand, we have
E(uy, ug) = E2(uy, ug) + K — QZ/ - (tuj, Vu;) dx.

The right hand side can be bounded from below by means of (2.4) and of Lemma 7.1 as

follows:
2
Vuz2
(s, w3) Z/ {' D Ll - i>2}dx

‘l‘(] I a u (11' + — u az, ‘l‘ a dx

1
+92 (—2 - 292) / (az,o + ial,o) |us[* dx — 20%(Riy + R3) + K.
2e R2\ D> 92

The result follows by combining the last inequality with (7.2) and by using (7.1). O

In analogy to Lemma 2.1, we have the following

Lemma 7.3. Let (uy,us) be a minimizer of ES in H. For ¢ sufficiently small, we have

C\ //Jl/i’g(/uti’g + /zl/j75 _'_ 1) + C
g

wil? < pie/ i, V|| oo m2y <

for some C >0,i=1,2, j #1i.
Proof. For ¢ sufficiently small, the following holds

2
AJui*) = 2|V, | + 2(uy, Auy) > 5—2|Uj|2(9j|uj|2 — [1jel),

where we use —2Qz" - (iu;, Vu;) > —Q%x]*|ui|*—|Vu;|* and condition (7.1). We can proceed
very similarly to Lemma 2.1: let
* — lpiel
22
so that we conclude again with the non-existence result by Brezis [14]. Note that by testing
the equation of u; by w; itself, and working as above, yields that p; . > 0.

To prove the second part, fix z € R?, L > 0 and for y € By (), let z;(y) = wi(e(y — x)).
Then

Az = —z(Ey — 2 + gilzil? + g1z — pic) — 285y — 2)" - Vi = hic(y).
We have, by Lemma 7.2 and by (7.1),
QU (y — )" - Val 2@y = eQa™ - V|| 128,00 < C

for a constant C' independent of z. Therefore, using also the L*-bound above, we have

Hhi,eHL2(B2L(x)) < C, /Mi,g(ﬂi75 + Hij.e + 1) + C. We deduce that HZZ-||H2(BL(QE)) < C’1 /Mi75(/zl/i’5 +
fje+ 1)+ C and we conclude by a bootstrap argument. O

_ gilw we have  Aw; > 2(w;")?

%

Lemma 7.4. Let (uy,us) be a minimizer of ES in H and denote by ;. the associated
Lagrange multipliers. There exists C' > 0 independent of € such that, for i =1, 2,

‘Ni,€| <C.
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Proof. We test the equation for u; by u; itself and integrate by parts, which is possible since
u; € HY(R?,C). The term containing © can be bounded by means of Lemma 7.1, whereas
the other terms can be rewritten as in Proposition 3.3. Finally, the desired bound follows
from the energy estimates of Lemma 7.2. O

7.2. Non-existence of vortices. The proof presented here is an adaptation of the proof
of the main theorem in [3]. Let us start with the following splitting of the energy, which is
introduced in [5].

Lemma 7.5. Let (uy,us) be any minimizer of E in H and let (n1,n2) be the unique positive
minimizer of E° in H provided by Theorem 1.5. Let

v; = %, fori=1,2.
M
Then
E?(Ul, UQ> = Eg(’fh,'f}z) + FEQ(Ul,’UQ), where

2
Uh j .
F vy, v9) = Z y {?J\Vvﬂz + 49—;277;-1“1]]“2 —1)* — i Qat - (ivy, ij)} dx
j=1

g
tos iy (1 —Jon*)(1 = |vaf*) d.
€ R2

We skip the proof since it is similar to the one of Proposition 2.9. An integration by parts
and assumption (1.3) yield

Lemma 7.6. Let F;. be the auziliary functions introduced in (6.1) and let vy be as in (2.4).
Then we have

2 2
Fo(v1,00) =Y /RQ {% (IVvi2 — 4QF, . Jv;) + 418277?(|vi|2 - 1)2} dz <0,
i=1

where Jv; = (i0y,v;, 03,v;) stands for the Jacobian of v;.

Proof. First we prove that we can rewrite FY* in terms of F;. as follows

2 2 '
F2(vy,v) = Z/RZ {% (|Vvi|* — 4QF; . Jv;) + 4%277?(@2-\2 — 1)2} dx
i=1

(7.3)

g
wo [ = o)~ )
Indeed, by (6.14), the following holds

VLgi - (_angh axlgz) = _n?l,J_’
and Stokes theorem yields

& (iv;, Vo)t - vdo = {=&;V x (iv;, Vv;) + 7732»:)3l - (1v;, Vu;) } de,
8BR BR
where V x (iv;, Vv;) = 0Oy, (ivj, 04,0;) — Oy, (105, Oy, v;) = 2Jv;. The boundary term vanishes
because, by Corollary 6.4, for R large, we have

/ Fj,e(iuj, Vu]) do
OBRr

& (ivy, Vo)t - vdo
9Bg

< 020 /BB IV, + [us]?) do
R
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which vanishes along a sequence R — oco. Hence we have obtained

/ njat - (iv;, Vo) do = 2/ N Ej e Jv; da,
R? R?
and (7.3) is proved. Then, reasoning as in (2.3), we deduce that F2(vy,vy) > F2(vy,v5). On
the other hand, since (uy,us) is a minimizer and (71, 72) is real valued, we have
B2 (u1,us) < E2(m,12) = E2 (1, ma),
which, by Lemma 7.5, implies that F**(vy,v,) < 0. O

The rest of the section is devoted to proving that v; = 1.
Let 0 < x; <1 be regular cut-off functions with the property that

xi(r) = 1 for r < Rig—2|loge|™?* and y,(r) =0 for r > R;o — |loge| /2,

and moreover ||Vx; ||z < 2|loge|*2. We estimate F2(vy,v,) according to the following
splitting .
FEQ(Ul,’UQ) = Al + Bl — C1 + A2 -+ B2 — Cg,

where
Uzv 2 Y o4 2120 4
Ai: : S i — M i —_
L6 B ivu + Lol - 17| da

2
Bi= [ =) { % (Vi — 10870) + Tyt =17} o

R2
Lemma 7.6 immediately provides
A1+Bl+A2+BQ SCl"‘CQ. (74)

Proposition 7.7. With the notation above, for € small, we have B; > 0 for i = 1,2 so that
A1—|—A2 < 01+CQ.

Proof. Due to the definition of B;, we can restrict our attention to the set
supp(l — x;) = {z ¢ |z[ > R;o — 2| log€|_3/2}.

Corollary 6.4 implies that in such a set we have F;. < C|loge|~3/2. Hence assumption (7.1)
implies that QF; . < 1/4, for € sufficiently small. Recalling that |Jv;| < [Vuv;]?/2, we deduce
that

1
‘V’UZ‘P - 4QFZ'75J’UZ‘ Z §‘V’UZ“2,

and as a consequence,
77'2 2 Y o4 2 2
B; > 1—v;) R |V, —n: (|7 — 1 dz. 7.5
> [a—a {Ewup+ Lt 12} do (75)

The second part of the statement is obtained by combining with (7.4). U

1
éi:57_1/2< inf 77,-) .
{suppxi}

There exists C > 0 such that &; < Ce|loge|>/*.

Lemma 7.8. Let
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Proof. Clearly a; > c|loge|™/2 in {suppy;}. Hence property (1.20) implies that
m > ai — Ce'? > clloge| ™" in {suppxi}, (7.6)
which provides the statement. 0

Lemma 7.9. There exists C' independent of € such that, for small e,

2

|Vu? s s 3/2
> + L (w2 = 12} de < Clloge2(Cy + C).
{suppxi} 2 4&;

Proof. Recalling that €2 > &2/(yn?) in {suppx;} and relation (7.6), we deduce

|VUZ'|2 1
SuppXxi i

§C|log€|3/2/ {7” Vol + il = 1) } dz.

{suppx;i} 2

On the other side, estimate (7.5) implies that

[ A{Zrvur+ Lt - 17} do < a+28,
2 4e
The result follows by summing the above for i = 1,2 and combining with (7.4). O

Proposition 7.10. Suppose that
20) :2(121511>2<{]|FZ-,0]|L00(R2)} < |loge| — (a+ 1) log|loge|, (7.7)

for a suitable & > 0, where F;o are as in (6.2). There exists C' > 0 independent of € such
that

Ai + B +|Ci| < Clloge|™, fori=1,2.

Proof. We use a result by Jerrard [25], as it is stated in [3]. Following the last mentioned
paper, we let
log | loge| k—1

, B= = (7.8)

=1 k=1
« 300, + « 100

| loge]
Notice that
% = |loge|~*/1%0 = |loge| 712, (7.9)

As in [3], we can write [25, Lemma 8] as

Z|0| < mk;z/ Xiti {‘WZP + —5 (vl - 1)2} dz + Ce°(1 +i Cy])
> | log & 42 —

where &; is defined in Lemma 7.8. This formulation only makes use of the estimates in
Lemmas 6.6 and 7.9, so that it holds also in our case. Now, recalling that & = ivamz and
that €2 > &2/(yn?) in {suppy;}, we deduce

Ficllpoo
Z\C|<2Qk2” Illge\ A+ CF( 1+Z|C\

=1
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so that
(1—ogﬁ)2|o| <29k2””“ﬂfl + CeP.

i=1
We estimated F;. in Lemma 6.5, which prov1des

1F; el oeqrz) < (L+ CY3)||Fipllnoo ey < (14 Ce)|| Fo| oo ().

where the last inequality holds for e sufficiently small by virtue of (7.9). Also, Lemma 7.8
implies that, for every K > 0, we have

[log&;| > (|loge| — log |loge|)(1 + Ke”)

for e sufficiently small with respect to K. By combining these facts with assumption (7.7)
and with our choice of k in (7.8) we obtain

log | log¢|

|Cl| + |02| S (1 — ) k’(Al + Ag) + CEB

|loge| — log |log €|

log® |1
< (1 —oﬂ%) (A + Ag) + CE.

(7.10)

Recalling Proposition 7.7 we deduce
plog? | loge|
a —_—

Ap 4 Ay < |Gy +[Co| < (11—
| logel?

) (A1 +A2) +C€B,

so that
Ce? |logel?

a? log?|loge| —
where in the last step we replaced relation (7.9). Being A; non-negative quantities, the last
estimate holds for both terms. In turn we deduce from (7.10) that |C;] < C|loge|™'!, and
from (7.4) that

A+ A, < < COlloge|™",

Bl + Bg S Al —|—Bl —|—A2 + Bg S Cl +Cg S C‘ lOg&‘_H.
Being B; non-negative by Proposition 7.7, the estimate holds for both terms. O
We can now derive a “clearing-out” property (see also [10]).

Proposition 7.11. Suppose that (7.7) holds. For ¢ sufficiently small, we have
1
[vil = 5 in {suppxi}-
Proof. We shall prove that

lv;] > 1 —]loge|™" in {suppxi}, (7.11)

for ¢ = 1,2, which implies the statement. By combining Lemma 7.9 with Proposition 7.10

we obtain
2

0|2 1
> / { Vol s Lo - 1>2} dx < C|loge[**|loge| ™.
{suppx } 2 4e

i

Then Lemma 7.8 provides

1

g/{ (=17 do < Cltogel™ (7.12)
Suppxs



59

for © = 1,2. Next we observe that

| log e|/?

Vi || oo (gsuppxi}) < C (7.13)

£
This comes from the fact that ||[Vu;|| ~@z) < C/e, as can be seen by combining Lemmas
7.3 and 7.4, and that Vv, = Vu,;/n; — u;Vn;/n?, together with estimate (7.6). Suppose by
contradiction that (7.11) does not hold, i.e. there exists zy € {suppy;} such that

[vi(70)] <1 —|loge|™" ase— 0.
Then (7.13) implies
lvi(z)| <1—Clloge|™ in B, (z0) with ro = ¢|loge|™*/?,

so that
1

62 Br() (IO)O{Supri}
which contradicts (7.12) for e sufficiently small. Therefore (7.11) is proved. O

(\UZ-|2 — 1)2 dx > C| loga\_7,

7.3. Proof of Theorem 1.5. We are now in position to give the proof of Theorem 1.5.

Proof of Theorem 1.5. We take Q < wy|loge| — wylog|loge| with wg,w; such that (7.7)
holds (recall that F;g is bounded in R?). Thanks to the previous proposition the quantity
w; = v;/|v;] is well defined in {suppy;} and satisfies Jw; = 0 (see [3]). Hence, we find that

Cj = 29/ X565 (Jvj = Jw;) dx
{suppx;}

— 2Q/ Vl(xjgj)[(ivj, Vv;) — (tw;, Vw;)| dz.
{suppx; }

Writing v; = p;e’® in {suppx;} we see that (iv;, Vv;) = p?V¢; and (iw;, Vw;) = V¢;, so
that Proposition 7.11 implies

. . 7 — 1
(i), V) = (iw;, Vw;)| = Jp 10,V ;1 < 207 = 1|0V ;] < 2| = 1|Vl

J
We insert it in the previous estimate to obtain

C; < 2Q!|V(Xj§j)||L°°({suprj})/ 2 ||v|* = 1] - |Vv;| da

{suppx; }
£ 1 2
< 4\/§Q||V(Xj§j)||L°°(R2)/ {§]|ij|2 Ve (fv;* = 1) } dr
{suppx; } &

Vo;|? 1 2
{TJ Ve (lo;* = 1)" ¢ da,

< C’Qe|log5|9/4/

{suppx; }
where we used Lemma 7.8 and the estimate ||V(x:&)|z=®2) < C|logel*?. We sum for
i = 1,2 and then we use the assumption (7.1), and Lemma 7.9, to obtain Cj 4+ Cy <
Celloge™4(Cy + Cy), so that Cy + Cy < (C) + Cy) /2 for ¢ sufficiently small. Since C + C,
is non-negative by Proposition 7.7, we conclude that C; + Cy = 0. In turn, relation (7.4)
and Proposition 7.7 imply also A; = B; = 0 for ¢ = 1, 2, that is

77'2 2 Y4 2 2
oo { vk + Ztto - 02} do
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and (see (7.5))
Ui
L= {Bwa+ Zontup - 17} da =0,
R2

Therefore, we infer that v; are both constants of modulus 1 as we wanted to prove. U

APPENDIX A. THE SCALAR GROUND STATE
Throughout Subsections 4.2-4.3, we have referred to the following

Theorem A.1. Assume that a € C'[0,00) satisfies a’(0) = 0, there exist positive numbers
T < 7T < -+ <1y, such that a(r;) =0, a(r) # 0 if r # 1y, and (1)’ (r;)) >0,i=1,---,n
and a(r) — —oo as r — oo. Assume also that u. € R satisfy p. — 0 as e — 0.

Let A, = a+ .. For sufficiently small e > 0, by the implicit function theorem, there exist
0<rie <roe<---<rn. such that r;. = 1; as e — 0, satisfying A.(r;.) =0, A.(r) # 0 if
r#rie, and (—1)Al(r;.) >0,i=1,---,n

If e > 0 is sufficiently small, there exists a positive radially symmetric solution n. € C*(R?)
to the problem

)

e?An=n(n*—A(z)), ze€R?* n(z) =0 as|z| = oo, (A.1)
such that )
17 — /A || oo g2y < Ces, (A.2)
and
clr —rie| + ces, if Ir —ric] <0,
3t — A > (A.3)
c, otherwise,

for some 0 € (O, iminizl,..m_l{riﬂ — rl}) More precisely, we have

O(s+lr=riclt) 0 (=10 —r.) <6,

ne(r) = 5%(_1)i+1ﬁi,av (ﬁi,er;;i’s)ﬂL

“ O(e) exp {—c%} if —0 < (=1)"(r—ri) <0,
(A4)

where
3

i == _a/(ri,s)u 1= 17 N,
and V' is the Hastings-McLeod solution, as described in (4.11). Estimate (A.4) can be dif-
ferentiated once to give

1) =) NRY (3T ) 0 (F - ralt) Flrond <6 (A9
uniformly, as € — 0. On the other szde, we have
0-(r) — \/A(r) = E20(jr — 1| 73) if Ced < (=1)(r — 1) <6, (A.6)

uniformly, as € — 0. Furthermore,

— \/Ag_‘ S 082 n [5 = I:O’Tl’s — (5] U [7’1’5 +5, 7"275 — (5] J---uU [ng +(5, OO), (A7>

and

n.(r) < Cesexp {—cg—% min |r - rm\} if AX(r)=0. (A8)
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Moreover, if a(z) = a(|z|) € C*(R?),
= (VA) =0l =l ), (A9)

and

A — A (\/Ag) = 20(|r —ri|72), if Ceb < (=1)i(r —riL) <6, (A.10)
uniformly, as e — 0, and

e = /At |25y < Ce?. (A.11)

Proof. All the assertions up to (A.8) are essentially contained in [27, Thm. 1.1], where
in fact no radial symmetry is imposed on a(-). Actually, relation (A.5) can be proven by
combining the proof of Corollary 4.1 in [27] with relation (3.40) therein. In passing, we note
that V'(s) <0, s € R.

Let us further assume that a(z) = a(|z|) € C*(R?). In order to establish relations (A.9)-
(A.10), we need a refinement of (A.6). Motivated from the identity

e’A (775 - @) — e (775 + \/z‘Ts) (ne - \/z‘Ts) =—€’A (\/z‘Ts)
if Ced < (—=1)i(r — rie) <0 (see also [24, Prop. 2.1]), we let

A (VA 5 ,
Ne =V Aa = 52% + ¢ if Ces S (—1)2(7" — 7"2'75) S 5, (A12)

for some fluctuation function ¢. Pushing further the analysis in [17, Thm. 2.1] or [29, Thm.
1.1], it can be shown that

lp(r)| < Ce* if 6 < (=1)"(r — 1) < 20. (A.13)
Making use of (A.6), and recalling that
Al(rie) =d (rie) » —¢; <0 as € >0, (A.14)

it follows readily that
200 — . (n+VA) 0 =0 (Ir =il 2) i C=F < (—1)'(r =110 <4,
uniformly, as ¢ — 0. Since
Me (775 + \/fTa) >clr—r| if Ces < (=1)'(r—re) <9,
(from (A.6) and (A.14)), a standard comparison argument yields that
60| < Ce'lr —rie| ™2, O3 < (~1)(r—rie) <6,
where we have also used that
|6 (rie + (—1)'6)| < Ce* and ‘(ﬁ (ri,g + (—1)i06§>‘ < Ces,

which follow from (A.13) and (A.6) respectively; one plainly uses barriers of the form

+Me*|r — 7|72 with M chosen sufficiently large, see also [21, Lem. 2.1] or [26, Lem.
3.10] for related arguments when the problem is independent of ¢ (for the present argument

to work it is crucial that |r —r; .| > £3). Consequently, recalling (A.12), we have shown the
following refinement of (A.6):

A (\/Ag) u
_ 27 \v-E) 4 o 5
Ne— VA =¢ oA —|—5(’)<\r Tiel >,
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uniformly if Ce3 < (—=1)i(r —r;.) < 6, as ¢ — 0, which complements (A.13). In turn, via
(A.1) and some straightforward calculations, this can be shown to imply (A.10). Equiva-

lently, we have that
(rtne = VAY) =20 (Ir=ricl#),

if Ce3 < (=1)i(r — rie) < 0. Integrating the above identity from 7. + (—1)%0 to r;. +
(=1)iCe3, and using that (n. — VA) (ric + (=1)i6) = O(£?) as ¢ — 0 (from [24, Prop.
2.1]), we arrive at (A.9). Finally, relation (A.11) is shown in [24, Prop. 2.1] to hold in
the C'-topology but their proof carries over to yield the same estimate in C™, m > 2, via
a standard bootstrap argument (as in [9, Thm. 1]), provided that the coefficients in the
equation are sufficiently smooth. U

APPENDIX B. PROOF OF THE TECHNICAL ESTIMATE (4.111) IN PROPOSITION 4.15

Here we present the

Proof of (4.111). Suppose that ¢ satisfies (4.110) for some h € C(I).
Firstly, we establish (4.113). Let
b= pig.
It is easy to see that ® satisfies

1
—2,, — &2 <3p_1 - —) ®, + Q(r)® = pzh, rel; ®=0ondl, (B.1)
T

where )
g . 15, _ 3 -~
Q(T> = <gl - ;) (377%5 - aLe) - Zé‘zp 2 _ Z&Qp 1.

Observe that, thanks to the lower bound in (4.112), we have

1
Q(r) > p (kr - Z552p_3 - Kszp‘z) > p(k — KD;?) > kp, (B.2)

provided that D; is sufficiently large. We may assume, without loss of generality, that
® h > 0 (by writing h = h™ — h™ if necessary). If ® attains its maximum value at a point
ro € I, then ®,,.(ry) <0 and ®,(rg) = 0. So, letting py = Ry — 1o, via (B.1) and (B.2), we
obtain that ,
kpo®(ro) < pgh(ro),
i.e., ®(rg) < K||p%h]|Loo(1) which clearly implies the validity of (4.113).
By (4.110), the upper bound in (4.112), and (4.113), we find that

1 1
lp2 A¢| oo ry < Kl p2 bl oo (1) (B.3)
From this, we derive a pointwise estimate for ¢, by making use of the identity
T (1) — rod-(10) = / sA¢ds, Y ro,r € 1. (B4)
ro

We can choose 19 € (Ry. — 2Dj€%, R — Djé‘%) such that
¢(Ry. — Djes) — ¢(Ry. — 2Djes)
2
Dj€§

¢r(ro) =
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It follows from (4.113) that

_5 1
|¢T(TO)| S Ke™s p2h||Loo(I).

In turn, via (B.3) and (B.4), we get that

5y 1 1
|on(r)] < Ke75]|p2hl| 1) + |02 Al =)

fr:)(RLE — s)_%ds’

Y

5 1
< KeHpthllzeq + Ke 2o hlleeqr) o — ot

r € I. Hence, since p > Djfs% and Djfs% <py < 2Dj5§, we infer that

p2 |6, (r)] < Ke 2| p2h| ooy, 7€ 1.

Now, the desired estimate (4.111) follows by combining (4.113), (B.3) and the above relation.
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